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This book a labor,
Of love for my dear mother,

And all of mankind.
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The UNIX Fourth Edition Source Code Commentary

A Complete Guide to Understanding the UNIX v4 Operating System

Based on the original Bell Labs source code by Ken Thompson and Dennis Ritchie1

About This Book

This book provides a comprehensive, line‑by‑line commentary on the UNIX Fourth Edition source code.
UNIX v4 represents one of the most elegant and influential pieces of software ever written—an entire
operating system in roughly 10,000 lines of code that you can actually understand.

Unlike modern operating systems with millions of lines of code, UNIX v4 is small enough for one person
to comprehend completely. This book will guide you through every major component, explaining not
justwhat the code does, butwhy it was designed that way.

0.0.1. Why UNIX v4?

UNIX Fourth Edition (November 1973)2 occupies a unique position in computing history:

• FirstC‑basedUNIX—Whileearlier versionswerewritten inassembly, v4was rewritten inC,making
it the ancestor of all modern UNIX systems

• Complete and comprehensible—The entire kernel fits in about 9,000 lines of C and assembly
• Mature yetminimal— It includesmultiprocessing, a hierarchical filesystem, device drivers, and a
shell, but without the complexity that accumulated in later versions

• Influential design—The concepts introduced here (everything is a file, small tools that compose,
simple process model) became the foundation of modern operating systems

1UNIX Fourth Edition was released in November 1973. The source code in this book comes from a tape sent to the University
of Utah in June 1974, containing the V4 distribution withminor updates. See Ken Thompson’s letter to Martin Newell dated
May 31, 1974.

2The fourth edition was released in November 1973. The tape recovered from the University of Utah was sent in June 1974.
See the TUHSWiki for edition timeline.

2
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0.0.2. Prerequisites

To get the most from this book, you should have:

• Basic C programming knowledge— You don’t need to be an expert, but you should understand
pointers, structures, and function calls

• Understanding of fundamental OS concepts— Processes, files, memory allocation, and the dis‑
tinction between user and kernel mode

• Familiaritywith assembly language—Helpful but not required; we explain the PDP‑11 assembly
as we encounter it

0.0.3. What YouWill Learn

By the end of this book, you will understand:

• How an operating system boots and initializes itself
• How processes are created, scheduled, and terminated
• How the filesystem stores and retrieves data
• How system calls transfer control between user programs and the kernel
• How device drivers interface hardware to the rest of the system
• How the shell parses and executes commands
• How the C compiler transforms source code into executables

0.0.4. Source Files Location

All source code references are relative to the unix_v4/ directory:

unix_v4/
├── usr/sys/ # Kernel source
│ ├── ken/ # Ken Thompson's kernel code
│ │ ├── main.c # Kernel entry point
│ │ ├── slp.c # Process scheduling, sleep/wakeup
│ │ ├── trap.c # Trap and interrupt handling
│ │ ├── sys1.c # fork, exec, exit, wait
│ │ ├── sys2.c # open, read, write, close
│ │ ├── sys3.c # seek, stat, dup
│ │ ├── sys4.c # chmod, chown, time, etc.
│ │ ├── rdwri.c # readi(), writei()
│ │ ├── fio.c # File descriptor operations
│ │ ├── iget.c # Inode operations
│ │ ├── nami.c # Path name resolution (namei)
│ │ ├── alloc.c # Disk block allocation
│ │ ├── clock.c # Clock interrupt handler
│ │ └── sig.c # Signal handling
│ ├── dmr/ # Dennis Ritchie's device drivers
│ │ ├── bio.c # Buffer cache
│ │ ├── tty.c # Terminal line discipline
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│ │ ├── kl.c # Console driver
│ │ ├── rk.c # RK05 disk driver
│ │ ├── mem.c # Memory devices (/dev/mem, /dev/null)
│ │ ├── malloc.c # Core memory allocator
│ │ └── pipe.c # Pipe implementation
│ ├── conf/ # Configuration and machine-dependent code
│ │ ├── low.s # Interrupt vectors
│ │ └── mch.s # Machine-dependent assembly
│ └── *.h # Header files (proc.h, user.h, inode.h, etc.)
├── usr/source/ # User programs
│ ├── s1/ # Section 1 - User commands (cat, ls, echo)
│ ├── s2/ # Section 2 - System utilities (sh, login, init)
│ ├── s3/ # Section 3 - Libraries
│ └── s7/ # Section 7 - Miscellaneous
├── usr/c/ # C compiler source
│ ├── c0*.c # Compiler pass 0 (lexer, parser)
│ └── c1*.c # Compiler pass 1 (code generator)
├── bin/ # Binary executables
├── lib/ # Libraries and compiler passes
└── etc/ # System configuration (init, passwd)

0.0.5. Reading This Book

Each chapter follows a consistent structure:

1. Overview—What the chapter covers and why it matters
2. Source Files—Which files we’ll examine
3. Prerequisites—What you should understand first
4. Concepts—Background needed to understand the code
5. CodeWalkthrough— Line‑by‑line analysis of key functions
6. Key Data Structures—Annotated structure definitions
7. How It All Fits Together—Diagrams and explanations
8. Experiments—Things to try yourself
9. Summary—Key takeaways

10. Further Reading—Related chapters and external resources

0.0.6. Notation Conventions

Throughout this book:

• function()— Function names appear in monospace with parentheses
• variable— Variable and structure names appear in monospace
• file.c:123— File references include line numbers where helpful
• 0177776—Octal numbers (common in PDP‑11 code) start with 0
• Bold—Key terms on first introduction
• Italic—Emphasis or book/paper titles
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0.0.7. A Note on the C Dialect

The C in UNIX v4 predates the 1978 K&R standard. You’ll notice:

/* Assignment operators are reversed */
x =+ 1; /* Modern: x += 1 */
x =| 4; /* Modern: x |= 4 */
x =- y; /* Modern: x -= y (ambiguous with x = -y!) */

/* No void type - functions return int by default */
sleep(chan, pri) /* No return type declaration */
{

...
}

/* Parameter types declared separately */
sleep(chan, pri)
int chan; /* Parameter type declarations */
int pri; /* after the parameter list */
{

...
}

/* =0 initializes to zero */
int x 0; /* Modern: int x = 0; */

We’ll point out these differences as they arise.

0.0.8. Acknowledgments

The Original Authors

• Ken Thompson and Dennis Ritchie— For creating UNIX andmaking computing what it is today
• Bell Labs— For fostering an environment where this work could flourish

The UNIX v4 Tape Recovery

The source code studied in this book comes from a magnetic tape sent from Ken Thompson to Martin
Newell at the University of Utah in June 1974. Newell was conducting pioneering computer graphics
research (including the Utah Teapot). The tape survived because Jay Lepreau held onto it when it would
have been discarded; it was rediscovered among his papers in July 2025.

Timeline of recovery (from Angelo Papenhoff’s 39C3 presentation):

• June 1974—Tape sent from Ken Thompson to Martin Newell
• Jay Lepreau—Saved the tape from being discarded (found among his papers)
• 28 July 2025— Found by Aleks Maricq (University of Utah)
• Rob Ricci (University of Utah) — Spread the word about the discovery
• Thalia Archibald (University of Utah) — Researched the tape’s background and history
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• 18 Dec 2025—Driven to the Computer History Museum by Jon Duerig
• 19 Dec 2025—Read and uploaded to archive.org by Al Kossow, Len Shustek, and Thalia Archibald
• 20 Dec 2025—Booted on emulator by Angelo Papenhoff (squoze.net)
• 24 Dec 2025—Booted on real PDP‑11/45 by Jacob Ritorto
• 26 Dec 2025—Booted on real PDP‑11/40 by Ashlin Inwood

Archives and Community

• The Computer History Museum— For preserving this important history
• The Internet Archive— For hosting the recovered tape image (utah_unix_v4_raw)
• The UNIX Heritage Society— For maintaining archives of early UNIX
• squoze.net— For the UNIX v4 restoration and emulation documentation (squoze.net/UNIX/v4)

This Book

• Thalia Archibald— For historical corrections and feedback
• Warren Toomey— For technical corrections and feedback

“UNIX is basically a simple operating system, but you have to be a genius to understand the simplicity.” —
Dennis Ritchie
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How to Use This Book

0.0.1. For Sequential Reading

If you’re new to operating systems internals, read the chapters in order. Part I provides essential back‑
ground, Part II covers the kernel core, and each subsequent part builds on what came before.

0.0.2. For Reference

If you’re already familiarwith operating systems andwant to understand specific subsystems, each chap‑
ter is relatively self‑contained. Use the cross‑references to fill in background as needed.

0.0.3. With the Source Code

This book is meant to be read alongside the actual source code. Keep the unix_v4/ directory3 open
and follow along. The code is small enough that you can (and should) read all of it.

Let’s begin.

3Theunix_v4/directory refers to theUNIX v4 source code available from squoze.net, where Angelo Papenhoffhasmade the
restored source code available for download.
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Part I.

Foundation
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1. Chapter 1: Introduction

1.1. Overview

Before we dive into the source code, we need to understand the world that created UNIX. The design de‑
cisions in UNIX v4weren’tmade in a vacuum—theywere shaped by the hardware constraints of 1973, the
culture of Bell Labs, and the hard lessons learned from Multics. Understanding this context transforms
the code from a historical artifact into a masterclass in pragmatic engineering.

This chapter covers the history and philosophy behind UNIX, setting the stage for everything that fol‑
lows.

1.2. Prerequisites

None—this is where we begin.

1.3. The Birth of UNIX

1.3.1. FromMultics to UNIX

In 1964, MIT, General Electric, and Bell Labs began an ambitious project calledMultics (Multiplexed Infor‑
mationandComputingService). Thegoalwas to create a computingutility—a system thatwouldprovide
computing power like a utility companyprovides electricity, serving hundreds of users simultaneously.

Multics was revolutionary in concept but troubled in execution. It aimed to do everything: security, relia‑
bility, hierarchical filesystems, dynamic linking, andmore. By 1969, Bell Labs withdrew from the project.
It was over budget, behind schedule, and growing increasingly complex.

But two researchers who hadworked onMultics—Ken Thompson andDennis Ritchie—had tastedwhat
a good operating system could be. They wanted something simpler.

1.3.2. Space Travel and the PDP‑7

Ken Thompson had written a game called “Space Travel” that simulated the solar system. Running it
on the GE‑635 mainframe cost $75 per game in computer time. Thompson found a little‑used PDP‑7
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minicomputer and decided to port his game to it.

Tomakedevelopmenteasier, heneededanoperating system. Overa fewweeks in1969, Thompsonwrote
a simple filesystem, a process model, a command interpreter, and a few utilities. His wife took the kids
to visit her parents for a month; Thompson allocated one week each to the kernel, the shell, the editor,
and the assembler.

ThiswasUNIX—though itwasn’t called that yet. Thenamecame fromBrianKernighanasapunonMultics:
where Multics was “multiplexed,” UNIX was “uniplexed,” doing one thing well.

1.3.3. The PDP‑11 and the Rewrite

In 1970, the Computing Science Research Center at Bell Labs acquired a PDP‑11/20. The PDP‑11 was
a revolutionary machine—clean architecture, orthogonal design, and a memory management unit that
could support multiple users.

Thompson rewrote UNIX for the PDP‑11. But assembly language was tedious, and the system was hard
to modify. Thompson wanted a high‑level language.

He tried FORTRAN first—it was a disaster. Then he created a language called B, based on BCPL. B was
typeless, which worked fine on word‑addressedmachines but poorly on the byte‑addressed PDP‑11.

Dennis Ritchie extended B into C, adding types, structures, and other features. In 1973, Thompson and
Ritchie rewrote UNIX in C—the systemwe’re studying in this book.

1.3.4. Why This Version Matters

UNIX v4 (November 1973)1 is special:

1. First C version—This is where UNIX became portable and where C proved itself as a systems pro‑
gramming language

2. Minimal but complete — It has multiprocessing, a hierarchical filesystem, device drivers, pipes,
and a shell. Yet the kernel is under 9,000 lines of C.

3. Before the accretion— Later versions added networking, virtual memory, and hundreds of other
features. v4 has the core ideas without the cruft.

4. The design crystallized—The fundamental architecture that would influence all future UNIX sys‑
tems was established by v4.

1UNIX v4 was released November 1973. The source code studied in this book comes from a tape sent to Martin Newell at the
University of Utah in June 1974. See Thalia Archibald’s research at unix‑history.
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1.4. The Bell Labs Environment

Understanding UNIX requires understanding Bell Labs in the early 1970s.

1.4.1. The Research Culture

Bell Labswas a unique institution. AT&T’s telephonemonopoly generated enormous profits, a portion of
which funded fundamental research with no expectation of immediate commercial return. Researchers
had freedom to pursue interesting problems.

The Computing Science Research Center (Department 1127) was particularly unusual. It had about a
dozen researchers, no hierarchy to speak of, and no product deadlines. Thompson, Ritchie, and their
colleagues could spend years on work that might never ship.

This freedom produced remarkable results: the transistor, information theory, the laser, and UNIX all
came from Bell Labs.

1.4.2. Constraints and Creativity

But freedom didn’t mean unlimited resources. The PDP‑11/20 had:

• 24KB of memory (later systems hadmore, but not much)
• A 2.5MB RK05 disk pack
• Nomemory protection initially (MMU came with PDP‑11/40 and /45)
• No virtual memory—What you had was what you got

These constraints forced elegant solutions. When you can’t addmore code, youmake the code you have
work harder. Every data structure in UNIX v4 is minimal. Every algorithm is simple. There’s no room for
bloat.

1.4.3. The Users

UNIX was used for real work at Bell Labs. The first killer app was text processing—Thompson and Ritchie
convincedmanagement to buy aPDP‑11 by promising to develop adocument preparation system for the
patents department.

The users were sophisticated programmers who could (and did) read the source code. When something
was wrong, they fixed it. This tight feedback loop between developers and users produced a system
refined through daily use.

Briam Rodriguez 11 11
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1.5. Design Philosophy

UNIX embodies a coherent design philosophy that emerged from Thompson and Ritchie’s Multics expe‑
rience and the constraints they worked within.

1.5.1. Simplicity

The overriding principle is simplicity. When in doubt, leave it out. When forced to add something, add
the simplest thing that could possibly work.

Consider the process model. A process has a process ID, a parent process ID, memory, open files, and
not much else. There’s no process priority inheritance, no real‑time scheduling, no mandatory access
control. Just the basics.

Or consider the filesystem. Files arebyte streams—the systemdoesn’t knowor care about record formats.
Directories are files that contain names and inode numbers. That’s it.

1.5.2. Everything is a File

In UNIX, almost everything is accessed through the file interface: open, read, write, close. This
includes:

• Regular files on disk
• Directories
• Devices (terminals, disks, printers)
• Inter‑process communication (pipes)

This unification means programs don’t need special cases for different kinds of I/O. cat doesn’t know if
it’s reading from a file or a terminal or a pipe—and it doesn’t need to.

1.5.3. Small, Sharp Tools

UNIX encourages small programs that do one thing well. Instead of one large program that does every‑
thing, you have many small programs that can be combined.

This is made possible by two innovations:

1. Text streams—Programs communicate through streams of text, not binary formats
2. Pipes—The output of one program can be connected to the input of another

who | wc -l # Count logged-in users
ls | grep foo # Find files matching "foo"
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1.5.4. Worse is Better

RichardGabriel later characterized theUNIX philosophy as “worse is better”—adesign that is simpler but
less complete will often bemore successful than one that is more complex but more correct.

Consider error handling. In UNIX, system calls that fail return ‑1 and set a global error code. The caller
must check every return value. This is inconvenient, error‑prone, and not at all elegant.

But it’s simple. The kernel doesn’t need complex exception handling. User programs can ignore errors if
they want. And in practice, it works well enough.

This philosophy runs throughout UNIX:

• The shell is simple (no job control in v4)
• The filesystem is simple (no permissions more complex than read/write/execute)
• The process model is simple (no threads, just processes)

Is this worse? In some sense, yes. Is it better? In practice, often yes—because simple systems are easier
to understand, implement, debug, and extend.

1.6. The Cast of Characters

UNIX was created primarily by two people, with significant contributions from others.

1.6.1. Ken Thompson

Thompson wrote the first UNIX on the PDP‑7, then rewrote it for the PDP‑11. He created the B program‑
ming language, the first UNIX shell, andmany core utilities. In the source code, files in usr/sys/ken/
contain Thompson’s kernel code.

Thompson’s code is characterized by extreme brevity. Functions are short, variable names are terse, and
there’s no wasted motion. Looking at slp.c (sleep/wakeup and scheduling), you’ll see algorithms so
tight they border on cryptic—until you understand them, and then they seem inevitable.

1.6.2. Dennis Ritchie

Ritchie created the C programming language and rewrote much of UNIX in it. His code lives in us-
r/sys/dmr/ and includes the device drivers and buffer cache. Ritchie also wrote the definitive doc‑
umentation for C and for UNIX.

Ritchie’s code tends to be slightly more expansive than Thompson’s, with more comments and clearer
structure. The buffer cache (bio.c) is a model of clarity.
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1.6.3. Others

• Brian Kernighan — Named UNIX, contributed utilities, co‑authored “The C Programming
Language”

• DougMcIlroy— Invented pipes, led the research group
• Joe Ossanna—Created troff, the text formatter
• Lorinda Cherry—Statistical tools and document analysis

1.7. What We’ll Study

The UNIX v4 source code breaks down as follows:

1.7.1. The Kernel (~9,000 lines)

usr/sys/ken/ # Thompson's kernel code
main.c # Boot and initialization
slp.c # Scheduling, context switch, sleep/wakeup
trap.c # Trap and interrupt handling
sysent.c # System call table
sys1.c # Process syscalls: fork, exec, exit, wait
sys2.c # File syscalls: open, read, write, close
sys3.c # More file: seek, dup, pipe
sys4.c # Misc: time, signal, stat
fio.c # File descriptor layer
rdwri.c # Inode read/write
iget.c # Inode cache
nami.c # Path resolution (namei)
alloc.c # Disk block allocation
clock.c # Clock interrupt handler
sig.c # Signals
text.c # Shared text segments
subr.c # bmap and other utilities
prf.c # printf for kernel

usr/sys/dmr/ # Ritchie's drivers and buffer cache
bio.c # Buffer cache
tty.c # Terminal handling
kl.c # Console driver
rk.c # RK05 disk driver
mem.c # /dev/mem, /dev/null
malloc.c # Core memory allocator
pipe.c # Pipe implementation
... # Other device drivers

1.7.2. User Programs

usr/source/s2/sh.c # The shell
usr/source/s1/cat.s # cat in assembly
usr/source/s1/ls.s # ls in assembly
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usr/c/ # The C compiler

1.7.3. Header Files

usr/sys/param.h # System parameters
usr/sys/proc.h # Process structure
usr/sys/user.h # User structure (u.)
usr/sys/inode.h # Inode structure
usr/sys/buf.h # Buffer structure
usr/sys/file.h # Open file table
usr/sys/filsys.h # Superblock structure
usr/sys/tty.h # Terminal structure

1.8. Summary

• UNIX emerged from theMultics project, preserving the good ideaswhile discarding the complexity
• Ken Thompson created UNIX in 1969 on a PDP‑7; it was rewritten in C for the PDP‑11 in 1973
• UNIX v4 is the first C‑based version—complete, minimal, and comprehensible
• The Bell Labs environment provided freedom and constraints that shaped the design
• The UNIX philosophy emphasizes simplicity, the file abstraction, and composable tools
• The source code we’ll study is about 9,000 lines of kernel code plus user programs

1.9. Further Reading

• Ritchie, D.M. and Thompson, K., “The UNIX Time‑Sharing System,” Communications of the ACM,
July 1974

• Ritchie, D.M., “The Evolution of the Unix Time‑sharing System,” AT&T Bell Laboratories Technical
Journal, October 1984

• Kernighan, B. and Pike, R., “The Unix Programming Environment,” Prentice‑Hall, 1984
• Salus, P., “A Quarter Century of UNIX,” Addison‑Wesley, 1994

Next: Chapter 2 — The PDP‑11 Architecture
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2. Chapter 2: The PDP‑11 Architecture

2.1. Overview

You cannot understand UNIX v4 without understanding the PDP‑11. The hardware shapes the software
at every level—from the way system calls work to why there are exactly 8memory segments per process.
This chapter covers the PDP‑11 architecture as it relates to UNIX, focusing on what you need to know to
read the source code.

2.2. Source Files

File Purpose

usr/sys/seg.h Memory management register definitions

usr/sys/reg.h Register save area offsets

usr/sys/conf/mch.s Machine‑dependent assembly routines

usr/sys/conf/low.s Interrupt vector table

2.3. Prerequisites

• Basic understanding of computer architecture (registers, memory, addresses, interrupt handling)
• Familiarity with any assembly language (concepts transfer)

2.4. The PDP‑11 Family

The PDP‑11was Digital Equipment Corporation’smost successful minicomputer line, introduced in 1970.
UNIX v4 ran primarily on the PDP‑11/45, though it supported the /40 as well.

Key characteristics:

• 16‑bit architecture—Words are 16 bits, addresses are 16 bits
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• 64KB address space— 2^16 = 65,536 bytes maximum
• Byte‑addressable—Can access individual bytes, not just words
• Memory‑mapped I/O—Devices accessed throughmemory addresses
• Orthogonal instruction set—Most instructions work with any addressing mode

The 64KB address space was the crucial constraint. An entire UNIX system—kernel, user processes, and
I/O devices—had to fit in this space. The Memory Management Unit (MMU)made this possible by provid‑
ing virtual address translation.

2.5. Registers

The PDP‑11 has eight 16‑bit general‑purpose registers:

r0 General purpose, also function return value
r1 General purpose
r2 General purpose
r3 General purpose
r4 General purpose
r5 General purpose, frame pointer by convention
r6 (sp) Stack pointer
r7 (pc) Program counter

All registers are equivalent for most operations, but convention and some instructions treat them spe‑
cially:

• r0—Return value from functions; first argument in some calling conventions
• r5— Frame pointer by C compiler convention
• r6/sp—Stack pointer; push/pop operations use this implicitly
• r7/pc—Program counter; can be used as a general register for tricks

The register save area in the kernel (from reg.h) shows how registers are stored on the stack during a
trap:

/* reg.h - offsets from saved r0 */
#define R0 (0)
#define R1 (-2)
#define R2 (-9)
#define R3 (-8)
#define R4 (-7)
#define R5 (-6)
#define R6 (-3)
#define R7 (1)
#define RPS (2) /* Processor Status word */
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2.6. The Processor Status Word (PS)

The PS register at address 0177776 contains the processor state:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| CM | PM | RS | | IPL | T| N| Z| V| C|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

CM - Current Mode (00=kernel, 11=user)
PM - Previous Mode
RS - Register Set (PDP-11/45 has two register sets)
IPL - Interrupt Priority Level (0-7)
T - Trace bit
N,Z,V,C - Condition codes (negative, zero, overflow, carry)

Traps vs. Interrupts: Both traps and interrupts transfer control to the kernel through similar mecha‑
nisms, but they differ in origin. An interrupt is an asynchronous event from external hardware (disk
ready, clock tick, keyboard input). A trap is a synchronous event caused by the currently executing
instruction—either intentionally (system calls use the trap instruction) or due to errors (illegal instruc‑
tion, memory fault). The PDP‑11 handles both through the same vector mechanism, saving the PC and
PS on the stack before jumping to a handler address.

The key fields for UNIX are the following:

2.6.1. Current/Previous Mode (bits 14‑15, 12‑13)

The PDP‑11 has twomodes:

• Kernel mode (00)— Full access to all memory and instructions
• Usermode (11)—Restricted access, memory mapped through MMU

When a trap occurs, the hardware saves the current PS and sets the new mode to kernel. The Previous
Mode field records where we came from, so we knowwhether to access user or kernel space.

2.6.2. Interrupt Priority Level (bits 5‑7)

The IPL controls which interrupts are blocked:

/* From mch.s */
spl0() /* IPL = 0, all interrupts enabled */
spl1() /* IPL = 1, block level 0 */
spl4() /* IPL = 4, block disk interrupts */
spl5() /* IPL = 5, block most device interrupts */
spl6() /* IPL = 6, block clock interrupts */
spl7() /* IPL = 7, block all interrupts */
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The kernel raises the IPL to protect critical sections:

/* Typical pattern in the kernel */
spl6(); /* Block interrupts */
/* ... critical section ... */
spl0(); /* Re-enable interrupts */

2.7. Memory Layout

With only 64KB of address space, UNIX uses the MMU tomultiplex physical memory among:

• The kernel
• User processes (one at a time in memory)
• I/O device registers

2.7.1. Physical Address Space

000000 - 157777 RAM (up to 56KB, varies by system)
160000 - 177777 I/O Page (device registers)

The top 8KB is always reserved for device registers, limiting usable RAM to 56KB in a basic configuration.
Systems with extendedmemory used the MMU to access more.

2.7.2. Virtual Address Space (per process)

Each process sees:

000000 - 017777 Segment 0 (8KB)
020000 - 037777 Segment 1 (8KB)
040000 - 057777 Segment 2 (8KB)
060000 - 077777 Segment 3 (8KB)
100000 - 117777 Segment 4 (8KB)
120000 - 137777 Segment 5 (8KB)
140000 - 157777 Segment 6 (8KB) - User structure in kernel
160000 - 177777 Segment 7 (8KB) - I/O Page

2.8. The Memory Management Unit (MMU)

TheMMU(KT‑11optiononPDP‑11/45) translates virtual addresses tophysical addressesusing8segment
registers per mode.
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2.8.1. Segmentation Registers

From seg.h:

/* KT-11 registers */
#define KISA 0172340 /* Kernel I-space Address registers */
#define UISD 0177600 /* User I-space Descriptor registers */
#define UISA 0177640 /* User I-space Address registers */

#define RO 02 /* Read-only */
#define RW 06 /* Read-write */
#define WO 04 /* Write-only (not used) */
#define ED 010 /* Expand downward (for stack) */

struct { int r[8]; }; /* 8 registers per set */

Each segment has two registers:

Page Address Register (PAR)—Base physical address (in 64‑byte blocks)

Page Descriptor Register (PDR)—Access control and length:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | PLF |W | |ED| ACF | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

PLF Page Length Field (bits 14-8, in 64-byte blocks)
W Written (bit 7, set by hardware when page modified)
ED Expand Downward (bit 3, 1 for stack segments)
ACF Access Control Field (bits 2-1: 01=RO, 11=RW)

2.8.2. Address Translation

Virtual address → Physical address:

Virtual: | Segment (3 bits) | Block (7 bits) | Byte (6 bits) |
| 0-7 | 0-127 | 0-63 |

Physical = PAR[segment] * 64 + block * 64 + byte
= (PAR[segment] + block) * 64 + byte

Example: Virtual address 0037777 (octal) ‑ Segment: 0037777 >> 13 = 0 (segment 0) ‑ Offset:
0037777 & 017777 = 017777 (8191 decimal) ‑ If PAR[0] = 0100, physical = 0100 * 64 + 8191 = 4096 +
8191 = 12287

2.8.3. HowUNIX Uses Segments

In UNIX v4, a typical user process layout:
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Segment 0-2: Text (code) - Read-only, shared
Segment 3-5: Data + BSS + Heap - Read-write
Segment 6: (not used by user)
Segment 7: Stack - Read-write, expands downward

Kernel sees:
Segment 0-5: Kernel code and data
Segment 6: User structure (u.) for current process
Segment 7: I/O page

The function estabur() in main.c sets up user segments:

estabur(nt, nd, ns) /* text, data, stack sizes */
{

/* Set up text segments (read-only) */
while(nt >= 128) {

*dp++ = (127<<8) | RO; /* 8KB read-only */
...

}

/* Set up data segments (read-write) */
while(nd >= 128) {

*dp++ = (127<<8) | RW; /* 8KB read-write */
...

}

/* Set up stack segment (expand down) */
*--dp = ((128-ns)<<8) | RW | ED;

}

2.9. Trap and Interrupt Mechanism

2.9.1. Vector Table

The PDP‑11 uses a vector table in lowmemory. Each vector is two words: new PC and new PS.

From low.s:

. = 0^.
br 1f / Reset: branch to start
4

/ trap vectors (addresses 4-36)
trap; br7+0. / 4: bus error
trap; br7+1. / 10: illegal instruction
trap; br7+2. / 14: BPT (breakpoint)
trap; br7+3. / 20: IOT trap
trap; br7+4. / 24: power fail
trap; br7+5. / 30: EMT (emulator trap)
trap; br7+6. / 34: TRAP (system call!)

When a trap occurs:
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1. Hardware pushes PC and PS onto the kernel stack
2. Hardware loads new PC and PS from the vector
3. Execution continues at the new PC (the trap routine)

2.9.2. The System Call Trap

UNIX uses the TRAP instruction (vector at address 034) for system calls:

/ User code to make a system call
sys write / This is really: trap #4

The trap handler (trap in mch.s) saves registers and calls the C function _trap():

trap:
mov PS,-4(sp)
...
jsr r0,call1; _trap / Call C trap handler

2.9.3. Interrupt Handling

Device interrupts work similarly but have their own vectors:

. = 60^.
klin; br4 / Console keyboard input, priority 4
klou; br4 / Console keyboard output

. = 100^.
kwlp; br6 / Clock interrupt, priority 6

. = 220^.
rkio; br5 / RK disk interrupt, priority 5

Each device interrupt calls a C function:

klin: jsr r0,call; _klrint / Call klrint() in C
kwlp: jsr r0,call; _clock / Call clock() in C
rkio: jsr r0,call; _rkintr / Call rkintr() in C

2.10. Key Machine Instructions

2.10.1. Data Movement
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mov src,dst / Move word
movb src,dst / Move byte
clr dst / Clear (set to 0)

2.10.2. Arithmetic

add src,dst / dst = dst + src
sub src,dst / dst = dst - src
inc dst / dst++
dec dst / dst--
cmp src,dst / Compare (set condition codes)
tst src / Test (compare with 0)

2.10.3. Logical

bic src,dst / Bit clear: dst &= ~src
bis src,dst / Bit set: dst |= src
bit src,dst / Bit test: src & dst (set flags only)

2.10.4. Branching

br addr / Branch always
beq addr / Branch if equal (Z=1)
bne addr / Branch if not equal (Z=0)
bge addr / Branch if >= (signed)
blt addr / Branch if < (signed)
bhi addr / Branch if > (unsigned)
blos addr / Branch if <= (unsigned)

2.10.5. Subroutines

jsr r5,addr / Jump to subroutine, save return in r5
/ Actually: push r5, r5=pc, pc=addr

rts r5 / Return: pc=r5, pop r5

2.10.6. Stack Operations
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mov r0,-(sp) / Push r0
mov (sp)+,r0 / Pop into r0

2.10.7. Special

sys n / System call (trap instruction)
rti / Return from interrupt
wait / Wait for interrupt
reset / Reset all devices

2.11. Addressing Modes

The PDP‑11’s power comes from its orthogonal addressing modes. Any instruction can use any mode
for source and destination:

Mode Syntax Name Meaning

0 Rn Register Use register directly

1 (Rn) Deferred Memory at address in Rn

2 (Rn)+ Autoincrement Use (Rn), then Rn += 2

3 @(Rn)+ Autoincr Deferred Pointer at (Rn), then Rn += 2

4 ‑(Rn) Autodecrement Rn ‑= 2, then use (Rn)

5 @‑(Rn) Autodecr Deferred Rn ‑= 2, use pointer at (Rn)

6 X(Rn) Index Memory at Rn + X

7 @X(Rn) Index Deferred Pointer at Rn + X

Since PC is r7, modes 2, 3, 6, 7 with PC create additional modes:

Mode Syntax Name Meaning

27 #n Immediate Literal value n

37 @#addr Absolute Memory at address

67 addr Relative Memory at PC + offset

77 @addr Relative Deferred Pointer at PC + offset

Briam Rodriguez 24 24



20260116.002 Edition

Examples from UNIX source:

mov r0,r1 / Register to register
mov (r0),r1 / Memory[r0] to r1
mov (r0)+,r1 / Memory[r0] to r1, r0 += 2
mov -(sp),r0 / Push r0 onto stack
mov (sp)+,r0 / Pop stack into r0
mov 4(sp),r0 / Stack[sp+4] to r0
mov $100,r0 / Immediate 100 to r0
mov _variable,r0 / Global variable to r0

2.12. The User Structure Address

A critical constant in UNIX:

/ From mch.s
_u = 140000

The user structure (u.) is always mapped at virtual address 0140000 (octal) in the kernel. This is seg‑
ment 6 of kernel space. When the kernel switches processes, it changes the segment 6mapping to point
to the new process’s user structure.

This allows code like:

u.u_error = EINVAL; /* Always refers to current process */

2.13. Key Machine‑Dependent Functions

From mch.s, functions the kernel calls:

2.13.1. Save and Restore Context

savu(u.u_rsav) /* Save sp and r5 */
retu(addr) /* Restore sp and r5, change segment 6 */
aretu(u.u_qsav) /* Restore for signal/longjmp */

2.13.2. Memory Access
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fubyte(addr) /* Fetch byte from user space */
fuword(addr) /* Fetch word from user space */
subyte(addr, v) /* Store byte to user space */
suword(addr, v) /* Store word to user space */

2.13.3. Memory Operations

copyin(src, dst, n) /* Copy from user to kernel */
copyout(src, dst, n) /* Copy from kernel to user */
copyseg(src, dst) /* Copy 64-byte segment */
clearseg(seg) /* Zero a 64-byte segment */

2.13.4. Interrupt Priority

spl0() /* Enable all interrupts */
spl5() /* Block most device interrupts */
spl6() /* Block clock */
spl7() /* Block all interrupts */

2.14. Summary

• The PDP‑11 is a 16‑bit architecture with 64KB address space
• 8 general‑purpose registers (r0‑r7), with r6=sp and r7=pc
• The PS register controls mode (kernel/user) and interrupt priority
• The MMU provides 8 segments per mode, each up to 8KB
• UNIX uses segments for text, data, stack, user structure, and I/O
• Traps and interrupts use a vector table at lowmemory
• The orthogonal instruction set allows any addressing mode with any instruction
• Machine‑dependent assembly in mch.s provides context switch andmemory access primitives

2.15. Experiments

1. Examinevectors: In the source, tracewhat happenswhenabus error (vector 4) occurs vs. a system
call (vector 034).

2. Segment calculation: Givenauserprogramwith4KB text, 2KBdata, and1KBstack, calculatewhat
values estabur()would put in the segment registers.

3. Mode tracing: Follow the PS word through a system call: What mode are we in at each step?
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2.16. Further Reading

• PDP‑11 Processor Handbook, Digital Equipment Corporation
• Chapter 4: Boot Sequence — See how the MMU is initialized
• Chapter 7: Traps and System Calls — Detailed walkthrough of trap handling

Next: Chapter 3 — Building the System
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3. Chapter 3: Building the System

3.1. Overview

This chapter explainshowUNIX v4 is compiledand linked intoabootable kernel. Understanding thebuild
process reveals the structure of the system—which pieces are written in C, which require assembly, and
how device drivers are configured. It also introduces the toolchain that UNIX uses to build itself.

3.2. Source Files

File Purpose

usr/sys/conf/mkconf.c Configuration generator

usr/sys/conf/rc Build script

usr/sys/conf/mch.s Machine‑dependent assembly

usr/sys/conf/low.s Generated interrupt vectors

usr/sys/lib1 Ken’s compiled kernel objects

usr/sys/lib2 DMR’s compiled driver objects

lib/c0, lib/c1 C compiler passes

lib/crt0.o C runtime startup

lib/libc.a C library

bin/as Assembler

bin/ld Linker

3.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (understanding of address space and segments)
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3.4. The UNIX Toolchain

UNIX v4 includes a complete, self‑hosting toolchain:

3.4.1. The C Compiler

The C compiler is a two‑pass system:

source.c -> [c0] -> intermediate -> [c1] -> source.s

• c0 (lib/c0) — Lexer and parser; produces intermediate code
• c1 (lib/c1) — Code generator; produces PDP‑11 assembly
• c2 (lib/c2, optional) — Peephole optimizer

The cc command orchestrates these passes:

cc source.c

This runs:

1. c0 source.c /tmp/ctm1—Parse, produce intermediate
2. c1 /tmp/ctm1 /tmp/ctm2—Generate assembly
3. as /tmp/ctm2—Assemble to object
4. ld crt0.o source.o -lc— Link with runtime and library

3.4.2. The Assembler

The assembler (as) translates PDP‑11 assembly into object files:

as source.s # Produces a.out
as -o output.o source.s

The assembler is itself written in assembly (usr/source/s1/as*.s)—a remarkable piece of boot‑
strapping.

3.4.3. The Linker

The linker (ld) combines object files and resolves symbols:

ld -x file1.o file2.o -lc # -x strips local symbols

The linker produces a.out format executables:

a.out header:
magic number (0407, 0410, 0411)
text size
data size
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bss size
symbol table size
entry point
unused
relocation suppression flag

3.5. Building the Kernel

The kernel build process has three main steps:

1. Configure devices (generate l.s and c.c)
2. Assemble machine‑dependent code
3. Link everything together

3.5.1. Directory Structure

usr/sys/
├── ken/ # Thompson's C source
├── dmr/ # Ritchie's C source
├── conf/ # Configuration
│ ├── mkconf.c # Config generator source
│ ├── mkconf # Config generator binary
│ ├── mch.s # Machine code
│ └── rc # Build script
├── lib1 # Compiled ken/*.c
├── lib2 # Compiled dmr/*.c
└── *.h # Header files

3.5.2. Step 1: Configure Devices

The mkconf program generates device configuration. You run it interactively:

$ mkconf
rk # Include RK05 disk driver
tm # Include TM11 tape driver
console # Console (required, always present)
mem # Memory device
clock # System clock (required)
^D # End of input

mkconf produces two files:

l.s— Interrupt vector table:

/ low core
br4 = 200
br5 = 240
br6 = 300
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br7 = 340

. = 0^.
br 1f
4

/ trap vectors
trap; br7+0. / bus error
trap; br7+1. / illegal instruction
trap; br7+2. / bpt-trace trap
trap; br7+3. / iot trap
trap; br7+4. / power fail
trap; br7+5. / emulator trap
trap; br7+6. / system entry (system call!)

. = 40^.

.globl start
1: jmp start

. = 60^.
klin; br4 / console input
klou; br4 / console output

. = 100^.
kwlp; br6 / clock interrupt
kwlp; br6

. = 220^.
rkio; br5 / RK disk interrupt

/ interface code to C
.globl call, trap
.globl _klrint
klin: jsr r0,call; _klrint
.globl _klxint
klou: jsr r0,call; _klxint
.globl _clock
kwlp: jsr r0,call; _clock
.globl _rkintr
rkio: jsr r0,call; _rkintr

c.c—Device switch tables:

/*
* Copyright 1974 Bell Telephone Laboratories Inc
*/

int (*bdevsw[])() /* Block device switch */
{

&nulldev, &nulldev, &rkstrategy, &rktab,
0

};

int (*cdevsw[])() /* Character device switch */
{
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&klopen, &klclose, &klread, &klwrite, &klsgtty,
&nulldev, &nulldev, &mmread, &mmwrite, &nodev,
&nulldev, &nulldev, &rkread, &rkwrite, &nodev,
0

};

int rootdev {(0<<8)|0}; /* Root device: rk0 */
int swapdev {(0<<8)|0}; /* Swap device: rk0 */
int swplo 4000; /* Swap starting block */
int nswap 872; /* Swap size in blocks */

3.5.3. mkconf Internals

Looking at mkconf.c, we see how it works:

struct tab {
char *name; /* Device name */
int count; /* Number configured */
int address; /* Interrupt vector address */
int key; /* CHAR, BLOCK, INTR flags */
char *codea; /* Vector table code */
char *codeb; /* Interrupt glue (part 1) */
char *codec; /* Interrupt glue (part 2) */
char *coded; /* Block switch entry */
char *codee; /* Char switch entry */

} table[] {
"console",
-1, 60, CHAR+INTR,
"\tklin; br4\n\tklou; br4\n",
".globl\t_klrint\nklin:\tjsr\tr0,call; _klrint\n",
".globl\t_klxint\nklou:\tjsr\tr0,call; _klxint\n",
"",
"\t&klopen, &klclose, &klread, &klwrite, &klsgtty,",

"rk",
0, 220, BLOCK+CHAR+INTR,
"\trkio; br5\n",
".globl\t_rkintr\n",
"rkio:\tjsr\tr0,call; _rkintr\n",
"\t&nulldev,\t&nulldev,\t&rkstrategy,\t&rktab,",
"\t&nulldev, &nulldev, &rkread, &rkwrite, &nodev,",
...

};

The device table encodes everything needed to generate both assembly and C code for each device.

3.5.4. Step 2: Build Script

The rc build script ties everything together:
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if ! -r l.s -o ! -r c.c goto bad
as l.s # Assemble interrupt vectors
mv a.out ../low.o
as mch.s # Assemble machine code
mv a.out ../mch.o
cc -c c.c # Compile configuration
mv c.o ../conf.o
mv l.s low.s
mv c.c conf.c
ld -x ../low.o ../mch.o ../conf.o ../lib1 ../lib2
mv a.out ../../../unix # Final kernel
chmod 644 low.s conf.c ../low.o ../mch.o ../conf.o ../../../unix
echo rm mkconf.c and rc when done
exit
: bad
echo l.s or c.c not found

3.5.5. Step 3: Understanding lib1 and lib2

The kernel C code is pre‑compiled into two libraries:

lib1 (~47KB) — Ken Thompson’s kernel code:

• main.c—Kernel initialization
• slp.c—Scheduler, context switch
• trap.c—Trap handler
• sys1.c ‑ sys4.c—System calls
• fio.c, rdwri.c— File I/O
• iget.c, nami.c— Inode operations
• alloc.c—Block allocation
• clock.c—Clock handler
• sig.c—Signals
• Andmore…

lib2 (~40KB) — Dennis Ritchie’s driver code:

• bio.c—Buffer cache
• tty.c—Terminal handling
• kl.c—Console driver
• rk.c—RK05 disk driver
• malloc.c—Memory allocation
• mem.c—Memory device
• And device drivers…
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3.5.6. The Link Order Matters

ld -x ../low.o ../mch.o ../conf.o ../lib1 ../lib2

• low.o—Must be first (contains vectors at address 0)
• mch.o—Machine code, includes start: entry point
• conf.o—Device configuration
• lib1—Core kernel
• lib2—Drivers (depend on kernel functions)

3.6. The Boot Process Overview

When the kernel is loaded:

1. Bootstrap loader reads kernel from disk into memory
2. Execution starts at start: in mch.s
3. start: initializes the MMU segments
4. start: calls main() in C
5. main() initializes memory, creates process 0 and 1
6. Process 1 execs /etc/init

From mch.s:

.globl start, _end, _edata, _main
start:

bit $1,SSR0
bne start / loop if restart
reset

/ initialize system segments
mov $KISA0,r0
mov $KISD0,r1
mov $200,r4
clr r2
mov $6,r3

1:
mov r2,(r0)+
mov $77406,(r1)+ / 4k rw
add r4,r2
sob r3,1b

/ initialize user segment (segment 6)
mov $_end+63.,r2
ash $-6,r2
bic $!1777,r2
mov r2,(r0)+ / ksr6 = sysu
mov $usize-1\<8|6,(r1)+

/ initialize io segment (segment 7)
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mov $7600,(r0)+ / ksr7 = IO
mov $77406,(r1)+ / rw 4k

/ get a sp and start segmentation
mov $_u+[usize*64.],sp
inc SSR0 / Enable MMU!

/ clear bss
mov $_edata,r0

1:
clr (r0)+
cmp r0,$_end
blo 1b

/ clear user block
mov $_u,r0

1:
clr (r0)+
cmp r0,$_u+[usize*64.]
blo 1b

/ set up previous mode and call main
mov $30000,PS
jsr pc,_main

/ on return, enter user mode at 0
mov $170000,-(sp)
clr -(sp)
rti

3.7. Compiling User Programs

User programs use the standard toolchain:

cc program.c # Compile and link
cc -c module.c # Compile only
cc -o prog a.o b.o -lc # Link with C library

The C library (lib/libc.a) provides:

• System call wrappers (open, read, write, etc.)
• String functions (strlen, strcmp, etc.)
• I/O functions (printf, getchar, etc.)
• Memory functions (alloc, etc.)

The C runtime (lib/crt0.o) provides the entry point that calls main() and exits properly.
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3.8. Rebuilding the Kernel

Tomodify and rebuild the kernel:

1. Edit source files in ken/ or dmr/

2. Recompile changed files:

cc -c -O slp.c # Compile with optimization

3. Update the library:

ar r ../lib1 slp.o

4. Reconfigure if devices changed:

chdir ../conf
mkconf < config # config file has device list

5. Relink:

sh rc

6. Install new kernel:

cp /unix /ounix # Save old kernel
cp unix /unix # Install new
sync

7. Reboot to test the new kernel

3.9. The Complete Picture

Source Files:
ken/*.c, dmr/*.c --> [cc] --> lib1, lib2 (pre-compiled)

Configuration:
mkconf --> l.s (vectors)

--> c.c (device switches)

Assembly:
mch.s --> [as] --> mch.o
l.s --> [as] --> low.o

Compilation:
c.c --> [cc] --> conf.o

Linking:
low.o + mch.o + conf.o + lib1 + lib2 --> [ld] --> unix

Boot:
bootstrap --> load unix --> start: --> main() --> init
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3.10. Summary

• The UNIX kernel is built from pre‑compiled libraries plus generated configuration
• mkconf generates interrupt vectors (l.s) and device switch tables (c.c)
• The toolchain (cc, as, ld) is self‑hosting—UNIX builds itself
• Machine‑dependent code in mch.s initializes the MMU and calls main()
• The link order places interrupt vectors at address 0
• Modifying the kernel requires recompiling, updating libraries, and relinking

3.11. Experiments

1. Trace mkconf: Read through mkconf.c and trace what happens when you add an “rk” device.
What code gets generated?

2. Examine a.out: Use nm and size on the unix binary to see symbol layout and section sizes.

3. Startup sequence: Follow the code path from start: in mch.s to main() in main.c. What
must happen before C code can run?

3.12. Further Reading

• Chapter 4: Boot Sequence — Detailed walkthrough of main()
• Chapter 18: The C Compiler — How cc, c0, c1 work
• Chapter 19: The Assembler — The as implementation

Next: Part II — The Kernel

Chapter 4: Boot Sequence
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Part II.

The Kernel
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4. Chapter 4: Boot Sequence

4.1. Overview

This chapter traces the path from power‑on to a running UNIX system. We follow the code from the hard‑
ware reset through main(), watching as the kernel discovers memory, creates the first processes, and
hands control to /etc/init. By the end, you’ll understand howUNIX bootstraps itself from nothing.

4.2. Source Files

File Purpose

usr/sys/conf/mch.s start: entry point, MMU setup

usr/sys/ken/main.c main(), memory init, process 0 & 1

usr/sys/ken/slp.c newproc(), sched()

usr/sys/systm.h Global variables

usr/sys/param.h System constants

4.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (MMU, segments, traps)
• Chapter 3: Building the System (kernel structure)

4.4. The Bootstrap Process

Before main() can run, several things must happen:

Power On
↓

Bootstrap loader (in ROM or toggled in)
↓
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Load kernel from disk to memory
↓

Jump to start: (in mch.s)
↓

Initialize MMU segments
↓

Enable memory management
↓

Clear BSS and user area
↓

Call main()

4.4.1. The start: Entry Point

From mch.s, the first kernel code to execute:

.globl start, _end, _edata, _main
start:

bit $1,SSR0
bne start / Loop if MMU already on (restart)
reset / Reset all devices

The first instruction checks if theMMU is already enabled—if so, this is a restart after a crash, andwe loop
forever (a deliberate hang to allow debugging).

4.4.2. Initialize Kernel Segments

/ initialize system segments
mov $KISA0,r0 / Kernel segment address registers
mov $KISD0,r1 / Kernel segment descriptor registers
mov $200,r4 / 8KB in 64-byte blocks
clr r2 / Start at physical 0
mov $6,r3 / 6 segments

1:
mov r2,(r0)+ / Set segment base address
mov $77406,(r1)+ / 4KB read-write
add r4,r2 / Next 8KB block
sob r3,1b / Loop 6 times

This creates identity mapping for the first 48KB: virtual address X maps to physical address X. Segment
descriptors 077406means:

• Length = 127 blocks (8KB)
• Access = read‑write
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4.4.3. Initialize User Segment (Segment 6)

/ initialize user segment
mov $_end+63.,r2 / End of kernel + round up
ash $-6,r2 / Convert to 64-byte blocks
bic $!1777,r2 / Mask to valid range
mov r2,(r0)+ / ksr6 = address of u.
mov $usize-1\<8|6,(r1)+ / 16 blocks, read-write

Segment 6 holds the user structure (u.)—the per‑process kernel data. It’s placed just after the kernel’s
BSS.

4.4.4. Initialize I/O Segment (Segment 7)

/ initialize io segment
mov $7600,(r0)+ / ksr7 = 0760000 (I/O page)
mov $77406,(r1)+ / 4KB read-write

Segment 7 maps the I/O page where device registers live.

4.4.5. Enable Memory Management

/ get a sp and start segmentation
mov $_u+[usize*64.],sp / Stack at top of u.
inc SSR0 / Enable MMU!

The stack pointer is set to the top of the user structure, then inc SSR0 turns on the MMU. From this
point, all memory accesses go through address translation.

4.4.6. Clear BSS and User Area

/ clear bss
mov $_edata,r0

1:
clr (r0)+
cmp r0,$_end
blo 1b

/ clear user block
mov $_u,r0
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1:
clr (r0)+
cmp r0,$_u+[usize*64.]
blo 1b

The BSS (uninitialized data) and user structure are zeroed. This is essential—C assumes uninitialized
globals are zero.

4.4.7. Enter C Code

/ set up previous mode and call main
mov $30000,PS / Previous mode = user
jsr pc,_main / Call main()

/ on return, enter user mode at 0
mov $170000,-(sp) / PS: user mode, IPL 0
clr -(sp) / PC: address 0
rti / "Return" to user mode

The previous mode is set to user (for later mfpi/mtpi instructions), then main() is called. When
main() returns (in the child process), rti “returns” to user mode at address 0, executing the init
code.

4.5. Themain() Function

Nowwe enter C code. Let’s walk through main() section by section.

4.5.1. Header and Data

#include "../param.h"
#include "../user.h"
#include "../systm.h"
#include "../proc.h"
#include "../text.h"
#include "../inode.h"
#include "../seg.h"

int lksp[]
{

0177546, /* KW11-L clock */
0172540, /* KW11-P clock */
0 /* End marker */

};

lksp is a list of possible clock device addresses. UNIX probes each to find which clock is present.
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4.5.2. The icode Array

int icode[]
{

0104413, /* sys exec */
0000014, /* address of "/etc/init" */
0000010, /* address of argv */
0000777, /* (unused) */
0000014, /* argv[0] = "/etc/init" */
0000000, /* argv[1] = NULL */
0062457, /* "/e" */
0061564, /* "tc" */
0064457, /* "/i" */
0064556, /* "ni" */
0000164, /* "t" + "\0" (null terminator) */

};

This is machine code! It’s the first program that process 1 executes:

sys exec / System call: exec
"/etc/init" / Path argument
argv / Argument vector

Disassembled:

• 0104413 = sys instruction (exec is syscall 11, octal 013)
• The rest are the arguments: path string and argv pointers

This is how UNIX bootstraps user space—by hardcoding the first exec() call in machine language.

4.5.3. Memory Discovery

main()
{

extern schar;
register i1, *p;

/*
* zero and free all of core
*/
updlock = 0;
UISA->r[0] = KISA->r[6] + USIZE;
UISD->r[0] = 077406;
for(; fubyte(0) >= 0; UISA->r[0]++) {

clearseg(UISA->r[0]);
maxmem++;
mfree(coremap, 1, UISA->r[0]);

}
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printf("mem = %l\n", maxmem*10/32);
maxmem = min(maxmem, MAXMEM);
mfree(swapmap, nswap, swplo);

This discovers howmuch RAM the system has:

1. Set up a probe segment—UISA[0] points past the kernel, UISD[0] allows access
2. Loop probingmemory— fubyte(0) tries to read address 0 of the current segment
3. If successful—Memory exists; clear it and add to free list
4. If fails—We’ve hit non‑existent memory; stop

The mfree() calls add each 64‑byte block to coremap (free memory list).

After the loop, maxmem contains the total memory in 64‑byte blocks. The conversion maxmem*10/32
prints kilobytes (64 bytes × 10/32 = 20 bytes… actually this prints in some odd unit).

Finally, swap space is added to swapmap.

4.5.4. Clock Detection

/*
* determine clock
*/
UISA->r[7] = KISA->r[7];
UISD->r[7] = 077406;
for(p=lksp;; p++) {

if(*p == 0)
panic("no clock");

if(fuword(*p) != -1) {
lks = *p;
break;

}
}

UNIX needs a clock for timekeeping and scheduling. This code:

1. Maps segment 7 to the I/O page
2. Probes each possible clock address
3. If fuword() succeeds (returns != ‑1), the clock exists
4. Saves the clock address in lks
5. If no clock found, panic("no clock") halts the system

4.5.5. Process 0 Setup
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/*
* set up system process
*/
proc[0].p_addr = KISA->r[6];
proc[0].p_size = USIZE;
proc[0].p_stat = SRUN;
proc[0].p_flag =| SLOAD|SSYS;
u.u_procp = &proc[0];

Process 0 is the swapper (scheduler). It’s special:

• p_addr—Points to the user structure (segment 6)
• p_size—USIZE (16) blocks = 1024 bytes
• p_stat—SRUN (runnable)
• p_flag—SLOAD (in memory) | SSYS (system process)

The user structure pointer u.u_procp is set to point back to proc[0].

4.5.6. Subsystem Initialization

/*
* set up 'known' i-nodes
*/
sureg();
*lks = 0115;
cinit();
binit();
iinit();
rootdir = iget(rootdev, ROOTINO);
rootdir->i_flag =& ~ILOCK;
u.u_cdir = iget(rootdev, ROOTINO);
u.u_cdir->i_flag =& ~ILOCK;

(continued on next page)
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Now the kernel initializes its subsystems:

Call Purpose

sureg() Set up segment registers from u.u_uisa/u.u_uisd

*lks = 0115 Start the clock (magic value enables interrupts)

cinit() Initialize character buffer freelists

binit() Initialize buffer cache

iinit() Read superblock, initialize inode table

iget(rootdev, ROOTINO) Get root directory inode

The root directory inode is retrieved twice:

• rootdir—Global pointer used by namei()
• u.u_cdir—Process 0’s current directory

Both have ILOCK cleared so they can be used immediately.

4.5.7. Creating Process 1 (init)

/*
* make init process
* enter scheduling loop
* with system process
*/
if(newproc()) {

expand(USIZE+1);
u.u_uisa[0] = USIZE;
u.u_uisd[0] = 6;
sureg();
copyout(icode, 0, 30);
return;

}
sched();

}

This is the magic moment—creating the first user process:

In the parent (process 0): ‑ newproc() creates process 1 and returns 0 ‑ Falls through to sched(),
entering the scheduler loop forever

In the child (process 1): ‑newproc() returns 1 (non‑zero) ‑ expand(USIZE+1)—Grow to 17 blocks
(1 block for user code) ‑ Set up segment 0 to map user memory ‑ copyout(icode, 0, 30)— Copy
the init code to user address 0 ‑ return—Returns frommain(), hitting the rti in mch.s
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The rti at the end of start: pops a user‑mode PS and PC=0, causing process 1 to start executing
icode at address 0. This code does exec("/etc/init", ...), replacing itself with the init pro‑
gram.

4.6. The sureg() Function

sureg()
{

register *up, *rp, a;

a = u.u_procp->p_addr;
up = &u.u_uisa[0];
rp = &UISA->r[0];
while(rp < &UISA->r[8])

*rp++ = *up++ + a;

sureg() copies the segment register values from the user structure to the actual hardware registers,
adjusting by the process’s physical base address.

The user structure stores relative segment addresses (relative to the process’s memory). sureg() con‑
verts these to absolute physical addresses by adding p_addr.

4.7. The estabur() Function

estabur(nt, nd, ns) /* text, data, stack sizes (in 64-byte blocks) */
{

register a, *ap, *dp;

/* Check if it fits */
if(nseg(nt)+nseg(nd)+nseg(ns) > 8 || nt+nd+ns+USIZE > maxmem) {

u.u_error = ENOMEM;
return(-1);

}

estabur() (establish user registers) sets up the memory map for a process. It takes three sizes in 64‑
byte blocks:

• nt—Text (code) size
• nd—Data size
• ns—Stack size

First it checks:
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1. Total segments needed ≤ 8
2. Total memory needed ≤ available

/* Set up text segments (read-only) */
a = 0;
ap = &u.u_uisa[0];
dp = &u.u_uisd[0];
while(nt >= 128) { /* Full 8KB segments */

*dp++ = (127<<8) | RO; /* Max length, read-only */
*ap++ = a;
a =+ 128;
nt =- 128;

}
if(nt) { /* Partial segment */

*dp++ = ((nt-1)<<8) | RO;
*ap++ = a;
a =+ nt;

}

Text segments are read‑only (RO). Each full segment is 128 blocks (8KB).

/* Set up data segments (read-write) */
a = USIZE; /* Data starts after user struct */
while(nd >= 128) {

*dp++ = (127<<8) | RW;
*ap++ = a;
a =+ 128;
nd =- 128;

}
if(nd) {

*dp++ = ((nd-1)<<8) | RW;
*ap++ = a;
a =+ nd;

}

Data segments are read‑write (RW), starting at offset USIZE (after the user structure).

/* Clear unused middle segments */
while(ap < &u.u_uisa[8]) {

*dp++ = 0;
*ap++ = 0;

}

/* Set up stack (grows downward from top) */
a =+ ns;
while(ns >= 128) {

a =- 128;
ns =- 128;
*--dp = (127<<8) | RW;
*--ap = a;

}
if(ns) {

*--dp = ((128-ns)<<8) | RW | ED; /* ED = expand down */
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*--ap = a-128;
}
sureg();
return(0);

}

The stack is set up from the top of the address space, growing downward. TheED (expand down) bit tells
the MMU that valid addresses are at the top of the segment.

4.8. Key Data Structures

4.8.1. Global Variables (systm.h)

int coremap[CMAPSIZ]; /* Free memory map */
int swapmap[SMAPSIZ]; /* Free swap map */
int *rootdir; /* Root directory inode */
int time[2]; /* System time */
int maxmem; /* Max memory available */
int *lks; /* Clock address */
int rootdev; /* Root device number */
int swapdev; /* Swap device number */
int swplo; /* Swap starting block */
int nswap; /* Swap size */
char runrun; /* Reschedule flag */

4.8.2. Process Table Entry (proc.h)

struct proc {
char p_stat; /* Process state */
char p_flag; /* Flags */
char p_pri; /* Priority */
char p_sig; /* Pending signal */
char p_time; /* Time in memory/swap */
int p_ttyp; /* Controlling terminal */
int p_pid; /* Process ID */
int p_ppid; /* Parent process ID */
int p_addr; /* Address of user struct */
int p_size; /* Size in blocks */
int p_wchan; /* Wait channel */
int *p_textp; /* Text segment pointer */

};
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4.9. Boot Timeline

t=0 [Power On]
Bootstrap loads kernel from disk

t=1 [Kernel Entry]
start: executes
- MMU initialized
- Segments set up
- BSS cleared
- main() called

t=2 [Kernel Init]
main() runs
- Memory discovered
- Clock started
- Process 0 created
- cinit(), binit(), iinit()
- Root filesystem mounted
- Process 1 forked

t=3 [Fork]
Process 0: enters sched()
Process 1: returns from main()

rti to user mode
executes icode
exec("/etc/init")

t=4 [User Space]
/etc/init runs
- Opens console
- Spawns getty on terminals
- System ready for login

4.10. Summary

• The bootstrap loads the kernel and jumps to start:
• start: in mch.s initializes the MMU and calls main()
• main() discovers memory by probing with fubyte()
• Process 0 (swapper) is created by filling in proc[0]
• Subsystems are initialized: buffers, inodes, root filesystem
• Process 1 is forked and runs icode, which execs /etc/init
• Process 0 enters sched() and never returns
• Process 1 becomes /etc/init, the ancestor of all user processes
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4.11. Experiments

1. Trace memory discovery: Add a printf inside the memory probe loop to see each block being
found.

2. Decode icode: Disassemble the icode array by hand. Verify it does exec("/etc/init",
argv).

3. Boot without clock: What happens if you remove clock detection? (Hint: panic)

4.12. Further Reading

• Chapter 5: Process Management — How newproc()works
• Chapter 8: Scheduling — The sched() function
• Chapter 9: Inodes and Superblock —What iinit() does

Next: Chapter 5 — Process Management
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5. Chapter 5: Process Management

5.1. Overview

Processes are the heart of UNIX. Every running program is a process, and every process except the first
is created by another process through fork(). This chapter examines how UNIX v4 represents, creates,
andmanages processes—the fundamental abstraction that makes multitasking possible.

5.2. Source Files

File Purpose

usr/sys/proc.h Process structure definition

usr/sys/user.h User structure (per‑process kernel data)

usr/sys/ken/slp.c newproc(), expand()

usr/sys/ken/sys1.c fork(), exec(), exit(), wait()

5.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (memory segments)
• Chapter 4: Boot Sequence (process 0 and 1 creation)

5.4. The Process Table

Every process has an entry in the global process table:

/* proc.h */
struct proc {

char p_stat; /* Process state */
char p_flag; /* Flags */
char p_pri; /* Priority (lower = higher priority) */
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char p_sig; /* Pending signal */
char p_null; /* Unused */
char p_time; /* Resident time for scheduling */
int p_ttyp; /* Controlling terminal */
int p_pid; /* Process ID */
int p_ppid; /* Parent process ID */
int p_addr; /* Address of swappable image */
int p_size; /* Size of swappable image (64-byte blocks) */
int p_wchan; /* Wait channel (sleeping on) */
int *p_textp; /* Pointer to text structure */

} proc[NPROC];

With NPROC=50, the system supports at most 50 simultaneous processes.

5.4.1. Process States (p_stat)

#define SSLEEP 1 /* Sleeping at high priority */
#define SWAIT 2 /* Sleeping at low priority (interruptible) */
#define SRUN 3 /* Runnable */
#define SIDL 4 /* Being created */
#define SZOMB 5 /* Terminated, waiting for parent */

State transitions:

fork()
|
v

[SIDL] -----> [SRUN] <---+
| |
| sleep()|
v | wakeup()

[SSLEEP]----+
[SWAIT]-----+

|
| exit()
v

[SZOMB]
|
| parent wait()
v

[NULL] (slot free)

5.4.2. Process Flags (p_flag)

#define SLOAD 01 /* In memory (not swapped) */
#define SSYS 02 /* System process (process 0) */
#define SLOCK 04 /* Process cannot be swapped */
#define SSWAP 010 /* Being swapped out */
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5.5. The User Structure

Whileproc holdsminimal info for all processes,u (the user structure) holds extensive per‑process data
for the current process:

/* user.h */
struct user {

int u_rsav[2]; /* Saved r5, r6 for resume */
int u_fsav[25]; /* Floating point save area */
char u_segflg; /* I/O to user/kernel space */
char u_error; /* Error code from syscall */
char u_uid; /* Effective user ID */
char u_gid; /* Effective group ID */
char u_ruid; /* Real user ID */
char u_rgid; /* Real group ID */
int u_procp; /* Pointer to proc entry */
char *u_base; /* I/O base address */
char *u_count; /* I/O byte count */
char *u_offset[2]; /* I/O file offset */
int *u_cdir; /* Current directory inode */
char u_dbuf[DIRSIZ]; /* Current pathname component */
char *u_dirp; /* Pathname pointer */
struct { /* Current directory entry */

int u_ino;
char u_name[DIRSIZ];

} u_dent;
int *u_pdir; /* Parent directory inode */
int u_uisa[8]; /* User segment addresses */
int u_uisd[8]; /* User segment descriptors */
int u_ofile[NOFILE]; /* Open file table */
int u_arg[5]; /* Syscall arguments */
int u_tsize; /* Text size (64-byte blocks) */
int u_dsize; /* Data size */
int u_ssize; /* Stack size */
int u_qsav[2]; /* Saved regs for signal return */
int u_ssav[2]; /* Saved regs for swap return */
int u_signal[NSIG]; /* Signal handlers */
int u_utime; /* User time (ticks) */
int u_stime; /* System time (ticks) */
int u_cutime[2]; /* Children's user time */
int u_cstime[2]; /* Children's system time */
int *u_ar0; /* Pointer to saved r0 */
int u_prof[4]; /* Profiling parameters */
char u_nice; /* Nice value */
char u_dsleep; /* Deep sleep flag */

} u; /* u = 140000 */

Themagic commentu = 140000means theuser structure is always at virtual address0140000 (octal).
This is segment 6, which the kernel remaps for each process.
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5.6. fork() — Creating a Process

The fork() system call creates a new process:

/* sys1.c */
fork()
{

register struct proc *p1, *p2;

p1 = u.u_procp; /* Parent */
for(p2 = &proc[0]; p2 < &proc[NPROC]; p2++)

if(p2->p_stat == NULL)
goto found;

u.u_error = EAGAIN; /* No free slots */
goto out;

found:
if(newproc()) {

/* Child: return parent's PID */
u.u_ar0[R0] = p1->p_pid;
u.u_cstime[0] = 0;
u.u_cstime[1] = 0;
u.u_stime = 0;
u.u_cutime[0] = 0;
u.u_cutime[1] = 0;
u.u_utime = 0;
return;

}
/* Parent: return child's PID */
u.u_ar0[R0] = p2->p_pid;

out:
u.u_ar0[R7] =+ 2; /* Skip over sys fork instruction */

}

The key insight: fork() returns twice—once in the parent (returning child’s PID) and once in the child
(returning parent’s PID). The actual work is in newproc().

5.6.1. newproc() — The Fork Implementation

/* slp.c */
newproc()
{

int a1, a2;
struct proc *p, *up;
register struct proc *rpp;
register *rip, n;

/* Find free proc slot */
for(rpp = &proc[0]; rpp < &proc[NPROC]; rpp++)

if(rpp->p_stat == NULL)
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goto found;
panic("no procs");

found:
/*
* make proc entry for new proc
*/
p = rpp;
rip = u.u_procp;
up = rip;
rpp->p_stat = SRUN;
rpp->p_flag = SLOAD;
rpp->p_ttyp = rip->p_ttyp; /* Inherit terminal */
rpp->p_textp = rip->p_textp; /* Share text segment */
rpp->p_pid = ++mpid; /* Assign new PID */
rpp->p_ppid = rip->p_pid; /* Record parent */
rpp->p_time = 0;

The child inherits most fields from the parent, but gets a new PID.

/*
* make duplicate entries
* where needed
*/
for(rip = &u.u_ofile[0]; rip < &u.u_ofile[NOFILE];)

if((rpp = *rip++) != NULL)
rpp->f_count++; /* Bump file ref counts */

if((rpp=up->p_textp) != NULL) {
rpp->x_count++; /* Bump text ref count */
rpp->x_ccount++;

}
u.u_cdir->i_count++; /* Bump cwd inode ref */

Shared resources (open files, text segment, current directory) have their reference counts incre‑
mented.

/*
* swap out old process
* to make image of new proc
*/
savu(u.u_rsav);
rpp = p;
u.u_procp = rpp;
rip = up;
n = rip->p_size;
a1 = rip->p_addr;
rpp->p_size = n;
a2 = malloc(coremap, n);
if(a2 == NULL) {

/* No memory: swap out child */
rip->p_stat = SIDL;
rpp->p_addr = a1;
savu(u.u_ssav);
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xswap(rpp, 0, 0);
rpp->p_flag =| SSWAP;
rip->p_stat = SRUN;

} else {
/* Copy parent's memory to child */
rpp->p_addr = a2;
while(n--)

copyseg(a1++, a2++);
}
u.u_procp = rip;
return(0); /* Return 0 in parent */

}

If memory is available, the parent’s image is copied block‑by‑block. If not, the child is created on swap.
Either way, the parent returns 0.

The child’s return happens later, when the scheduler runs the child and it resumes from the saved con‑
text.

5.7. exec() — Running a Program

exec() replaces the current process’s memory with a new program:

/* sys1.c */
exec()
{

int ap, na, nc, *bp;
int ts, ds;
register c, *ip;
register char *cp;
extern uchar;

/*
* pick up file names
* and check various modes
*/
ip = namei(&uchar, 0); /* Look up pathname */
if(ip == NULL)

return;
bp = getblk(NODEV); /* Get buffer for args */
if(access(ip, IEXEC)) /* Check execute permission */

goto bad;

First, the executable file is located and checked for execute permission.

/*
* pack up arguments into
* allocated disk buffer
*/
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cp = bp->b_addr;
na = 0; /* Argument count */
nc = 0; /* Character count */
while(ap = fuword(u.u_arg[1])) {

na++;
if(ap == -1)

goto bad;
u.u_arg[1] =+ 2;
for(;;) {

c = fubyte(ap++);
if(c == -1)

goto bad;
*cp++ = c;
nc++;
if(nc > 510) {

u.u_error = E2BIG;
goto bad;

}
if(c == 0)

break;
}

}

Arguments are copied from user space into a kernel buffer. There’s a 510‑byte limit on total argument
length.

/*
* read in first 8 bytes
* of file for segment sizes:
* w0 = 407/410 (410 implies RO text)
* w1 = text size
* w2 = data size
* w3 = bss size
*/
u.u_base = &u.u_arg[0];
u.u_count = 8;
u.u_offset[1] = 0;
u.u_offset[0] = 0;
u.u_segflg = 1;
readi(ip);

The a.out header is read:

• 0407— Executable with combined text+data (not shared)
• 0410— Executable with separate, read‑only text (sharable)

/*
* find text and data sizes
*/
ts = ((u.u_arg[1]+63)>>6) & 01777;
ds = ((u.u_arg[2]+u.u_arg[3]+63)>>6) & 01777;
if(estabur(ts, ds, SSIZE))
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goto bad;

/*
* allocate and clear core
* at this point, committed to the new image
*/
u.u_prof[3] = 0;
xfree(); /* Free old text segment */
xalloc(ip); /* Allocate new text */
c = USIZE+ds+SSIZE;
expand(USIZE);
expand(c);
while(--c >= USIZE)

clearseg(u.u_procp->p_addr+c);

Oldmemory is freed, newmemory is allocated and cleared.

/*
* read in data segment
*/
estabur(0, ds, 0);
u.u_base = 0;
u.u_offset[1] = 020+u.u_arg[1]; /* Skip header + text */
u.u_count = u.u_arg[2];
readi(ip);

/*
* initialize stack segment
*/
u.u_tsize = ts;
u.u_dsize = ds;
u.u_ssize = SSIZE;
estabur(u.u_tsize, u.u_dsize, u.u_ssize);

The data segment is read from the file. For 0410 executables, the text segment is handled separately
through shared text management.

/*
* Copy arguments to user stack
*/
cp = bp->b_addr;
ap = -nc - na*2 - 4; /* Stack grows down */
u.u_ar0[R6] = ap; /* Set stack pointer */
suword(ap, na); /* argc */
c = -nc;
while(na--) {

suword(ap=+2, c); /* argv[i] */
do

subyte(c++, *cp); /* Copy string */
while(*cp++);

}
suword(ap+2, -1); /* argv terminator */
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Arguments are copied to the user stack in the standard format:

sp → argc
argv[0] → "program"
argv[1] → "arg1"
...
NULL
"program\0arg1\0..."

/*
* set SUID/SGID protections
*/
if(ip->i_mode&ISUID)

if(u.u_uid != 0)
u.u_uid = ip->i_uid;

if(ip->i_mode&ISGID)
u.u_gid = ip->i_gid;

/*
* clear sigs, regs and return
*/
for(ip = &u.u_signal[0]; ip < &u.u_signal[NSIG]; ip++)

if((*ip & 1) == 0)
*ip = 0; /* Reset non-ignored signals */

for(cp = &regloc[0]; cp < &regloc[6];)
u.u_ar0[*cp++] = 0; /* Clear registers */

u.u_ar0[R7] = 0; /* PC = 0 (entry point) */

Setuid/setgid is handled, signals are reset, and execution begins at address 0.

5.8. exit() — Terminating a Process

/* sys1.c */
exit()
{

register int *q, a;
register struct proc *p;

/* Ignore all signals */
for(q = &u.u_signal[0]; q < &u.u_signal[NSIG];)

*q++ = 1;

/* Close all open files */
for(q = &u.u_ofile[0]; q < &u.u_ofile[NOFILE]; q++)

if(a = *q) {
*q = NULL;
closef(a);

}

/* Release current directory */
iput(u.u_cdir);
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/* Free text segment */
xfree();

First, cleanup: ignore signals, close files, release directory.

/* Save exit status to swap */
a = malloc(swapmap, 8);
p = getblk(swapdev, a);
bcopy(&u, p->b_addr, 256);
bwrite(p);

/* Free memory */
q = u.u_procp;
mfree(coremap, q->p_size, q->p_addr);
q->p_addr = a; /* Now points to swap */
q->p_stat = SZOMB; /* Zombie state */

Theuser structure (containing theexit status) is saved toswap,memory is freed, and theprocessbecomes
a zombie.

loop:
/* Find parent and wake it up */
for(p = &proc[0]; p < &proc[NPROC]; p++)
if(q->p_ppid == p->p_pid) {

wakeup(&proc[1]); /* Wake init (adopts orphans) */
wakeup(p); /* Wake parent */

/* Orphan our children to init */
for(p = &proc[0]; p < &proc[NPROC]; p++)
if(q->p_pid == p->p_ppid)

p->p_ppid = 1;

swtch(); /* Switch away, never return */
}

The parent is woken up, and orphaned children are adopted by init (PID 1). The process then switches
away and never returns—it remains a zombie until the parent calls wait().

5.9. wait() — Reaping Children

/* sys1.c */
wait()
{

register f, *bp;
register struct proc *p;
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f = 0;

loop:
for(p = &proc[0]; p < &proc[NPROC]; p++)
if(p->p_ppid == u.u_procp->p_pid) {

f++;
if(p->p_stat == SZOMB) {

/* Found dead child */
u.u_ar0[R0] = p->p_pid;

/* Read exit status from swap */
bp = bread(swapdev, f=p->p_addr);
mfree(swapmap, 8, f);

/* Clear proc slot */
p->p_stat = NULL;
p->p_pid = 0;
p->p_ppid = 0;
...

/* Accumulate child's CPU time */
u.u_cstime[0] =+ p->u_cstime[0];
...

/* Return exit status */
u.u_ar0[R1] = p->u_arg[0];
brelse(bp);
return;

}
}
if(f) {

sleep(u.u_procp, PWAIT); /* Wait for child to exit */
goto loop;

}
u.u_error = ECHILD; /* No children */

}

wait() searches for zombie children. If found, it:

1. Reads the exit status from swap
2. Frees the swap space
3. Clears the proc slot
4. Accumulates CPU time statistics
5. Returns PID and exit status

If there are living children but no zombies, it sleeps until one exits.
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5.10. sbreak() — Changing Memory Size

/* sys1.c */
sbreak()
{

register a, n, d;

/*
* Calculate new data size
*/
n = (((u.u_arg[0]+63)>>6) & 01777) - nseg(u.u_tsize)*128;
if(n < 0)

n = 0;
d = n - u.u_dsize; /* Delta */
n =+ USIZE+u.u_ssize;

if(estabur(u.u_tsize, u.u_dsize+d, u.u_ssize))
return;

u.u_dsize =+ d;

if(d > 0)
goto bigger;

/* Shrinking: move stack down, then shrink */
a = u.u_procp->p_addr + n - u.u_ssize;
n = u.u_ssize;
while(n--) {

copyseg(a-d, a);
a++;

}
expand(i);
return;

bigger:
/* Growing: expand, then move stack up */
expand(n);
a = u.u_procp->p_addr + n;
n = u.u_ssize;
while(n--) {

a--;
copyseg(a-d, a);

}
while(d--)

clearseg(--a);
}

sbreak() (break) changes the data segment size. The stack must be moved when the data segment
grows or shrinks.
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5.11. expand() — Growing or Shrinking Process Memory

/* slp.c */
expand(newsize)
{

int i, n;
register *p, a1, a2;

p = u.u_procp;
n = p->p_size;
p->p_size = newsize;
a1 = p->p_addr;

if(n >= newsize) {
/* Shrinking: just free excess */
mfree(coremap, n-newsize, a1+newsize);
return;

}

/* Growing: need to allocate new space */
savu(u.u_rsav);
a2 = malloc(coremap, newsize);
if(a2 == NULL) {

/* No memory: swap out and grow on swap */
savu(u.u_ssav);
xswap(p, 1, n);
p->p_flag =| SSWAP;
swtch();
/* no return */

}

/* Copy to new location */
p->p_addr = a2;
for(i=0; i<n; i++)

copyseg(a1+i, a2++);
mfree(coremap, n, a1);
retu(p->p_addr);
sureg();

}

If growing and memory is available, the process is copied to a new, larger location. If not, it’s swapped
out.

5.12. Summary

• The proc structure holds minimal per‑process info; u holds the rest
• fork() creates a new process by duplicating the parent
• exec() replaces a process’s memory image with a new program
• exit() terminates a process, making it a zombie
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• wait() reaps zombie children and retrieves their exit status
• sbreak() changes the data segment size
• expand() handles memory allocation/reallocation for processes

5.13. Key Concepts

5.13.1. Process Creation Pattern

if(fork() == 0) {
/* Child */
exec("/bin/program", ...);
exit(1); /* exec failed */

}
/* Parent continues */
wait(&status);

5.13.2. Reference Counting

When fork() copies a process, shared resources have their reference counts bumped:

• Open files (f_count)
• Text segments (x_count)
• Inodes (i_count)

When exit() cleans up, these counts are decremented.

5.13.3. The Zombie State

A zombie is a process that has exited but hasn’t been waited for:

• Uses minimal resources (just a proc slot and swap block)
• Contains exit status for parent
• Cleaned up by parent’s wait()

5.14. Experiments

1. Count processes: Add printfs to trace proc slot allocation in fork().

2. Argument limit: Try to exec with more than 510 bytes of arguments.

3. Fork bomb: What happens if a process forks in a loop? (The NPROC limit saves you.)
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5.15. Further Reading

• Chapter 6: Memory Management — Howmemory is allocated
• Chapter 8: Scheduling — How processes are selected to run
• Chapter 7: Traps and System Calls — How fork/exec/exit are invoked

Next: Chapter 6 —Memory Management
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6. Chapter 6: Memory Management

6.1. Overview

UNIX v4 manages memory with elegant simplicity. There’s no virtual memory in the modern sense—no
page tables, no demand paging, no memory‑mapped files. Instead, processes exist entirely in physical
memory or entirely on swap. This chapter examines how UNIX allocates, tracks, and swaps memory.

6.2. Source Files

File Purpose

usr/sys/dmr/malloc.c malloc(), mfree()—map allocator

usr/sys/ken/main.c Memory discovery, estabur(), sureg()

usr/sys/ken/slp.c expand(), sched(), xswap()

usr/sys/systm.h coremap[], swapmap[] definitions

usr/sys/param.h MAXMEM, CMAPSIZ, SMAPSIZ

6.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (MMU, segments)
• Chapter 5: Process Management (process structure)
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6.4. The Memory Model

UNIX v4 uses a simple model:

Physical Memory:
+------------------+ 0
| Kernel | (text, data, bss)
+------------------+
| User Block | (u. for current process)
+------------------+
| Free Memory | (managed by coremap)
| Processes |
| Buffers |
+------------------+ maxmem
| (non-existent) |
+------------------+ 64KB limit

Swap Space:
+------------------+ swplo
| Swapped procs | (managed by swapmap)
| ... |
+------------------+ swplo+nswap

Key characteristics:

• No paging— Entire processes are swapped, not individual pages
• No sharing—Except for read‑only text segments
• Contiguous allocation— Each process occupies a contiguous region
• First‑fit algorithm—Simple but effective

6.5. The Map Allocator

The core of memorymanagement is a general‑purpose allocator used for both corememory (coremap)
and swap space (swapmap):

/* malloc.c */
struct map {

char *m_size; /* Size of this free region */
char *m_addr; /* Starting address */

};

Amap is an array of (size, address) pairs, sorted by address, terminated by a zero‑size entry:

coremap:
+------+------+
| size | addr | Free region 1
+------+------+
| size | addr | Free region 2
+------+------+
| 0 | - | End marker
+------+------+
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6.5.1. malloc() — Allocate fromMap

malloc(mp, size)
struct map *mp;
{

register int a;
register struct map *bp;

for (bp = mp; bp->m_size; bp++) {
if (bp->m_size >= size) {

a = bp->m_addr;
bp->m_addr =+ size;
if ((bp->m_size =- size) == 0)

/* Remove empty entry by shifting */
do {

bp++;
(bp-1)->m_addr = bp->m_addr;

} while ((bp-1)->m_size = bp->m_size);
return(a);

}
}
return(0); /* No space */

}

Algorithm (first‑fit):

1. Scan the map for a region ≥ requested size
2. If found, allocate from the start of the region
3. Shrink the region (or remove if empty)
4. Return the starting address (or 0 if no space)

Example — allocating 3 blocks:

Before: After:
Size | Addr Size | Addr
-----+----- -----+-----
5 | 100 2 | 103
3 | 200 -> 3 | 200
0 | 0 |

Returns: 100 (allocated blocks 100-102)

6.5.2. mfree() — Free to Map

mfree(mp, size, aa)
struct map *mp;
{

register struct map *bp;
register int t;
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register int a;

a = aa;
for (bp = mp; bp->m_addr<=a && bp->m_size!=0; bp++);

Find where this block fits in the sorted list.

if (bp>mp && (bp-1)->m_addr+(bp-1)->m_size == a) {
/* Coalesce with previous region */
(bp-1)->m_size =+ size;
if (a+size == bp->m_addr) {

/* Also coalesce with next region */
(bp-1)->m_size =+ bp->m_size;
while (bp->m_size) {

bp++;
(bp-1)->m_addr = bp->m_addr;
(bp-1)->m_size = bp->m_size;

}
}

}

Try to merge with adjacent free regions.

} else {
if (a+size == bp->m_addr && bp->m_size) {

/* Coalesce with next region */
bp->m_addr =- size;
bp->m_size =+ size;

} else if (size) do {
/* Insert new entry (shift others down) */
t = bp->m_addr;
bp->m_addr = a;
a = t;
t = bp->m_size;
bp->m_size = size;
bp++;

} while (size = t);
}

}

If can’t merge, insert a new entry (shifting subsequent entries).

Example — freeing 2 blocks at address 105:

Before: After:
Size | Addr Size | Addr
-----+----- -----+-----
2 | 103 4 | 103 (merged: 103-104 + 105-106 = 103-106)
3 | 200 -> 3 | 200
0 | 0 |
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6.5.3. Coalescing

The mfree() function handles four cases:

1. Merge with previous: freed block is adjacent to end of previous
2. Merge with next: freed block is adjacent to start of next
3. Merge with both: freed block bridges two regions
4. Nomerge: create new entry

This prevents fragmentation by keeping free regions as large as possible.

6.6. Memory Discovery

At boot, main() discovers available memory:

/* main.c */
main()
{

updlock = 0;
UISA->r[0] = KISA->r[6] + USIZE;
UISD->r[0] = 077406;
for(; fubyte(0) >= 0; UISA->r[0]++) {

clearseg(UISA->r[0]);
maxmem++;
mfree(coremap, 1, UISA->r[0]);

}
printf("mem = %l\n", maxmem*10/32);
maxmem = min(maxmem, MAXMEM);
mfree(swapmap, nswap, swplo);

How it works:

1. Map user segment 0 to physical memory after the kernel
2. Try to read byte 0 of that segment with fubyte()
3. If successful, memory exists—clear it and add to coremap
4. Advance to next 64‑byte block and repeat
5. When fubyte() fails (returns ‑1), we’ve hit non‑existent memory

After the loop, coremap contains one large free region starting just after the kernel.
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6.7. Process Memory Layout

Each process has:

Process Memory:
+------------------+ p_addr
| User Block | USIZE blocks (1KB)
| (u.) |
+------------------+ p_addr + USIZE
| Data Segment | u_dsize blocks
| (+ BSS) |
+------------------+
| (free space) |
+------------------+
| Stack Segment | u_ssize blocks
+------------------+ p_addr + p_size

Text Segment: (if shared, stored separately)
+------------------+ x_caddr
| Code | x_size blocks
+------------------+

The p_size field in struct proc is the total size in 64‑byte blocks.

6.8. Segment Register Management

6.8.1. estabur() — Establish User Registers

/* main.c */
estabur(nt, nd, ns) /* text, data, stack sizes */
{

register a, *ap, *dp;

/* Check limits */
if(nseg(nt)+nseg(nd)+nseg(ns) > 8 || nt+nd+ns+USIZE > maxmem) {

u.u_error = ENOMEM;
return(-1);

}

First, verify the request is feasible:

• Nomore than 8 segments total
• Total memory ≤ available

/* Text segments (read-only) */
a = 0;
ap = &u.u_uisa[0];
dp = &u.u_uisd[0];
while(nt >= 128) {
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*dp++ = (127<<8) | RO;
*ap++ = a;
a =+ 128;
nt =- 128;

}
if(nt) {

*dp++ = ((nt-1)<<8) | RO;
*ap++ = a;

}

Text is read‑only, starting at relative address 0.

/* Data segments (read-write) */
a = USIZE; /* After user block */
while(nd >= 128) {

*dp++ = (127<<8) | RW;
*ap++ = a;
a =+ 128;
nd =- 128;

}
if(nd) {

*dp++ = ((nd-1)<<8) | RW;
*ap++ = a;

}

Data is read‑write, starting after the user block.

/* Clear unused segments */
while(ap < &u.u_uisa[8]) {

*dp++ = 0;
*ap++ = 0;

}

/* Stack segment (expand down) */
a =+ ns;
while(ns >= 128) {

a =- 128;
ns =- 128;
*--dp = (127<<8) | RW;
*--ap = a;

}
if(ns) {

*--dp = ((128-ns)<<8) | RW | ED;
*--ap = a-128;

}
sureg();
return(0);

}

Stack is at the end, with the ED (expand down) bit.
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6.8.2. sureg() — Set User Registers

/* main.c */
sureg()
{

register *up, *rp, a;

a = u.u_procp->p_addr;
up = &u.u_uisa[0];
rp = &UISA->r[0];
while(rp < &UISA->r[8])

*rp++ = *up++ + a;

Copy user segment addresses to hardware, adding the process base address.

The user structure stores relative addresses; sureg() converts to absolute physical addresses.

6.9. Swapping

Whenmemory is tight, processes are swapped to disk:

6.9.1. xswap() — Swap Out a Process

/* slp.c */
xswap(p, ff, os)
struct proc *p;
{

register a;

if(os == 0)
os = p->p_size;

a = malloc(swapmap, (p->p_size+7)/8);
if(a == NULL)

panic("out of swap");
xccdec(p->p_textp);
swap(a, p->p_addr, os, B_WRITE);
if(ff)

mfree(coremap, os, p->p_addr);
p->p_addr = a;
p->p_flag =| SSWAP;
p->p_flag =& ~SLOAD;

}

1. Allocate swap space
2. Decrement text reference count
3. Write process image to swap
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4. Free core memory (if ff flag set)
5. Update p_addr to point to swap location
6. Clear SLOAD, set SSWAP flags

6.9.2. Swap In

The scheduler (sched() in slp.c) swaps processes back in:

/* From sched() */
found2:

if((rp=p1->p_textp) != NULL) {
if(rp->x_ccount == 0) {

/* Swap in text if needed */
if(swap(rp->x_daddr, a, rp->x_size, B_READ))

goto swaper;
rp->x_caddr = a;
a =+ rp->x_size;

}
rp->x_ccount++;

}
rp = p1;
if(swap(rp->p_addr, a, rp->p_size, B_READ))

goto swaper;
mfree(swapmap, (rp->p_size+7)/8, rp->p_addr);
rp->p_addr = a;
rp->p_flag =| SLOAD;

6.10. expand() — Change Process Size

/* slp.c */
expand(newsize)
{

int i, n;
register *p, a1, a2;

p = u.u_procp;
n = p->p_size;
p->p_size = newsize;
a1 = p->p_addr;

if(n >= newsize) {
/* Shrinking */
mfree(coremap, n-newsize, a1+newsize);
return;

}

If shrinking, just free the excess.
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/* Growing: try to allocate new space */
savu(u.u_rsav);
a2 = malloc(coremap, newsize);
if(a2 == NULL) {

/* No space: swap out, grow on swap */
savu(u.u_ssav);
xswap(p, 1, n);
p->p_flag =| SSWAP;
swtch();
/* no return */

}

/* Copy to new location */
p->p_addr = a2;
for(i=0; i<n; i++)

copyseg(a1+i, a2++);
mfree(coremap, n, a1);
retu(p->p_addr);
sureg();

}

If growing:

1. Try to allocate larger region
2. If successful, copy process to new location
3. If not, swap out and let scheduler handle it

6.11. Shared Text Segments

Executable programs with magic number 0410 have separate, read‑only text segments that can be
shared:

/* text.h */
struct text {

int x_daddr; /* Disk address of segment */
int x_caddr; /* Core address (if in memory) */
int x_size; /* Size in 64-byte blocks */
int *x_iptr; /* Inode pointer */
char x_count; /* Reference count */
char x_ccount; /* In-core reference count */

} text[NTEXT];

When a process execs a shared‑text program:

1. Look for existing text entry for this inode
2. If found, just increment reference count
3. If not, create new entry and load text from disk

When process exits:
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1. Decrement reference counts
2. When x_count reaches 0, text can be freed

6.12. Memory Limits

From param.h:

#define MAXMEM (32*32) /* Max user memory: 1024 blocks = 64KB */
#define CMAPSIZ 100 /* Coremap entries */
#define SMAPSIZ 100 /* Swapmap entries */

The MAXMEM limit exists because:

• 64KB address space per process
• Kernel reserves some segments
• Practical limit on howmuch to allocate to one process

6.13. Summary

• Memory is managed with a simple first‑fit allocator (malloc/mfree)
• Twomaps: coremap for physical memory, swapmap for swap space
• Processes are allocated contiguous memory regions
• estabur() sets up segment registers based on text/data/stack sizes
• sureg() loads segment registers into hardware
• Swapping moves entire processes betweenmemory and disk
• Shared text segments reduce memory usage for common programs

6.14. Key Insight: Simplicity

The UNIX v4 memory management is remarkably simple:

• No page tables
• No complex allocation algorithms
• Nomemory‑mapped files
• Just contiguous regions, a free list, and swapping

This simplicity made UNIX portable and maintainable. The more complex virtual memory systems of
later UNIX versions added capability but also complexity.
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6.15. Experiments

1. Trace allocation: Add printfs to malloc()/mfree() to watch memory allocation patterns.

2. Fragmentation: What happens to coremap as processes come and go? Does fragmentation oc‑
cur?

3. Swap thrashing: What happens if memory is very tight and processes keep getting swapped in
and out?

6.16. Further Reading

• Chapter 5: Process Management — How expand() is used
• Chapter 8: Scheduling — How sched() decides what to swap
• Chapter 12: Buffer Cache — Another use of memory

Next: Chapter 7 — Traps and System Calls
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7. Chapter 7: Traps and System Calls

7.1. Overview

System calls are how user programs request kernel services. This chapter traces the complete path of a
system call—from the user’s sys instruction through the trap handler to the kernel function and back.
Understanding this mechanism is key to understanding the user/kernel interface.

7.2. Source Files

File Purpose

usr/sys/ken/trap.c Trap handler

usr/sys/ken/sysent.c System call table

usr/sys/conf/mch.s Assembly trap entry

usr/sys/conf/low.s Interrupt vectors

usr/sys/reg.h Register offsets

7.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (traps, PS word)
• Chapter 5: Process Management (process structure)

7.4. The Trap Mechanism

When a PDP‑11 executes a trap instruction (or encounters an error), the hardware:

1. Pushes the current PS onto the kernel stack
2. Pushes the current PC onto the kernel stack
3. Loads new PS and PC from the trap vector
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4. Execution continues at the new PC (in kernel mode)

7.4.1. Trap Vectors

From low.s:

. = 0^.
br 1f
4

/ trap vectors
trap; br7+0. / 4: bus error
trap; br7+1. / 10: illegal instruction
trap; br7+2. / 14: BPT (breakpoint)
trap; br7+3. / 20: IOT trap
trap; br7+4. / 24: power fail
trap; br7+5. / 30: EMT (emulator trap)
trap; br7+6. / 34: system call (TRAP instruction)

. = 240^.
trap; br7+7. / 240: programmed interrupt
trap; br7+8. / 244: floating point exception
trap; br7+9. / 250: segmentation violation

Each vector is two words:

• New PC: trap (the assembly routine)
• New PS: br7+Nwhere N identifies the trap type

The br7 (octal 340) sets IPL to 7 (block all interrupts) and kernel mode.

7.4.2. Trap Types

Vector dev Cause

4 0 Bus error (invalid address)

10 1 Illegal instruction

14 2 BPT (breakpoint trap)

20 3 IOT trap

24 4 Power fail

30 5 EMT (emulator trap)

34 6 TRAP (system call)
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Vector dev Cause

240 7 Programmed interrupt

244 8 Floating point exception

250 9 Segmentation violation

7.5. Assembly Entry Point

From mch.s, the trap routine:

trap:
mov PS,-4(sp) / Save PS in unused stack slot
tst nofault
bne 1f / If nofault set, handle specially
mov SSR0,ssr / Save MMU status registers
mov SSR2,ssr+4
mov $1,SSR0 / Re-enable MMU
jsr r0,call1; _trap / Call C trap handler

1:
mov $1,SSR0
mov nofault,(sp)
rti

The key line is jsr r0,call1; _trapwhich calls the C trap() function.

7.5.1. The call1 Routine

call1:
tst -(sp) / Make room on stack
spl 0 / Enable interrupts
br 1f / Fall into call

call:
mov PS,-(sp) / Save PS

1:
mov r1,-(sp) / Save r1
mfpi sp / Get user SP
mov 4(sp),-(sp) / Push dev number
...
jsr pc,*(r0)+ / Call the C function
...
rti / Return from interrupt

This saves registers and calls the C function with arguments set up properly.
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7.6. The trap() Function

/* trap.c */
trap(dev, sp, r1, nps, r0, pc, ps)
char *sp;
{

register i, a;

savfp(); /* Save floating point state */
u.u_ar0 = &r0; /* Point to saved registers */

The parameters are the saved registers, with dev being the trap type (0‑9).

7.6.1. Floating Point Exception (dev == 8)

if(dev == 8) {
psignal(u.u_procp, SIGFPT);
if((ps&UMODE) == UMODE)

goto err;
return;

}

Floating point errors signal the process.

7.6.2. SETD Instruction Trap (dev == 1)

if(dev==1 && fuword(pc-2)==SETD && u.u_signal[SIGINS]==0)
return;

The SETD instruction (set double mode) traps on some PDP‑11 models. If the user hasn’t registered a
handler, just ignore it.

7.6.3. Kernel Mode Trap

if((ps&UMODE) != UMODE)
goto bad; /* Trap in kernel mode = panic */

Traps in kernel mode (except floating point) are fatal.
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7.6.4. Stack Growth (dev == 9)

if(dev==9 && sp<-u.u_ssize*64) {
if(backup(&r0) == 0)
if(!estabur(u.u_tsize, u.u_dsize, u.u_ssize+SINCR)) {

u.u_ssize =+ SINCR;
expand(u.u_procp->p_size+SINCR);
/* Move stack up */
a = u.u_procp->p_addr + u.u_procp->p_size;
for(i=0; i<u.u_ssize; i++) {

a--;
copyseg(a-SINCR, a);

}
return;

}
}

A segmentation fault that’s just past the stack can be handled by automatic stack growth:

1. Back up the instruction
2. Expand the stack segment by SINCR blocks
3. Copy stack to new location
4. Return and retry the instruction

7.6.5. Signal Dispatch

u.u_error = 0;
switch(dev) {
case 0:

i = SIGBUS;
goto def;

case 1:
i = SIGINS;
goto def;

case 2:
i = SIGTRC;
goto def;

case 3:
i = SIGIOT;
goto def;

case 5:
i = SIGEMT;
goto def;

case 9:
i = SIGSEG;
goto def;

def:
psignal(u.u_procp, i);

default:
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u.u_error = dev+100;
case 6:; /* System call - fall through */
}

Most traps cause a signal. Device 6 (system call) falls through to the system call handling code.

7.7. System Call Handling

if(u.u_error)
goto err;

ps =& ~EBIT; /* Clear error bit (optimistic) */
dev = fuword(pc-2)&077; /* Get syscall number from instruction */

The system call number is encoded in the low 6 bits of the trap instruction itself.

7.7.1. Indirect System Calls

if(dev == 0) { /* indirect */
a = fuword(pc);
pc =+ 2;
dev = fuword(a)&077;
a =+ 2;

} else {
a = pc;
pc =+ sysent[dev].count*2;

}

System call 0 is “indirect”—the next word points to the actual syscall.

7.7.2. Fetch Arguments

for(i=0; i<sysent[dev].count; i++) {
u.u_arg[i] = fuword(a);
a =+ 2;

}
u.u_dirp = u.u_arg[0]; /* First arg often is pathname */
trap1(sysent[dev].call); /* Call the handler */

Arguments follow the trap instruction in user memory. They’re fetched into u.u_arg[].
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7.7.3. Error Handling

if(u.u_error >= 100)
psignal(u.u_procp, SIGSYS);

err:
if(issig())

psig();
if(u.u_error != 0) {

ps =| EBIT; /* Set error bit in PS */
r0 = u.u_error; /* Return error code in r0 */

}

If there’s an error, the carry bit (EBIT) is set and the error code goes in r0.

7.7.4. Priority and Reschedule

u.u_procp->p_pri = PUSER + u.u_nice;
if(u.u_dsleep++ > 15) {

u.u_dsleep = 0;
u.u_procp->p_pri++;
swtch();

}
return;

After handling the syscall, the process priority is recalculated. If the process has been running for a while
(u_dsleep), it may be preempted.

7.8. The System Call Table

/* sysent.c */
int sysent[]
{

0, &nullsys, /* 0 = indir */
0, &rexit, /* 1 = exit */
0, &fork, /* 2 = fork */
2, &read, /* 3 = read */
2, &write, /* 4 = write */
2, &open, /* 5 = open */
0, &close, /* 6 = close */
0, &wait, /* 7 = wait */
2, &creat, /* 8 = creat */
2, &link, /* 9 = link */
1, &unlink, /* 10 = unlink */
2, &exec, /* 11 = exec */
1, &chdir, /* 12 = chdir */
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0, &gtime, /* 13 = time */
3, &mknod, /* 14 = mknod */
2, &chmod, /* 15 = chmod */
2, &chown, /* 16 = chown */
1, &sbreak, /* 17 = break */
2, &stat, /* 18 = stat */
2, &seek, /* 19 = seek */
...
0, &dup, /* 41 = dup */
0, &pipe, /* 42 = pipe */
1, &times, /* 43 = times */
4, &profil, /* 44 = prof */
...
2, &ssig, /* 48 = sig */
...

};

Each entry is two words:

• count—Number of arguments
• call—Pointer to handler function

7.9. Making a System Call (User Side)

From user code, a system call looks like:

/ read(fd, buf, count)
mov fd,r0
sys read; buf; count
bcs error
/ r0 = bytes read

The sys read assembles to trap 3 (read is syscall 3). Arguments follow inline.

The C library provides wrappers:

read(fd, buf, count)
char *buf;
{

return(syscall(3, fd, buf, count));
}
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7.10. Complete System Call Flow

User Program:
sys write; buf; count

|
v

Hardware:
Push PS, PC
Load PS, PC from vector 034

|
v

mch.s trap:
Save registers
Call _trap(6, ...)

|
v

trap.c trap():
dev = fuword(pc-2) & 077 → 4 (write)
Fetch arguments
trap1(sysent[4].call) → write()

|
v

sys2.c write():
Do the actual write
Set u.u_error if failed

|
v

trap.c trap():
If error, set EBIT and r0
Return

|
v

mch.s:
Restore registers
rti

|
v

User Program:
bcs error / Check carry bit
/ r0 = return value

7.11. Error Handling

System calls report errors by:

1. Setting u.u_error to an error code
2. Setting the carry bit (EBIT) in the saved PS
3. Returning the error code in r0

User programs check the carry bit:
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sys open; file; 0
bcs error / Branch if carry set
mov r0,fd / r0 = file descriptor
...

error:
/ r0 = error code (ENOENT, EACCES, etc.)

7.12. The trap1() Function

trap1(f)
int (*f)();
{

savu(u.u_qsav);
(*f)();

}

trap1() saves the registers inu.u_qsavbefore calling the syscall handler. This allows signals to abort
syscalls and return to user mode via aretu(u.u_qsav).

7.13. Summary

• System calls use the PDP‑11 trap instruction (vector 034)
• The trap handler saves state and identifies the syscall number
• Arguments are fetched from user memory following the instruction
• The sysent[] table maps syscall numbers to handlers
• Errors are returned via carry bit and r0
• The PS word tracks user/kernel mode and error status

7.14. System Call Reference

# Name Args Description

0 indir 0 Indirect syscall

1 exit 0 Terminate process

2 fork 0 Create child process

3 read 2 Read from file

4 write 2 Write to file

Briam Rodriguez 88 88



20260116.002 Edition

# Name Args Description

5 open 2 Open file

6 close 0 Close file

7 wait 0 Wait for child

8 creat 2 Create file

9 link 2 Create hard link

10 unlink 1 Remove file

11 exec 2 Execute program

12 chdir 1 Change directory

13 time 0 Get time

14 mknod 3 Make device node

15 chmod 2 Changemode

16 chown 2 Change owner

17 break 1 Changememory size (sbrk)

18 stat 2 Get file status

19 seek 2 Seek in file

21 mount 3 Mount filesystem

22 umount 1 Unmount filesystem

23 setuid 0 Set user ID

24 getuid 0 Get user ID

25 stime 0 Set system time

28 fstat 1 Get file status (by fd)

30 smdate 1 Set modification date

31 stty 1 Set terminal parameters

32 gtty 1 Get terminal parameters

34 nice 0 Set process priority

35 sleep 0 Sleep for interval

36 sync 0 Flush filesystem buffers

37 kill 1 Send signal to process

38 switch 0 Get console switches
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# Name Args Description

41 dup 0 Duplicate fd

42 pipe 0 Create pipe

43 times 1 Get process times

44 prof 4 Profiling control

46 setgid 0 Set group ID

47 getgid 0 Get group ID

48 signal 2 Set signal handler

7.15. Experiments

1. Add a syscall: Add a new syscall that returns a constant. Modify sysent.c and test it.

2. Trace syscalls: Add printf to trap() to log every syscall.

3. Error injection: Modify a syscall to always fail and watch programs break.

7.16. Further Reading

• Chapter 5: Process Management — fork, exec, exit, wait
• Chapter 10: File I/O — read, write, open, close
• Appendix A: Complete syscall reference

Next: Chapter 8 — Scheduling
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8. Chapter 8: Scheduling

8.1. Overview

UNIX v4 uses a simple but effective scheduling algorithm: priority‑based preemptive scheduling with ag‑
ing. This chapter examines how the scheduler decides which process runs, how priorities are calculated,
and how context switching works. The elegance is in the simplicity—about 200 lines of code manage all
process scheduling.

8.2. Source Files

File Purpose

usr/sys/ken/slp.c sched(), swtch(), sleep(), wakeup()

usr/sys/ken/clock.c Clock interrupt, priority aging

usr/sys/param.h Priority constants

usr/sys/proc.h Process state definitions

8.3. Prerequisites

• Chapter 5: Process Management (process structure)
• Chapter 6: Memory Management (swapping)
• Chapter 7: Traps and System Calls (interrupt handling)

8.4. The Scheduling Model

UNIX v4 scheduling has two levels:

1. Swapper (process 0)—Decides which processes are in memory
2. swtch()—Chooses among in‑memory runnable processes
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The swapper runs sched() in an infinite loop, swapping processes in and out. The swtch() function
is called when a process blocks or when the clock decides it’s time for preemption.

8.5. Priority Basics

Lower numbers = higher priority:

/* param.h */
#define PSWP -100 /* Swapper */
#define PINOD -90 /* Waiting for inode */
#define PRIBIO -50 /* Waiting for buffer I/O */
#define PPIPE 1 /* Waiting for pipe */
#define PWAIT 40 /* Waiting for child (wait syscall) */
#define PSLEP 90 /* Sleeping (sleep syscall) */
#define PUSER 100 /* Base user priority */

Negative priorities are for kernel waits and cannot be interrupted by signals. Positive priorities are inter‑
ruptible.

8.6. The sleep() Function

/* slp.c */
sleep(chan, pri)
{

register *rp, s;

u.u_dsleep = 0;
s = PS->integ;
rp = u.u_procp;

sleep() puts the current process to sleep waiting for an event (identified by chan).

if(pri >= 0) {
/* Interruptible sleep */
if(issig())

goto psig;
rp->p_wchan = chan;
rp->p_stat = SWAIT;
rp->p_pri = pri;
spl0();
if(runin != 0) {

runin = 0;
wakeup(&runin);

}
swtch();
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if(issig()) {
psig:

aretu(u.u_qsav);
return;

}

For interruptible sleeps (pri >= 0):

1. Check for pending signals first
2. Set wait channel and state SWAIT
3. Context switch away
4. On wakeup, check for signals again

} else {
/* Uninterruptible sleep */
rp->p_wchan = chan;
rp->p_stat = SSLEEP;
rp->p_pri = pri;
spl0();
swtch();

}
PS->integ = s;

}

For uninterruptible sleeps (pri < 0), the process sleeps until explicitly awakened.

8.7. The wakeup() Function

/* slp.c */
wakeup(chan)
{

register struct proc *p;
register n, c;

loop:
c = chan;
n = 0;
for(p = &proc[0]; p < &proc[NPROC]; p++)

if(p->p_wchan == c) {
if(runout!=0 && (p->p_flag&SLOAD)==0) {

runout = 0;
n++;

}
p->p_wchan = 0;
p->p_stat = SRUN;
runrun++;

}
if(n) {
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chan = &runout;
goto loop;

}
}

wakeup()marks all processes sleeping on chan as runnable:

1. Scan the process table for matching p_wchan
2. Clear p_wchan, set p_stat = SRUN
3. Increment runrun to trigger rescheduling
4. If any swapped processes were awakened, wake the swapper too

8.8. The swtch() Function

/* slp.c */
swtch()
{

static int *p;
register i, n;
register struct proc *rp;

if(p == NULL)
p = &proc[0];

savu(u.u_rsav); /* Save current context */
retu(proc[0].p_addr); /* Switch to process 0's context */

First, save the current process’s registers and switch to process 0’s address space (so we can access the
proc table).

loop:
rp = p;
p = NULL;
n = 127; /* Start with lowest priority */
for(i=0; i<NPROC; i++) {

rp++;
if(rp >= &proc[NPROC])

rp = &proc[0];
if(rp->p_stat==SRUN && (rp->p_flag&SLOAD)==SLOAD) {

if(rp->p_pri < n) {
p = rp;
n = rp->p_pri;

}
}

}

Search for the highest‑priority runnable, in‑memory process. The search starts from where we left off
(round‑robin among equal priorities).
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if(p == NULL) {
p = rp;
idle(); /* No runnable process - wait */
goto loop;

}

If nothing is runnable, call idle() to wait for an interrupt.

rp = p;
retu(rp->p_addr); /* Switch to new process */
sureg(); /* Set up segment registers */
if(rp->p_flag&SSWAP) {

rp->p_flag =& ~SSWAP;
aretu(u.u_ssav); /* Return from swap */

}
return(1);

}

Switch to the selected process’s address space and return.

8.9. The sched() Function (Swapper)

Process 0 runs sched() forever:

/* slp.c */
sched()
{

struct proc *p1;
register struct proc *rp;
register a, n;

/*
* find user to swap in
* of users ready, select one out longest
*/
goto loop;

sloop:
runin++;
sleep(&runin, PSWP);

loop:
spl6();
n = -1;
for(rp = &proc[0]; rp < &proc[NPROC]; rp++)
if(rp->p_stat==SRUN && (rp->p_flag&SLOAD)==0 &&

rp->p_time > n) {
p1 = rp;
n = rp->p_time;

}
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if(n == -1) {
runout++;
sleep(&runout, PSWP);
goto loop;

}

Find a swapped‑out process that’s been waiting longest (p_time).

/*
* see if there is core for that process
*/
spl0();
rp = p1;
a = rp->p_size;
if((rp=rp->p_textp) != NULL)

if(rp->x_ccount == 0)
a =+ rp->x_size;

if((a=malloc(coremap, a)) != NULL)
goto found2;

Try to allocate memory for it.

/*
* none found,
* look around for easy core
*/
spl6();
for(rp = &proc[0]; rp < &proc[NPROC]; rp++)
if((rp->p_flag&(SSYS|SLOCK|SLOAD))==SLOAD &&

rp->p_stat == SWAIT)
goto found1;

If no memory, look for an easy victim—a process that’s sleeping.

/*
* no easy core,
* if this process is deserving,
* look around for
* oldest process in core
*/
if(n < 3)

goto sloop;
n = -1;
for(rp = &proc[0]; rp < &proc[NPROC]; rp++)
if((rp->p_flag&(SSYS|SLOCK|SLOAD))==SLOAD &&

(rp->p_stat==SRUN || rp->p_stat==SSLEEP) &&
rp->p_time > n) {
p1 = rp;
n = rp->p_time;

}
if(n < 2)

goto sloop;
rp = p1;

Briam Rodriguez 96 96



20260116.002 Edition

If no sleeping process, find the oldest in‑memory process. But don’t swap out a process that’s only been
in memory briefly (n < 3 and n < 2 checks).

/*
* swap user out
*/

found1:
spl0();
rp->p_flag =& ~SLOAD;
xswap(rp, 1, 0);
goto loop;

/*
* swap user in
*/

found2:
/* ... swap in code ... */
goto loop;

}

The swapper either swaps out a victim or swaps in the waiting process, then loops.

8.10. The Clock Interrupt

The clock ticks 60 times per second:

/* clock.c */
clock(dev, sp, r1, nps, r0, pc, ps)
{

register struct callo *p1, *p2;
register struct proc *pp;

*lks = 0115; /* Restart clock */
display(); /* Update console display */

8.10.1. Callouts

/*
* callouts - decrement timers
*/
if(callout[0].c_func == 0)

goto out;
p2 = &callout[0];
while(p2->c_time<=0 && p2->c_func!=0)

p2++;
p2->c_time--;
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if((ps&0340) != 0) /* If IPL high, don't run callouts */
goto out;

spl5();
if(callout[0].c_time <= 0) {

/* Run expired callouts */
p1 = &callout[0];
while(p1->c_func != 0 && p1->c_time <= 0) {

(*p1->c_func)(p1->c_arg);
p1++;

}
/* Compact the callout table */
...

}

Callouts are timed callbacks. Each tick decrements the first non‑zero timer.

8.10.2. Time Accounting

out:
if((ps&UMODE) == UMODE) {

u.u_utime++; /* User mode: charge user time */
if(u.u_prof[3])

incupc(pc, u.u_prof); /* Profiling */
} else

u.u_stime++; /* Kernel mode: charge system time */

8.10.3. Every Second (60 ticks)

if(++lbolt >= 60) {
if((ps&0340) != 0)

return;
lbolt =- 60;
if(++time[1] == 0)

++time[0]; /* Increment time of day */

spl1();
if(time[1]==tout[1] && time[0]==tout[0])

wakeup(tout); /* Wake alarm sleepers */
if((time[1]&03) == 0)

wakeup(&lbolt); /* Wake every 4 seconds */

8.10.4. Priority Aging
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for(pp = &proc[0]; pp < &proc[NPROC]; pp++)
if(pp->p_time != 127)

pp->p_time++; /* Age all processes */

p_time counts how long a process has been in its current location (memory or swap).

8.10.5. Preemption

if((ps&UMODE) == UMODE) {
u.u_ar0 = &r0;
pp = u.u_procp;
if(issig())

psig();
if(pp->p_pri < 105)

pp->p_pri++; /* Lower priority (higher number) */
savfp();
swtch(); /* Preempt! */

}
}

}

Once per second, if we’re in user mode:

1. Check for signals
2. Decay the process’s priority
3. Call swtch() to potentially run another process

8.11. Priority Calculation

Priorities in UNIX v4 are simple:

1. Initial priority: Set by sleep() based on what the process is waiting for
2. User processes: Start at PUSER + u.u_nice (100 + nice value)
3. Aging: Once per second, increment priority (lower priority)
4. Recalculation: After a syscall, reset to PUSER + u.u_nice

From trap.c:

u.u_procp->p_pri = PUSER + u.u_nice;

This creates a simple feedback loop:

• Processes that use CPU time get lower priority
• Processes that sleep get reset to high priority when they wake
• I/O‑bound processes naturally get better priority than CPU‑bound
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8.12. Context Switching

The actual context switch uses three assembly functions:

savu(u.u_rsav) /* Save current sp and r5 */
retu(p->p_addr) /* Switch to process p's memory, restore sp/r5 */
aretu(u.u_qsav) /* Return to saved context (for signals) */

From mch.s:

_savu:
spl 7 / Disable interrupts
mov (sp)+,r1 / Return address
mov (sp),r0 / Save area pointer
mov sp,(r0)+ / Save sp
mov r5,(r0)+ / Save r5
spl 0 / Enable interrupts
jmp (r1) / Return

_retu:
spl 7
mov (sp)+,r1
mov (sp),KISA6 / Set segment 6 to new process
mov $_u,r0
mov (r0)+,sp / Restore sp
mov (r0)+,r5 / Restore r5
spl 0
jmp (r1)

The key is changingKISA6—segment 6 points to the user structure, so changing it switches to a different
process’s context.

8.13. Scheduling Flags

Three flags coordinate scheduling:

• runrun—Set when a higher‑priority process becomes runnable
• runin—Set when swapper should look for something to swap in
• runout—Set when swapper should look for something to swap out

When runrun is set, swtch() is called at the next opportunity.

8.14. Summary

• Scheduling is priority‑based: lower number = higher priority
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• sleep() blocks a process on a “wait channel”
• wakeup()makes all processes on a channel runnable
• swtch() picks the highest‑priority runnable process
• sched() (process 0) handles swapping
• The clock provides preemption and priority aging
• Context switching changes segment 6 to point to a different user structure

8.15. The Beauty of Simplicity

The entire scheduler fits in about 200 lines:

• No run queues (just scan the proc table)
• No complex priority inheritance
• No real‑time scheduling
• Just: find highest priority, run it, age priorities

This works because:

• Only 50 processes maximum
• Clock provides regular preemption
• I/O‑bound processes naturally get good priority

8.16. Experiments

1. Watch scheduling: Add printf to swtch() to see process switches.

2. Change priorities: Modify the priority constants and observe behavior.

3. Disable preemption: Remove the swtch() call from clock() and see what happens.

8.17. Further Reading

• Chapter 5: Process Management — Process states and transitions
• Chapter 6: Memory Management — How swapping interacts with scheduling
• Chapter 7: Traps and System Calls — How syscalls trigger rescheduling

End of Part II: The Kernel

Next: Part III — The File System

Briam Rodriguez 101 101



20260116.002 Edition

Part III.

The File System
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9. Chapter 9: Inodes and the Superblock

9.1. Overview

The UNIX file system is built on two fundamental abstractions: the inode (index node) and the su‑
perblock. Every file—whether a regular file, directory, or device—is represented by an inode that
stores its metadata and block addresses. The superblock contains critical file system parameters and
maintains caches of free blocks and free inodes for fast allocation.

This chapter examines how UNIX v4 organizes data on disk and manages the in‑memory inode cache—
the foundation upon which all file operations are built.

9.2. Source Files

File Purpose

usr/sys/inode.h In‑memory inode structure and flags

usr/sys/filsys.h Superblock structure

usr/sys/ken/iget.c Inode cache operations

usr/sys/ken/alloc.c Block and inode allocation

9.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (memory layout)
• Chapter 4: Boot Sequence (iinit() called during startup)
• Chapter 12: Buffer Cache (understanding bread/bwrite)

9.4. Disk Layout

A UNIX v4 file system has this structure:
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Block 0 Boot block (bootstrap code)
Block 1 Superblock (file system metadata)
Block 2 ┐
... │ Inode area (on-disk inodes)

Block N ┘
Block N+1 ┐

... │ Data blocks
Block M ┘

Each block is 512 bytes. The number of inode blocks depends on the file system size—the superblock’s
s_isize field records this.

Why 512 bytes? The block size matches the RK05 disk’s physical sector size (256 words × 2 bytes =
512 bytes). This makes I/O efficient—one block equals one sector equals one disk operation. The
power‑of‑2 size alsomakes offset calculations fast (bit shifts instead of division), andwith only 64KB
of address space, larger buffers would waste precious memory.

Howmany inodes? Themkfsutility calculates inodeblocksusing: s_isize = fsize / (43 +
fsize/1000). For an RK05with ~4800 blocks, this yields ~100 inode blocks = 1600 inodes (16 per
block). The formula allocates roughly 1 inodeper 3datablocks, or about 1 inodeper 1.5KB—enough
for typical small UNIX files.

9.4.1. On‑Disk Inode Format

Each on‑disk inode is 32 bytes:

Offset Size Field
0 2 i_mode (type/permissions)
2 1 i_nlink (link count)
3 1 i_uid (owner)
4 1 i_gid (group)
5 1 i_size0 (size high byte)
6 2 i_size1 (size low bytes)
8 16 i_addr[8] (block addresses)
24 4 i_atime (access time)
28 4 i_mtime (modification time)

With 32 bytes per inode, each 512‑byte block holds 16 inodes. Inode numbering starts at 1 (inode 0 is
unused); inode 1 is the root directory (ROOTINO).

9.5. The In‑Memory Inode

When a file is opened, its inode is read into memory and cached:
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/* inode.h */
struct inode {

char i_flag; /* Flags (ILOCK, IUPD, etc.) */
char i_count; /* Reference count */
int i_dev; /* Device number */
int i_number; /* Inode number on device */
int i_mode; /* Type and permissions */
char i_nlink; /* Link count */
char i_uid; /* Owner user ID */
char i_gid; /* Owner group ID */
char i_size0; /* Size (high byte) */
char *i_size1; /* Size (low 16 bits) */
int i_addr[8]; /* Block addresses */
int i_lastr; /* Last block read (for read-ahead) */

} inode[NINODE];

The in‑memory inode has additional fields not stored on disk:

Field Purpose

i_flag Lock state, update pending, mount point

i_count Number of references to this cached inode

i_dev Which device this inode is from

i_number Which inode number on that device

i_lastr Enables read‑ahead optimization

9.5.1. Inode Flags

#define ILOCK 01 /* Inode is locked */
#define IUPD 02 /* Inode modified, needs write */
#define IACC 04 /* Access time changed */
#define IMOUNT 010 /* Mount point */
#define IWANT 020 /* Process waiting for lock */
#define ITEXT 040 /* Text segment (shared executable) */

9.5.2. Mode Bits

The i_mode field encodes file type and permissions:

#define IALLOC 0100000 /* Inode is allocated */
#define IFMT 060000 /* Type mask */
#define IFDIR 040000 /* Directory */
#define IFCHR 020000 /* Character device */
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#define IFBLK 060000 /* Block device */
#define ILARG 010000 /* Large file (indirect blocks) */
#define ISUID 04000 /* Set-user-ID */
#define ISGID 02000 /* Set-group-ID */
#define IREAD 0400 /* Owner read */
#define IWRITE 0200 /* Owner write */
#define IEXEC 0100 /* Owner execute */

File types encoded in IFMT:

• 000000—Regular file
• 040000—Directory
• 020000—Character special
• 060000—Block special

9.6. The Superblock

The superblock lives in block 1 and describes the file system:

/* filsys.h */
struct filsys {

int s_isize; /* Size of inode area in blocks */
int s_fsize; /* Total size in blocks */
int s_nfree; /* Number of free blocks in cache */
int s_free[100]; /* Free block cache */
int s_ninode; /* Number of free inodes in cache */
int s_inode[100]; /* Free inode cache */
char s_flock; /* Lock during free list manipulation */
char s_ilock; /* Lock during inode list manipulation */
char s_fmod; /* Superblock modified flag */
char s_ronly; /* Read-only flag */
int s_time[2]; /* Last modification time */

};

The superblock caches up to 100 free block numbers and 100 free inode numbers in memory. This dra‑
matically speeds allocation—most allocations don’t require disk I/O.

9.7. iinit() — File System Initialization

Called once during boot to initialize the root file system:

/* alloc.c */
iinit()
{

register *cp, *bp;
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bp = bread(rootdev, 1); /* Read superblock */
cp = getblk(NODEV); /* Get buffer for in-memory copy */
if(u.u_error)

panic("iinit");
bcopy(bp->b_addr, cp->b_addr, 256); /* Copy superblock */
brelse(bp);
mount[0].m_bufp = cp; /* Save in mount table */
mount[0].m_dev = rootdev;
cp = cp->b_addr;
cp->s_flock = 0; /* Clear locks */
cp->s_ilock = 0;
cp->s_ronly = 0;
time[0] = cp->s_time[0]; /* Initialize system time */
time[1] = cp->s_time[1];

}

Key points:

1. The superblock is read from disk block 1
2. It’s copied into a dedicated buffer that stays in memory
3. The mount table entry records this buffer
4. System time is initialized from the superblock

9.8. iget() — Getting an Inode

iget() retrieves an inode, either from cache or disk:

/* iget.c */
iget(dev, ino)
int dev;
int ino;
{

register struct inode *p;
register *ip2;
int *ip1;
register struct mount *ip;

loop:
ip = NULL;
for(p = &inode[0]; p < &inode[NINODE]; p++) {

if(dev==p->i_dev && ino==p->i_number) {
/* Found in cache */
if((p->i_flag&ILOCK) != 0) {

p->i_flag =| IWANT;
sleep(p, PINOD);
goto loop; /* Retry after wakeup */

}

The first loop searches the inode cache. If found but locked, the process sleeps until the lock is
released.
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if((p->i_flag&IMOUNT) != 0) {
/* This is a mount point - cross to mounted fs */
for(ip = &mount[0]; ip < &mount[NMOUNT]; ip++)
if(ip->m_inodp == p) {

dev = ip->m_dev;
ino = ROOTINO;
goto loop;

}
panic("no imt");

}
p->i_count++;
p->i_flag =| ILOCK;
return(p);

}
if(ip==NULL && p->i_count==0)

ip = p; /* Remember free slot */
}

Mount point handling: if the inode is a mount point, iget() transparently crosses to the mounted file
system’s root.

if((p=ip) == NULL)
panic("no inodes");

if (p>maxip)
maxip = p;

p->i_dev = dev;
p->i_number = ino;
p->i_flag = ILOCK;
p->i_count++;
p->i_lastr = -1;

If not in cache, use the free slot found during the search. Initialize the in‑memory fields.

ip = bread(dev, ldiv(ino+31,16));
ip1 = ip->b_addr + 32*lrem(ino+31, 16);
ip2 = &p->i_mode;
while(ip2 < &p->i_addr[8])

*ip2++ = *ip1++;
brelse(ip);
return(p);

}

The disk block containing the inode is calculated:

• ldiv(ino+31, 16) gives the block number (16 inodes per block, offset by 2 for boot+super, so
+31 adjusts for 1‑based inode numbers)

• 32*lrem(ino+31, 16) gives the byte offset within the block

The on‑disk inode (32 bytes from i_mode through i_addr[7]) is copied into the in‑memory struc‑
ture.

Briam Rodriguez 108 108



20260116.002 Edition

9.9. iput() — Releasing an Inode

iput() decrements the reference count and handles cleanup:

/* iget.c */
iput(p)
struct inode *p;
{

register *rp;

rp = p;
if(rp->i_count == 1) {

rp->i_flag =| ILOCK;
if(rp->i_nlink <= 0) {

itrunc(rp); /* Free all data blocks */
rp->i_mode = 0; /* Mark as unallocated */
ifree(rp->i_dev, rp->i_number);

}
iupdat(rp); /* Write changes to disk */
prele(rp);
rp->i_flag = 0;
rp->i_number = 0;

}
rp->i_count--;
prele(rp);

}

When the last reference is released (i_count goes to 0):

1. If link count is zero, the file is deleted—itrunc() frees data blocks, ifree() frees the inode
2. iupdat()writes any pending changes to disk
3. The inode slot is cleared for reuse

9.10. iupdat() —Writing Inode to Disk

/* iget.c */
iupdat(p)
int *p;
{

register *ip1, *ip2, *rp;
int *bp, i;

rp = p;
if((rp->i_flag&(IUPD|IACC)) != 0) {

if(getfs(rp->i_dev)->s_ronly)
return; /* Read-only filesystem */

i = rp->i_number+31;
bp = bread(rp->i_dev, ldiv(i,16));
ip1 = bp->b_addr + 32*lrem(i, 16);
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ip2 = &rp->i_mode;
while(ip2 < &rp->i_addr[8])

*ip1++ = *ip2++; /* Copy inode to buffer */
if(rp->i_flag&IACC) {

*ip1++ = time[0]; /* Update access time */
*ip1++ = time[1];

} else
ip1 =+ 2;

if(rp->i_flag&IUPD) {
*ip1++ = time[0]; /* Update modification time */
*ip1++ = time[1];

}
bwrite(bp); /* Write synchronously */

}
}

Only writes if IUPD or IACC flags are set. The times are written after the main inode data.

9.11. itrunc() — Truncating a File

When a file is deleted or truncated, its blocks must be freed:

/* iget.c */
itrunc(ip)
int *ip;
{

register *rp, *bp, *cp;

rp = ip;
if((rp->i_mode&(IFCHR&IFBLK)) != 0)

return; /* Devices have no blocks */
for(ip = &rp->i_addr[0]; ip < &rp->i_addr[8]; ip++)
if(*ip) {

if((rp->i_mode&ILARG) != 0) {
/* Large file: this is an indirect block */
bp = bread(rp->i_dev, *ip);
for(cp = bp->b_addr; cp < bp->b_addr+512; cp++)

if(*cp)
free(rp->i_dev, *cp);

brelse(bp);
}
free(rp->i_dev, *ip);
*ip = 0;

}
rp->i_mode =& ~ILARG;
rp->i_size0 = 0;
rp->i_size1 = 0;
rp->i_flag =| IUPD;

}

For small files (ILARG not set), i_addr[0-7] point directly to data blocks.
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For large files (ILARG set), i_addr[0-7] point to indirect blocks, each containing 256 block numbers.
The indirect blocks are read, their contents freed, then the indirect blocks themselves are freed.

9.12. Block Allocation

9.12.1. alloc() — Allocate a Block

/* alloc.c */
alloc(dev)
{

int bno;
register *bp, *ip, *fp;

fp = getfs(dev);
while(fp->s_flock)

sleep(&fp->s_flock, PINOD);
bno = fp->s_free[--fp->s_nfree];
if(bno == 0) {

fp->s_nfree++;
printf("No space on dev %d\n", dev);
u.u_error = ENOSPC;
return(NULL);

}

The superblock caches free blocks in s_free[]. Allocation pops from this array.

if(fp->s_nfree <= 0) {
/* Cache empty - reload from linked list */
fp->s_flock++;
bp = bread(dev, bno);
ip = bp->b_addr;
fp->s_nfree = *ip++;
bcopy(ip, fp->s_free, 100);
brelse(bp);
fp->s_flock = 0;
wakeup(&fp->s_flock);

}
bp = getblk(dev, bno);
clrbuf(bp);
fp->s_fmod = 1;
return(bp);

}

When the cache empties, the block just “allocated” is actually a link block—it contains the next batch of
100 free block numbers. This creates a linked list of free block batches across the disk.
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9.12.2. free() — Free a Block

/* alloc.c */
free(dev, bno)
{

register *fp, *bp, *ip;

fp = getfs(dev);
fp->s_fmod = 1;
while(fp->s_flock)

sleep(&fp->s_flock, PINOD);
if(fp->s_nfree >= 100) {

/* Cache full - flush to disk */
fp->s_flock++;
bp = getblk(dev, bno);
ip = bp->b_addr;
*ip++ = fp->s_nfree;
bcopy(fp->s_free, ip, 100);
fp->s_nfree = 0;
bwrite(bp);
fp->s_flock = 0;
wakeup(&fp->s_flock);

}
fp->s_free[fp->s_nfree++] = bno;
fp->s_fmod = 1;

}

The reverse of alloc(): when the cache fills, the current 100 free blocks are written to the block being
freed, creating a new link in the chain.

9.12.3. The Free Block List

Superblock Link Block 1 Link Block 2
+----------------+ +----------------+ +----------------+
| s_nfree = 47 | | count = 100 | | count = 100 |
| s_free[0..46] -+-->| blocks[0..99] -+-->| blocks[0..99] -+--> ...
+----------------+ +----------------+ +----------------+

This design means:

• Most allocations require no disk I/O (just decrement s_nfree)
• The free list is rebuilt in batches, amortizing disk access
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9.13. Inode Allocation

9.13.1. ialloc() — Allocate an Inode

/* alloc.c */
ialloc(dev)
{

register *fp, *bp, *ip;
int i, j, k, ino;

fp = getfs(dev);
while(fp->s_ilock)

sleep(&fp->s_ilock, PINOD);
loop:

if(fp->s_ninode > 0) {
/* Use cached free inode number */
ino = fp->s_inode[--fp->s_ninode];
ip = iget(dev, ino);
if(ip->i_mode == 0) {

for(bp = &ip->i_mode; bp < &ip->i_addr[8];)
*bp++ = 0;

fp->s_fmod = 1;
return(ip);

}
/* Inode was busy - try next */
printf("busy i\n");
iput(ip);
goto loop;

}

Like blocks, free inode numbers are cached in the superblock. If available, popone and verify it’s actually
free.

/* Cache empty - scan inode area */
fp->s_ilock++;
ino = 0;
for(i=0; i<fp->s_isize; i++) {

bp = bread(dev, i+2); /* Inode blocks start at 2 */
ip = bp->b_addr;
for(j=0; j<256; j=+16) { /* 16 inodes per block, 32 bytes each */

ino++;
if(ip[j] != 0) /* Check i_mode - 0 means free */

continue;
/* Skip if currently in use in memory */
for(k=0; k<NINODE; k++)
if(dev==inode[k].i_dev && ino==inode[k].i_number)

goto cont;
fp->s_inode[fp->s_ninode++] = ino;
if(fp->s_ninode >= 100)

break;
cont:;
}
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brelse(bp);
if(fp->s_ninode >= 100)

break;
}
if(fp->s_ninode <= 0)

panic("out of inodes");
fp->s_ilock = 0;
wakeup(&fp->s_ilock);
goto loop;

}

When the cache empties, the entire inode area is scanned to refill it. This is expensive but rare—the cache
holds 100 inodes.

9.13.2. ifree() — Free an Inode

/* alloc.c */
ifree(dev, ino)
{

register *fp;

fp = getfs(dev);
if(fp->s_ilock)

return; /* Someone scanning - skip */
if(fp->s_ninode >= 100)

return; /* Cache full - will be found by scan */
fp->s_inode[fp->s_ninode++] = ino;
fp->s_fmod = 1;

}

Unlike block freeing, ifree() is simple: just add to cache if there’s room. If the cache is full, the freed
inode will be found on the next ialloc() scan.

9.14. getfs() — Finding a File System

/* alloc.c */
getfs(dev)
{

register struct mount *p;

for(p = &mount[0]; p < &mount[NMOUNT]; p++)
if(p->m_bufp != NULL && p->m_dev == dev) {

p = p->m_bufp->b_addr;
return(p);

}
panic("no fs");

}
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Given a device number, return a pointer to its in‑memory superblock. The mount table maps devices to
superblock buffers.

9.15. update() — Sync to Disk

update() flushes all modified data to disk:

/* alloc.c */
update()
{

register struct inode *ip;
register struct mount *mp;
register *bp;

if(updlock)
return;

updlock++;

/* Write all modified superblocks */
for(mp = &mount[0]; mp < &mount[NMOUNT]; mp++)

if(mp->m_bufp != NULL) {
ip = mp->m_bufp->b_addr;
if(ip->s_fmod==0 || ip->s_ilock!=0 ||

ip->s_flock!=0 || ip->s_ronly!=0)
continue;

bp = getblk(mp->m_dev, 1);
ip->s_fmod = 0;
ip->s_time[0] = time[0];
ip->s_time[1] = time[1];
bcopy(ip, bp->b_addr, 256);
bwrite(bp);

}

First, all modified superblocks are written to their block 1.

/* Write all modified inodes */
for(ip = &inode[0]; ip < &inode[NINODE]; ip++)

if((ip->i_flag&ILOCK) == 0) {
ip->i_flag =| ILOCK;
iupdat(ip);
prele(ip);

}
updlock = 0;
bflush(NODEV);

}

Then all unlocked inodes with pending changes are written. Finally, bflush() writes all dirty buffers.
This is called by sync(2) and periodically by the update daemon.

Briam Rodriguez 115 115



20260116.002 Edition

9.16. maknode() — Creating a New File

/* iget.c */
maknode(mode)
{

register *ip;

ip = ialloc(u.u_pdir->i_dev);
ip->i_flag =| IACC|IUPD;
ip->i_mode = mode|IALLOC;
ip->i_nlink = 1;
ip->i_uid = u.u_uid;
ip->i_gid = u.u_gid;
wdir(ip);
return(ip);

}

Allocates a new inode and creates a directory entry for it:

1. ialloc() gets a free inode
2. Initialize mode, link count, owner
3. wdir()writes the directory entry

9.17. wdir() —Writing a Directory Entry

/* iget.c */
wdir(ip)
int *ip;
{

register char *cp1, *cp2;

u.u_dent.u_ino = ip->i_number;
cp1 = &u.u_dent.u_name[0];
for(cp2 = &u.u_dbuf[0]; cp2 < &u.u_dbuf[DIRSIZ];)

*cp1++ = *cp2++;
u.u_count = DIRSIZ+2; /* 14 bytes name + 2 bytes ino */
u.u_segflg = 1;
u.u_base = &u.u_dent;
writei(u.u_pdir);
iput(u.u_pdir);

}

Directory entries are 16 bytes: 2‑byte inode number + 14‑byte name. The entry is written at the position
found by namei() (stored in u.u_offset).
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9.18. How It All Fits Together

9.18.1. Opening a File

open("/etc/passwd", 0)
│
▼

namei() ──────────────► iget(rootdev, 1) [root inode]
│ │
│ ▼
│ lookup "etc"
│ │
│ ▼
│ iget(rootdev, 5) [/etc inode]
│ │
│ ▼
│ lookup "passwd"
│ │
▼ ▼

return ◄──────────────── iget(rootdev, 42) [/etc/passwd inode]

9.18.2. Creating a File

creat("/tmp/foo", 0644)
│
▼

namei() ──────────► returns NULL (not found)
│ u.u_pdir = /tmp inode
│
▼

maknode(0644)
│
├──► ialloc() ──► get free inode #87
│
└──► wdir() ──► write entry to /tmp directory

inode=87, name="foo"

9.18.3. Deleting a File

unlink("/tmp/foo")
│
▼

namei() ──────────► returns inode #87
│ u.u_pdir = /tmp inode
│
▼

ip->i_nlink-- [now 0]
│
▼

clear directory entry
│
▼

iput(ip)
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│
├──► itrunc() ──► free all data blocks
│
└──► ifree() ──► return inode to free list

9.19. Summary

• Inodes store all file metadata except the name
• Superblock holds file system parameters and free lists
• iget/iputmanage the in‑memory inode cache with reference counting
• alloc/freemanage disk blocks using a linked‑list cache
• ialloc/ifreemanage inodes using a simple array cache
• update syncs everything to disk

The elegance of this design:

1. Most operations hit the in‑memory cache
2. Reference counting prevents premature deallocation
3. The free block list amortizes disk I/O
4. Lock flags prevent concurrent modification

9.20. Key Constants

Constant Value Meaning

NINODE 100 In‑memory inode cache size

ROOTINO 1 Root directory inode number

DIRSIZ 14 Maximum filename length

9.21. Experiments

1. Trace inode allocation: Add printf to ialloc() to see when the cache is refilled.

2. Count cache hits: Track how often iget() finds inodes in cache vs. reading from disk.

3. Free list structure: Examine the free block list by reading link blocks with od.

4. Fill the filesystem: Create files until “No space” appears, then delete someandobservealloc()
behavior.
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9.22. Further Reading

• Chapter 10: File I/O — How data flows through inodes
• Chapter 11: Path Resolution — How namei() traverses directories
• Chapter 12: Buffer Cache — The bread/bwrite interface used here

Next: Chapter 10 — File I/O
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10. Chapter 10: File I/O

10.1. Overview

When a user program calls read() or write(), the request passes through three layers of abstraction:
file descriptors (per‑process), the open file table (system‑wide), and inodes (representing files). This
chapter traces the data path fromuser space through these layers, examining howUNIX v4 translates file
positions into disk blocks andmoves data between user memory and the buffer cache.

10.2. Source Files

File Purpose

usr/sys/file.h Open file table structure

usr/sys/ken/fio.c File descriptor operations

usr/sys/ken/rdwri.c readi(), writei(), iomove()

usr/sys/ken/subr.c bmap() block mapping

10.3. Prerequisites

• Chapter 9: Inodes and Superblock (inode structure, i_addr[])
• Chapter 12: Buffer Cache (bread, bwrite, brelse)
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10.4. The Three‑Level File Abstraction

u.u_ofile[] file[] inode[]
+-------------+ +-------------+ +-------------+
| fd 0 ------+---->| f_count | +->| i_mode |
| fd 1 ------+-+ | f_inode ----+--+ | i_addr[8]---+--> disk
| fd 2 ------+-+-->| f_offset | +-------------+ blocks
| ... | | +-------------+ | i_mode |
+-------------+ | | f_count | +->| i_addr[8]---+--> disk

+-->| f_inode ----+--+ +-------------+ blocks
| f_offset |
+-------------+

File descriptors (u.u_ofile[]): Per‑process array of pointers to open file entries. Small integers (0, 1,
2…) that user programs use.

Open file table (file[]): System‑wide array of open file structures. Contains the current file offset and
a pointer to the inode. Multiple descriptors can point to the same file entry (after dup() or fork()).

Inodes (inode[]): In‑memory cache of file metadata. Contains block addresses. Multiple file entries
can point to the same inode (multiple opens of the same file).

10.5. The File Structure

/* file.h */
struct file {

char f_flag; /* FREAD, FWRITE, FPIPE */
char f_count; /* Reference count */
int f_inode; /* Pointer to inode */
char *f_offset[2]; /* Current position (32-bit) */

} file[NFILE];

#define FREAD 01 /* Open for reading */
#define FWRITE 02 /* Open for writing */
#define FPIPE 04 /* This is a pipe */

The offset is 32 bits (two 16‑bit words) to support files larger than 64KB. With NFILE=100, the system
supports 100 simultaneous open files across all processes.

10.6. File Descriptor Operations

10.6.1. getf() — Validate File Descriptor
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/* fio.c */
getf(f)
{

register *fp, rf;

rf = f;
if(rf<0 || rf>=NOFILE)

goto bad;
fp = u.u_ofile[rf];
if(fp == NULL) {
bad:

u.u_error = EBADF;
fp = NULL;

}
return(fp);

}

Converts a file descriptor (small integer) to a file pointer. Returns NULL and sets EBADF if invalid.

10.6.2. ufalloc() — Find Free Descriptor

/* fio.c */
ufalloc()
{

register i;

for (i=0; i<NOFILE; i++)
if (u.u_ofile[i] == NULL) {

u.u_ar0[R0] = i; /* Return fd in r0 */
return(i);

}
u.u_error = EMFILE; /* Too many open files */
return(-1);

}

Finds the lowest available file descriptor. Places the result in both the return value and r0 (for system
call return).

10.6.3. falloc() — Allocate File Entry

/* fio.c */
falloc()
{

register struct file *fp;
register i;

if ((i = ufalloc()) < 0)
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return(NULL);
for (fp = &file[0]; fp < &file[NFILE]; fp++)

if (fp->f_count==0) {
u.u_ofile[i] = fp; /* Link descriptor to file */
fp->f_count++;
fp->f_offset[0] = 0; /* Start at beginning */
fp->f_offset[1] = 0;
return(fp);

}
printf("no file\n");
u.u_error = ENFILE; /* File table full */
return(NULL);

}

Allocates both a file descriptor and a file table entry, linking them together. The offset is initialized to
zero.

10.6.4. closef() — Close File Entry

/* fio.c */
closef(fp)
int *fp;
{

register *rfp, *ip;

rfp = fp;
if(rfp->f_flag&FPIPE) {

ip = rfp->f_inode;
ip->i_mode =& ~(IREAD|IWRITE);
wakeup(ip+1); /* Wake pipe readers */
wakeup(ip+2); /* Wake pipe writers */

}
if(rfp->f_count <= 1)

closei(rfp->f_inode, rfp->f_flag&FWRITE);
rfp->f_count--;

}

Decrements the reference count. When it reaches zero, the underlying inode is closed. Pipes get special
handling to wake waiting processes.

10.6.5. closei() — Close Inode

/* fio.c */
closei(ip, rw)
int *ip;
{

register *rip;
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register dev, maj;

rip = ip;
dev = rip->i_addr[0];
maj = rip->i_addr[0].d_major;
if(rip->i_count <= 1)
switch(rip->i_mode&IFMT) {

case IFCHR:
(*cdevsw[maj].d_close)(dev, rw);
break;

case IFBLK:
(*bdevsw[maj].d_close)(dev, rw);

}
iput(rip);

}

For device files, calls the device’s close routine. Then releases the inode with iput().

10.6.6. openi() — Open Inode

/* fio.c */
openi(ip, rw)
int *ip;
{

register *rip;
register dev, maj;

rip = ip;
dev = rip->i_addr[0];
maj = rip->i_addr[0].d_major;
switch(rip->i_mode&IFMT) {

case IFCHR:
if(maj >= nchrdev)

goto bad;
(*cdevsw[maj].d_open)(dev, rw);
break;

case IFBLK:
if(maj >= nblkdev) {
bad:

u.u_error = ENXIO;
return;

}
(*bdevsw[maj].d_open)(dev, rw);

}
}

For device files, calls the device’s open routine. Regular files don’t need any special open processing.
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10.7. Permission Checking

10.7.1. access() — Check Permissions

/* fio.c */
access(ip, mode)
int *ip;
{

register *rip, m;

rip = ip;
m = mode;
if(m == IWRITE && getfs(ip->i_dev)->s_ronly != 0) {

u.u_error = EROFS; /* Read-only filesystem */
return(1);

}
if(u.u_uid == 0)

return(0); /* Root can do anything */
if(u.u_uid != rip->i_uid) {

m =>> 3; /* Check group bits */
if(u.u_gid != rip->i_gid)

m =>> 3; /* Check other bits */
}
if((rip->i_mode&m) != 0)

return(0); /* Permission granted */
u.u_error = EACCES;
return(1);

}

The classic UNIX permission algorithm:

1. Check for read‑only filesystem (for writes)
2. Root (uid 0) bypasses all checks
3. Check owner bits, group bits, or other bits depending on identity
4. Return 0 for success, 1 for failure

10.7.2. owner() and suser()

/* fio.c */
owner(ip)
int *ip;
{

if(u.u_uid == ip->i_uid)
return(1);

return(suser());
}

suser()
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{
if(u.u_uid == 0)

return(1);
u.u_error = EPERM;
return(0);

}

owner() checks if the user owns the file or is root. suser() checks for root privileges.

10.8. Reading Files: readi()

The heart of file reading:

/* rdwri.c */
readi(aip)
struct inode *aip;
{

int *bp;
int lbn, bn, on;
register dn, n;
register struct inode *ip;

ip = aip;
if(u.u_count == 0)

return;
ip->i_flag =| IACC; /* Mark access time update */

Parameters are passed through the user structure:

• u.u_base—User buffer address
• u.u_count—Bytes to read
• u.u_offset— File position
• u.u_segflg— 0 for user space, 1 for kernel space

if((ip->i_mode&IFMT) == IFCHR) {
(*cdevsw[ip->i_addr[0].d_major].d_read)(ip->i_addr[0]);
return;

}

Character devices go directly to their driver’s read routine.

do {
lbn = bn = lshift(u.u_offset, -9); /* Logical block number */
on = u.u_offset[1] & 0777; /* Offset within block */
n = min(512-on, u.u_count); /* Bytes this iteration */

The 32‑bit offset is converted:
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• lbn = offset / 512 (logical block number)
• on = offset % 512 (byte within block)
• n = bytes to transfer (at most to end of block)

if((ip->i_mode&IFMT) != IFBLK) {
dn = dpcmp(ip->i_size0, ip->i_size1,

u.u_offset[0], u.u_offset[1]);
if(dn <= 0)

return; /* At or past EOF */
n = min(n, dn); /* Don't read past EOF */
if ((bn = bmap(ip, lbn)) == 0)

return; /* Error in block mapping */
dn = ip->i_dev;

} else {
dn = ip->i_addr[0]; /* Block device: use directly */
rablock = bn+1;

}

For regular files, check for EOF and call bmap() to translate logical to physical block. For block devices,
the block number is used directly.

if (ip->i_lastr+1 == lbn)
bp = breada(dn, bn, rablock); /* Read-ahead */

else
bp = bread(dn, bn); /* Simple read */

ip->i_lastr = lbn;
iomove(bp, on, n, B_READ);
brelse(bp);

} while(u.u_error==0 && u.u_count!=0);
}

Read‑aheadoptimization: If reading sequentially (currentblock = last block+1), usebreada() to start
fetching the next block while processing this one. i_lastr tracks the last block read.

10.9. Writing Files: writei()

/* rdwri.c */
writei(aip)
struct inode *aip;
{

int *bp;
int n, on;
register dn, bn;
register struct inode *ip;

ip = aip;
ip->i_flag =| IACC|IUPD; /* Mark access and update times */
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if((ip->i_mode&IFMT) == IFCHR) {
(*cdevsw[ip->i_addr[0].d_major].d_write)(ip->i_addr[0]);
return;

}
if (u.u_count == 0)

return;

Similar setup to readi(). Character devices go to their driver.

do {
bn = lshift(u.u_offset, -9);
on = u.u_offset[1] & 0777;
n = min(512-on, u.u_count);
if((ip->i_mode&IFMT) != IFBLK) {

if ((bn = bmap(ip, bn)) == 0)
return;

dn = ip->i_dev;
} else

dn = ip->i_addr[0];

Same block calculation as reading. bmap()will allocate new blocks if needed.

if(n == 512)
bp = getblk(dn, bn); /* Full block: no need to read first */

else
bp = bread(dn, bn); /* Partial: read existing content */

iomove(bp, on, n, B_WRITE);

Optimization: If writing a full 512‑byte block, there’s no need to read the old contents first—just get an
empty buffer.

if(u.u_error != 0)
brelse(bp);

else if ((u.u_offset[1]&0777)==0)
bawrite(bp); /* Block boundary: async write */

else
bdwrite(bp); /* Delayed write */

Write strategy:

• On error, just release the buffer
• At block boundary, use async write (bawrite)—starts the I/O but doesn’t wait
• Mid‑block, use delayed write (bdwrite)—buffer stays in cache until needed

if(dpcmp(ip->i_size0, ip->i_size1,
u.u_offset[0], u.u_offset[1]) < 0 &&
(ip->i_mode&(IFBLK&IFCHR)) == 0) {
ip->i_size0 = u.u_offset[0];
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ip->i_size1 = u.u_offset[1];
}
ip->i_flag =| IUPD;

} while(u.u_error==0 && u.u_count!=0);
}

If the write extended the file (offset > size), update the file size.

10.10. Block Mapping: bmap()

bmap() translates a logical block number to a physical disk block:

/* subr.c */
bmap(ip, bn)
struct inode *ip;
int bn;
{

register *bp, *bap, nb;
int *nbp, d, i;

d = ip->i_dev;

if (bn & ~03777) {
u.u_error = EFBIG; /* Block number too large */
return(0);

}

Maximum file size: 03777 (octal) = 2047 blocks = ~1MB.

10.10.1. Small File Algorithm

if((ip->i_mode&ILARG) == 0) {

/*
* small file algorithm
*/

if((bn & ~7) != 0) {
/*
* convert small to large
*/
if ((bp = alloc(d)) == NULL)

return(0);
bap = bp->b_addr;
for(i=0; i<8; i++) {

*bap++ = ip->i_addr[i];
ip->i_addr[i] = 0;
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}
ip->i_addr[0] = bp->b_blkno;
bdwrite(bp);
ip->i_mode =| ILARG;
goto large;

}

For small files (ILARG not set), i_addr[0-7] are direct block pointers. This handles blocks 0‑7.

If block 8+ is requested, the file must be converted to large format:

1. Allocate an indirect block
2. Copy the 8 direct pointers into it
3. Point i_addr[0] to the indirect block
4. Set ILARG flag

nb = ip->i_addr[bn];
if(nb == 0 && (bp = alloc(d)) != NULL) {

bdwrite(bp);
nb = bp->b_blkno;
ip->i_addr[bn] = nb;
ip->i_flag =| IUPD;

}
if (bn<7)

rablock = ip->i_addr[bn+1];
else

rablock = 0;
return(nb);

}

For blocks 0‑7: return the direct pointer, allocating if necessary. Set rablock for read‑ahead.

10.10.2. Large File Algorithm

/*
* large file algorithm
*/

large:
i = bn>>8; /* Which indirect block */
if((nb=ip->i_addr[i]) == 0) {

ip->i_flag =| IUPD;
if ((bp = alloc(d)) == NULL)

return(0);
nb = bp->b_blkno;
ip->i_addr[i] = nb;

} else
bp = bread(d, nb);
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For large files, i_addr[0-7] point to indirect blocks. Each indirect block contains 256 block numbers
(512 bytes / 2 bytes per pointer).

• bn >> 8 = which indirect block (0‑7)
• bn & 0377 = index within that indirect block (0‑255)

bap = bp->b_addr;
i = bn & 0377;
if((nb=bap[i]) == 0 && (nbp = alloc(d)) != NULL) {

nb = nbp->b_blkno;
bap[i] = nb;
bdwrite(nbp);
bdwrite(bp);

} else
brelse(bp);

rablock = bap[i+1];
return(nb);

}

Look up the block in the indirect block, allocating if needed.

10.10.3. File Size Limits

Small file (ILARG=0):
i_addr[0-7] → direct blocks
Max: 8 blocks = 4KB

Large file (ILARG=1):
i_addr[0-7] → indirect blocks
Each indirect: 256 block numbers
Max: 8 × 256 = 2048 blocks = 1MB

Why two algorithms? Most UNIX files are small—configuration files, source code, shell scripts. The
small file algorithm optimizes for this common case: direct block pointers mean zero extra disk
reads to locate data. Large files are rare butmust be supported, so the indirect scheme kicks in only
when needed, adding just one extra disk read per access. This design keeps inodes compact (only
8 pointers) while still supporting files up to 1MB—a practical tradeoff for 1973 when a 2.4MB RK05
disk was the entire filesystem.

10.11. Data Transfer: iomove()

/* rdwri.c */
iomove(bp, o, an, flag)
struct buf *bp;
{
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register char *cp;
register int n, t;

n = an;
cp = bp->b_addr + o; /* Buffer address + offset */

iomove() copies data between a buffer and user space.

if(u.u_segflg==0 && ((n | cp | u.u_base)&01)==0) {
/* Fast path: user space, all aligned */
if (flag==B_WRITE)

cp = copyin(u.u_base, cp, n);
else

cp = copyout(cp, u.u_base, n);
if (cp) {

u.u_error = EFAULT;
return;

}
u.u_base =+ n;
dpadd(u.u_offset, n);
u.u_count =- n;
return;

}

Fast path: When transferring to/from user space with aligned addresses, use copyin/copyout for ef‑
ficient bulk transfer.

if (flag==B_WRITE) {
while(n--) {

if ((t = cpass()) < 0)
return;

*cp++ = t;
}

} else
while (n--)

if(passc(*cp++) < 0)
return;

}

Slow path: Byte‑by‑byte transfer using cpass() (get byte from user) and passc() (put byte to user).
Used for unaligned transfers or kernel‑space I/O.

10.11.1. passc() and cpass()

/* subr.c */
passc(c)
char c;
{
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if(u.u_segflg)
*u.u_base = c; /* Kernel space: direct */

else
if(subyte(u.u_base, c) < 0) {

u.u_error = EFAULT;
return(-1);

}
u.u_count--;
if(++u.u_offset[1] == 0)

u.u_offset[0]++; /* Handle 32-bit overflow */
u.u_base++;
return(u.u_count == 0? -1: 0);

}

cpass()
{

register c;

if(u.u_count == 0)
return(-1);

if(u.u_segflg)
c = *u.u_base; /* Kernel space: direct */

else
if((c=fubyte(u.u_base)) < 0) {

u.u_error = EFAULT;
return(-1);

}
u.u_count--;
if(++u.u_offset[1] == 0)

u.u_offset[0]++;
u.u_base++;
return(c&0377);

}

These handle the byte‑by‑byte case:

• u.u_segflg=0: User space, use subyte/fubyte (store/fetch user byte)
• u.u_segflg=1: Kernel space, direct memory access
• Update count, offset, and base pointer after each byte
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10.12. The Complete Read Path

read(fd, buf, count)
│
▼

sys2.c: read()
│ u.u_base = buf
│ u.u_count = count
│ fp = getf(fd)
│ u.u_offset = fp->f_offset
▼

rdwri.c: readi(fp->f_inode)
│
├──► Character device? → cdevsw[].d_read()
│
│ Loop for each block:
│ lbn = offset / 512
│ on = offset % 512
│ n = min(512-on, count)
│ │
│ ▼
│ subr.c: bmap(ip, lbn) → physical block
│ │
│ ▼
│ bio.c: bread(dev, block) → buffer
│ │
│ ▼
│ rdwri.c: iomove(bp, on, n, B_READ)
│ │ copyin/copyout or cpass/passc
│ ▼
│ bio.c: brelse(bp)
│
▼

Update fp->f_offset
Return bytes read in r0
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10.13. The Complete Write Path

write(fd, buf, count)
│
▼

sys2.c: write()
│ u.u_base = buf
│ u.u_count = count
│ fp = getf(fd)
│ u.u_offset = fp->f_offset
▼

rdwri.c: writei(fp->f_inode)
│
├──► Character device? → cdevsw[].d_write()
│
│ Loop for each block:
│ bn = offset / 512
│ on = offset % 512
│ n = min(512-on, count)
│ │
│ ▼
│ subr.c: bmap(ip, bn) → physical block (allocating if needed)
│ │
│ ▼
│ bio.c: bread() or getblk() → buffer
│ │
│ ▼
│ rdwri.c: iomove(bp, on, n, B_WRITE)
│ │
│ ▼
│ bio.c: bdwrite() or bawrite()
│ │
│ ▼
│ Update i_size if file grew
│
▼

Update fp->f_offset
Return bytes written in r0

10.14. Summary

• Three levels: file descriptors → open file table → inodes
• readi()/writei(): Loop over blocks, calling bmap() and iomove()
• bmap(): Translates logical to physical blocks, handles small/large files
• iomove(): Transfers data between buffers and user space
• Read‑ahead: Sequential reads trigger prefetching of the next block
• Write optimization: Full blocks don’t need to be read first
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10.15. Key Design Points

1. Separation of concerns: File descriptors handle per‑process state, file entries handle sharing, in‑
odes handle storage

2. Lazy allocation: Blocks are allocated only when written, not when the file is created or extended

3. Small file optimization: Files ≤4KB use direct blocks, avoiding indirect block overhead

4. Read‑ahead: Sequential access patterns are detected and optimized

5. Delayed writes: Data stays in cache, written later, improving performance

10.16. Experiments

1. Trace bmap(): Add printf to see small→large file conversion when writing block 8+.

2. Measure read‑ahead: Compare sequential vs random read performance.

3. Watch the file table: Print file[] to see sharing after fork() or dup().

4. Fill the file table: Open files until ENFILE, observe the limit.

10.17. Further Reading

• Chapter 9: Inodes and Superblock —Where i_addr[] comes from
• Chapter 11: Path Resolution — How files are found
• Chapter 12: Buffer Cache — The bread/bwrite layer beneath

Next: Chapter 11 — Path Resolution (namei)
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11.1. Overview

Every file operationbeginswith apathname: /etc/passwd,../foo,file.txt. Thenamei() func‑
tion translates these human‑readable paths into inode pointers the kernel can work with. It handles ab‑
solute and relative paths, traverses directories, checks permissions, crossesmount points, and supports
three modes: lookup, create, and delete.

This single function is the gateway to the entire file system.

11.2. Source Files

File Purpose

usr/sys/ken/nami.c namei(), schar(), uchar()

usr/sys/user.h Path resolution state in user structure

11.3. Prerequisites

• Chapter 9: Inodes and Superblock (iget/iput)
• Chapter 10: File I/O (directory reading)

11.4. Directory Structure

A directory is simply a file containing 16‑byte entries:

struct {
int u_ino; /* Inode number (2 bytes) */
char u_name[DIRSIZ]; /* Filename (14 bytes) */

};
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With DIRSIZ=14, filenames are limited to 14 characters. An inode number of 0 indicates an empty
(deleted) slot.

Example directory contents:

Offset Inode Name
0 1 .
16 1 ..
32 47 passwd
48 0 (empty)
64 52 group
...

11.5. The User Structure Fields

namei() uses several fields in the user structure:

/* user.h */
struct user {

...
int *u_cdir; /* Current directory inode */
char u_dbuf[DIRSIZ]; /* Component being searched */
char *u_dirp; /* Pointer into pathname */
struct {

int u_ino; /* Found entry's inode number */
char u_name[DIRSIZ]; /* Found entry's name */

} u_dent;
int *u_pdir; /* Parent directory (for create) */
...

};

Field Purpose

u_cdir Current working directory inode

u_dbuf Current path component being matched

u_dirp Pointer to next character in pathname

u_dent Last directory entry read

u_pdir Parent directory (set during create mode)

11.6. namei() Function Signature
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namei(func, flag)
int (*func)();
int flag;

func: Function to get the next pathname character ‑ &uchar— pathname is in user space ‑ &schar—
pathname is in kernel space

flag: Operationmode ‑ 0—Lookup: find existing file ‑ 1—Create: find parent directory for new file ‑ 2—
Delete: find file to be deleted

Returns: Locked inode pointer, or NULL on error

11.7. namei() Walkthrough

11.7.1. Initialization

{
register struct inode *dp;
register c;
register char *cp;
int eo, *bp;

/*
* start from indicated directory
*/
dp = u.u_cdir; /* Start at current directory */
if((c=(*func)()) == '/')

dp = rootdir; /* Absolute path: start at root */
iget(dp->i_dev, dp->i_number);
while(c == '/')

c = (*func)(); /* Skip leading/consecutive slashes */

The starting point depends on the first character:

• /etc/passwd → start at root
• foo/bar → start at current directory
• ///foo → start at root (extra slashes ignored)

iget() is called to get a locked, reference‑counted copy of the starting directory.
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11.7.2. Main Loop (cloop)

cloop:
/*
* here dp contains pointer to last component matched.
*/

if(u.u_error)
goto out;

if(c == '\0')
return(dp); /* Path exhausted: success! */

If we’ve consumed the entire path with no errors, return the current inode.

/*
* if there is another component,
* dp must be a directory and must have x permission
*/

if((dp->i_mode&IFMT) != IFDIR) {
u.u_error = ENOTDIR;
goto out;

}

if(access(dp, IEXEC))
goto out;

To traverse into a directory, it must:

1. Actually be a directory (not a regular file)
2. Have execute permission (the “search” permission for directories)

11.7.3. Parsing the Component

/*
* gather up name into users' dir buffer
*/

cp = &u.u_dbuf[0];
while(c!='/' && c!='\0' && u.u_error==0) {

if(cp < &u.u_dbuf[DIRSIZ])
*cp++ = c;

c = (*func)();
}
while(cp < &u.u_dbuf[DIRSIZ])

*cp++ = '\0'; /* Pad with nulls */
while(c == '/')

c = (*func)(); /* Skip trailing slashes */
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Extract one path component (e.g., “etc” from “/etc/passwd”) into u_dbuf. Components longer than 14
characters are silently truncated.

11.7.4. Directory Search Setup

/*
* search the directory
*/

u.u_offset[1] = 0;
u.u_offset[0] = 0;
u.u_segflg = 1; /* Reading to kernel space */
eo = 0; /* First empty slot offset */
u.u_count = ldiv(dp->i_size1, DIRSIZ+2); /* Entry count */
bp = NULL;

Prepare to scan the directory from the beginning. u_count is the number of 16‑byte entries.

11.7.5. Directory Search Loop (eloop)

eloop:
if(u.u_count == 0) {

/* Searched entire directory without finding it */
if(bp != NULL)

brelse(bp);
if(flag==1 && c=='\0') {

/* Create mode: return parent for new file */
if(access(dp, IWRITE))

goto out;
u.u_pdir = dp;
if(eo)

u.u_offset[1] = eo-DIRSIZ-2; /* Use empty slot */
else

dp->i_flag =| IUPD; /* Append to directory */
return(NULL);

}
u.u_error = ENOENT; /* File not found */
goto out;

}

When the search exhausts all entries:

• Create mode (flag==1) and at final component: Success! Return NULL with u_pdir pointing
to parent directory. The offset indicates where to write the new entry.

• Otherwise: File not found, return ENOENT.
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if((u.u_offset[1]&0777) == 0) {
/* Need to read next directory block */
if(bp != NULL)

brelse(bp);
bp = bread(dp->i_dev,

bmap(dp, ldiv(u.u_offset[1], 512)));
}

Read directory blocks as needed. Each 512‑byte block holds 32 entries.

bcopy(bp->b_addr+(u.u_offset[1]&0777), &u.u_dent, (DIRSIZ+2)/2);
u.u_offset[1] =+ DIRSIZ+2;
u.u_count--;

Copy the current 16‑byte entry into u_dent and advance.

if(u.u_dent.u_ino == 0) {
/* Empty slot - remember for create */
if(eo == 0)

eo = u.u_offset[1];
goto eloop;

}

Empty slots (inode 0) are skipped but remembered—eo records the first empty slot for potential reuse
during create.

for(cp = &u.u_dbuf[0]; cp < &u.u_dbuf[DIRSIZ]; cp++)
if(*cp != cp[u.u_dent.u_name - u.u_dbuf])

goto eloop;

Compare the entry’s name with the component we’re looking for. This is a character‑by‑character com‑
parison.

11.7.6. Match Found

if(bp != NULL)
brelse(bp);

if(flag==2 && c=='\0') {
/* Delete mode: return current directory with entry info */
if(access(dp, IWRITE))

goto out;
return(dp);

}

For delete mode (flag==2) at the final component: return the parent directory with u_dent contain‑
ing the entry to delete.
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bp = dp->i_dev;
iput(dp);
dp = iget(bp, u.u_dent.u_ino);
if(dp == NULL)

return(NULL);
goto cloop;

For lookup or intermediate components: release the current directory, get the matched inode, and con‑
tinue parsing.

11.7.7. Cleanup on Error

out:
iput(dp);
return(NULL);

}

On any error, release the current inode and return NULL.

11.8. Character Fetch Functions

11.8.1. uchar() — FromUser Space

uchar()
{

register c;

c = fubyte(u.u_dirp++);
if(c == -1)

u.u_error = EFAULT;
return(c);

}

Fetches the next character from a user‑space pathname using fubyte() (fetch user byte). Returns ‑1
on fault.

11.8.2. schar() — From Kernel Space

schar()
{

return(*u.u_dirp++ & 0377);
}
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Fetches directly from kernel memory. Used when the pathname is already in kernel space (e.g., during
exec() of /etc/init).

11.9. Usage Examples

11.9.1. open() — LookupMode

open()
{

u.u_dirp = u.u_arg[0]; /* Pathname from user */
ip = namei(&uchar, 0); /* flag=0: lookup */
if(ip == NULL)

return; /* ENOENT already set */
/* ip is the file's inode */

}

11.9.2. creat() — Create Mode

creat()
{

u.u_dirp = u.u_arg[0];
ip = namei(&uchar, 1); /* flag=1: create */
if(ip != NULL) {

/* File exists - truncate it */
...

} else if(u.u_error == 0) {
/* File doesn't exist - create it */
/* u.u_pdir = parent directory */
/* u.u_offset = where to write entry */
ip = maknode(mode);

}
}

11.9.3. unlink() — Delete Mode

unlink()
{

u.u_dirp = u.u_arg[0];
ip = namei(&uchar, 2); /* flag=2: delete */
if(ip == NULL)

return;
/* ip = parent directory */
/* u.u_dent = entry to delete */
u.u_dent.u_ino = 0; /* Clear the entry */
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writei(ip); /* Write back */
...

}

11.10. Path Resolution Examples

11.10.1. Absolute Path: /etc/passwd

namei(&uchar, 0) with u.u_dirp = "/etc/passwd"

1. c='/', dp = rootdir, iget root
2. c='e', parse "etc" into u.u_dbuf
3. Search root directory:

- Entry ".": skip
- Entry "..": skip
- Entry "etc": match! inode=5

4. iput(root), dp = iget(5)
5. c='p', parse "passwd" into u.u_dbuf
6. Search /etc directory:

- Entry ".": skip
- Entry "..": skip
- Entry "passwd": match! inode=47

7. c='\0', return inode 47

11.10.2. Relative Path: ../foo

namei(&uchar, 0) with u.u_dirp = "../foo"

1. c='.', dp = u.u_cdir (say inode 10), iget(10)
2. parse ".." into u.u_dbuf
3. Search current directory:

- Entry ".": skip
- Entry "..": match! inode=3

4. iput(10), dp = iget(3)
5. parse "foo" into u.u_dbuf
6. Search parent directory:

- Entry "foo": match! inode=25
7. c='\0', return inode 25

11.10.3. Create: /tmp/newfile

namei(&uchar, 1) with u.u_dirp = "/tmp/newfile"

1. c='/', dp = rootdir
2. parse "tmp", search root, find inode 4
3. dp = iget(4)
4. parse "newfile", search /tmp:

- Not found!
5. flag==1 and c=='\0':

- Check write permission on /tmp
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- u.u_pdir = dp (inode 4)
- u.u_offset = position for new entry
- return NULL (success!)

11.11. Mount Point Traversal

Note thatmount point handling actually happens in iget() (Chapter 9), not namei(). When iget()
finds an inodemarked IMOUNT, it automatically redirects to the mounted filesystem’s root.
/usr/include/stdio.h

where /usr is a mount point

namei traverses:

1. / (root)
2. usr → iget() sees IMOUNT, redirects to mounted fs root
3. include
4. stdio.h

11.12. Error Handling

Error Condition

ENOENT Component not found (lookup/delete mode)

ENOTDIR Intermediate component is not a directory

EACCES No search (x) permission on directory

EFAULT Bad user‑space pathname pointer

11.13. The “.” and “..” Entries

Every directory contains two special entries:
. → inode of the directory itself
.. → inode of the parent directory

For the root directory, .. points to itself. These entries are created by mkdir and are traversed by
namei() just like any other entries.

11.14. Summary

• namei() translates pathnames to inodes
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• Three modes: lookup (0), create (1), delete (2)
• Parses components left‑to‑right, searching each directory
• Checks execute permission at each directory
• Uses u_dbuf for current component, u_dent for matched entry
• Returns locked inode (or NULL with u_pdir set for create)

11.15. Key Design Points

1. Single function: One function handles all path resolution needs through the flag parameter.

2. No recursion: Iterative loop avoids stack overflow on deep paths.

3. Flexible input: Function pointer allows user‑space or kernel‑space pathnames.

4. Empty slot reuse: Tracks first empty slot during search for efficient create.

5. Atomic operation: Inode locking prevents races during create/delete.

11.16. Experiments

1. Trace path resolution: Add printf showing each component andmatched inode.

2. Deep paths: Create deeply nested directories and observe behavior.

3. Permission denied: Remove execute permission from a directory and try to traverse it.

4. Long names: Try creating files with names longer than 14 characters.

11.17. Further Reading

• Chapter 9: Inodes and Superblock — iget() andmount point handling
• Chapter 10: File I/O — How directories are read
• System calls that use namei(): open, creat, stat, unlink, link, chdir, chmod, chown

Next: Chapter 12 — The Buffer Cache
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12. Chapter 12: The Buffer Cache

12.1. Overview

The buffer cache is the kernel’s interface to block devices. Every disk read and write passes through this
layer, which maintains an in‑memory cache of recently‑used disk blocks. The cache dramatically im‑
proves performance by avoiding redundant disk I/O and provides a uniform interface that hides device‑
specific details.

This is Dennis Ritchie’s code (usr/sys/dmr/bio.c)—elegant, compact, and the foundation upon
which all file operations rest.

12.2. Source Files

File Purpose

usr/sys/buf.h Buffer structure and flags

usr/sys/dmr/bio.c Buffer cache implementation

12.3. Prerequisites

• Chapter 9: Inodes and Superblock (uses bread/bwrite)
• Chapter 10: File I/O (uses buffer cache for all I/O)

12.4. The Buffer Structure

/* buf.h */
struct buf {

int b_flags; /* Status flags */
struct buf *b_forw; /* Hash chain forward */
struct buf *b_back; /* Hash chain backward */
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struct buf *av_forw; /* Free list forward */
struct buf *av_back; /* Free list backward */
int b_dev; /* Device number */
int b_wcount; /* Word count for transfer */
char *b_addr; /* Buffer memory address */
char *b_blkno; /* Block number on device */
char b_error; /* Error code */
char *b_resid; /* Residual count after I/O */

} buf[NBUF];

Each buffer has two sets of links:

• b_forw/b_back—Hash chain (by device + block number)
• av_forw/av_back— Free list (LRU order)

With NBUF=15, the system has 15 buffers, each 514 bytes (512 data + 2 for word count).

12.4.1. Buffer Flags

#define B_WRITE 0 /* Write operation */
#define B_READ 01 /* Read operation */
#define B_DONE 02 /* I/O complete */
#define B_ERROR 04 /* Error occurred */
#define B_BUSY 010 /* Buffer in use */
#define B_XMEM 060 /* Extended memory bits */
#define B_WANTED 0100 /* Process waiting for buffer */
#define B_RELOC 0200 /* Relocatable buffer */
#define B_ASYNC 0400 /* Asynchronous I/O */
#define B_DELWRI 01000 /* Delayed write pending */

Key flags:

• B_BUSY—Buffer is allocated to someone
• B_DONE— I/O has completed (data is valid)
• B_DELWRI—Buffer has been written but not yet flushed to disk
• B_ASYNC—Don’t wait for I/O completion

12.5. Buffer Lists

12.5.1. The Hash Chains

Buffers are organized by device into hash chains:
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devtab[0] (rk0) devtab[1] (rk1) ...
+--------+ +--------+
| b_forw |──►buf──► | b_forw |──►buf──►buf──►
| b_back |◄── ◄── | b_back |◄── ◄── ◄──
+--------+ +--------+

Each device has a devtab structure serving as the list head. To find a cached block, search the appro‑
priate device’s chain.

12.5.2. The Free List

Available buffers form a doubly‑linked LRU list:

bfreelist
+----------+
| av_forw |──► oldest ──► ... ──► newest ──┐
| av_back |◄── oldest ◄── ... ◄── newest ◄─┘
+----------+

▲ │
└──────────────────────────────────┘

Buffers are taken from the front (oldest) and returned to theback (newest). This implements LRU replace‑
ment.

12.6. binit() — Initialization

/* bio.c */
binit()
{

register struct buf *bp;
register struct devtab *dp;
register int i;
struct bdevsw *bdp;

bfreelist.b_forw = bfreelist.b_back =
bfreelist.av_forw = bfreelist.av_back = &bfreelist;

Initialize the free list as an empty circular list.

for (i=0; i<NBUF; i++) {
bp = &buf[i];
bp->b_dev = -1;
bp->b_addr = buffers[i];
bp->b_back = &bfreelist;
bp->b_forw = bfreelist.b_forw;
bfreelist.b_forw->b_back = bp;
bfreelist.b_forw = bp;
bp->b_flags = B_BUSY;
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brelse(bp);
}

Link each buffer into the free list and assign its data area from the buffers array.

i = 0;
for (bdp = bdevsw; bdp->d_open; bdp++) {

dp = bdp->d_tab;
dp->b_forw = dp;
dp->b_back = dp;
i++;

}
nblkdev = i;

}

Initialize each device’s hash chain as empty.

12.7. getblk() — Get a Buffer

The heart of the buffer cache:

/* bio.c */
getblk(dev, blkno)
{

register struct buf *bp;
register struct devtab *dp;

if(dev.d_major >= nblkdev)
panic("blkdev");

loop:
if (dev < 0)

dp = &bfreelist; /* NODEV: just get any buffer */
else {

dp = bdevsw[dev.d_major].d_tab;
for (bp=dp->b_forw; bp != dp; bp = bp->b_forw) {

if (bp->b_blkno!=blkno || bp->b_dev!=dev)
continue;

Search the device’s hash chain for the requested block.

spl6(); /* Disable interrupts */
if (bp->b_flags&B_BUSY) {

bp->b_flags =| B_WANTED;
sleep(bp, PRIBIO);
spl0();
goto loop; /* Retry after wakeup */

}
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spl0();
notavail(bp); /* Remove from free list */
return(bp);

}
}

If found but busy, wait for it. If found and free, remove from free list and return.

spl6();
if (bfreelist.av_forw == &bfreelist) {

bfreelist.b_flags =| B_WANTED;
sleep(&bfreelist, PRIBIO);
spl0();
goto loop; /* Retry when buffer freed */

}
spl0();
notavail(bp = bfreelist.av_forw); /* Take oldest buffer */

If not in cache, take the oldest buffer from the free list. If the free list is empty, wait.

if (bp->b_flags & B_DELWRI) {
bp->b_flags =| B_ASYNC;
bwrite(bp); /* Flush dirty buffer */
goto loop; /* Retry with different buffer */

}

If the victim buffer has pending writes, flush it first and try again.

bp->b_flags = B_BUSY | B_RELOC;
bp->b_back->b_forw = bp->b_forw; /* Remove from old hash chain */
bp->b_forw->b_back = bp->b_back;
bp->b_forw = dp->b_forw; /* Insert in new hash chain */
bp->b_back = dp;
dp->b_forw->b_back = bp;
dp->b_forw = bp;
bp->b_dev = dev;
bp->b_blkno = blkno;
return(bp);

}

Move the buffer from its old hash chain to the new one, update device and block number.

12.8. bread() — Read a Block
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/* bio.c */
bread(dev, blkno)
{

register struct buf *rbp;

rbp = getblk(dev, blkno);
if (rbp->b_flags&B_DONE)

return(rbp); /* Already in cache! */
rbp->b_flags =| B_READ;
rbp->b_wcount = -256; /* 256 words = 512 bytes */
(*bdevsw[dev.d_major].d_strategy)(rbp);
iowait(rbp);
return(rbp);

}

1. Get a buffer for the block
2. If B_DONE is set, data is already valid—cache hit!
3. Otherwise, initiate a read through the device’s strategy routine
4. Wait for completion

The strategy routine is device‑specific (e.g., rkstrategy for the RK05 disk).

12.9. breada() — Readwith Read‑Ahead

/* bio.c */
breada(adev, blkno, rablkno)
{

register struct buf *rbp, *rabp;
register int dev;

dev = adev;
rbp = 0;
if (!incore(dev, blkno)) {

rbp = getblk(dev, blkno);
if ((rbp->b_flags&B_DONE) == 0) {

rbp->b_flags =| B_READ;
rbp->b_wcount = -256;
(*bdevsw[adev.d_major].d_strategy)(rbp);

}
}

If the requested block isn’t cached, start reading it.

if (rablkno && !incore(dev, rablkno) && raflag) {
rabp = getblk(dev, rablkno);
if (rabp->b_flags & B_DONE)

brelse(rabp);
else {
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rabp->b_flags =| B_READ|B_ASYNC;
rabp->b_wcount = -256;
(*bdevsw[adev.d_major].d_strategy)(rabp);

}
}

If a read‑ahead block is specified and not cached, start reading it asynchronously (B_ASYNC). This
means we don’t wait for it—it will be ready when needed.

if (rbp==0)
return(bread(dev, blkno)); /* Was already cached */

iowait(rbp);
return(rbp);

}

Wait for the primary block and return it. The read‑ahead block completes in the background.

12.10. incore() — Check Cache

/* bio.c */
incore(adev, blkno)
{

register int dev;
register struct buf *bp;
register struct devtab *dp;

dev = adev;
dp = bdevsw[adev.d_major].d_tab;
for (bp=dp->b_forw; bp != dp; bp = bp->b_forw)

if (bp->b_blkno==blkno && bp->b_dev==dev)
return(bp);

return(0);
}

Returns the buffer if the block is in cache, NULL otherwise. Usedbybreada() to avoid redundant I/O.

12.11. Write Operations

12.11.1. bwrite() — Synchronous Write

/* bio.c */
bwrite(bp)
struct buf *bp;
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{
register struct buf *rbp;
register flag;

rbp = bp;
flag = rbp->b_flags;
rbp->b_flags =& ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
rbp->b_wcount = -256;
(*bdevsw[rbp->b_dev.d_major].d_strategy)(rbp);
if ((flag&B_ASYNC) == 0) {

iowait(rbp);
brelse(rbp);

} else if ((flag&B_DELWRI)==0)
geterror(rbp);

}

Start the write operation. If not async, wait for completion and release the buffer.

12.11.2. bdwrite() — DelayedWrite

/* bio.c */
bdwrite(bp)
struct buf *bp;
{

register struct buf *rbp;

rbp = bp;
if (bdevsw[rbp->b_dev.d_major].d_tab == &tmtab)

bawrite(rbp); /* Magtape: no delay */
else {

rbp->b_flags =| B_DELWRI | B_DONE;
brelse(rbp);

}
}

Mark the buffer as dirty (B_DELWRI) and release it. The actual write happens later, when:

• The buffer is reclaimed by getblk()
• bflush() is called (by sync)

This batches writes for efficiency.

12.11.3. bawrite() — Asynchronous Write

/* bio.c */
bawrite(bp)
struct buf *bp;
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{
register struct buf *rbp;

rbp = bp;
rbp->b_flags =| B_ASYNC;
bwrite(rbp);

}

Start the write but don’t wait. The buffer is released when I/O completes (in iodone()).

12.12. brelse() — Release Buffer

/* bio.c */
brelse(bp)
struct buf *bp;
{

register struct buf *rbp, **backp;
register int sps;

rbp = bp;
if (rbp->b_flags&B_WANTED)

wakeup(rbp); /* Wake waiters */
if (bfreelist.b_flags&B_WANTED) {

bfreelist.b_flags =& ~B_WANTED;
wakeup(&bfreelist); /* Wake buffer-starved processes */

}
if (rbp->b_flags&B_ERROR)

rbp->b_dev.d_minor = -1; /* Disassociate on error */

Wake any processes waiting for this buffer or for any free buffer.

backp = &bfreelist.av_back;
sps = PS->int;
spl6();
rbp->b_flags =& ~(B_WANTED|B_BUSY|B_ASYNC);
(*backp)->av_forw = rbp;
rbp->av_back = *backp;
*backp = rbp;
rbp->av_forw = &bfreelist;
PS->int = sps;

}

Insert at the back of the free list (newest). The buffer remains on its hash chain—if the same block is
needed again soon, it can be found instantly.
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12.13. I/O Completion

12.13.1. iowait() —Wait for I/O

/* bio.c */
iowait(bp)
struct buf *bp;
{

register struct buf *rbp;

rbp = bp;
spl6();
while ((rbp->b_flags&B_DONE)==0)

sleep(rbp, PRIBIO);
spl0();
geterror(rbp);

}

Sleep until the device sets B_DONE, then check for errors.

12.13.2. iodone() — I/O Complete (Interrupt Handler)

/* bio.c */
iodone(bp)
struct buf *bp;
{

register struct buf *rbp;

rbp = bp;
rbp->b_flags =| B_DONE;
if (rbp->b_flags&B_ASYNC)

brelse(rbp);
else {

rbp->b_flags =& ~B_WANTED;
wakeup(rbp);

}
}

Called fromdevice interrupt handlers. SetsB_DONE and either releases the buffer (async) or wakeswait‑
ing processes.

12.14. notavail() — Remove from Free List
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/* bio.c */
notavail(bp)
struct buf *bp;
{

register struct buf *rbp;
register int sps;

rbp = bp;
sps = PS->int;
spl6();
rbp->av_back->av_forw = rbp->av_forw;
rbp->av_forw->av_back = rbp->av_back;
rbp->b_flags =| B_BUSY;
PS->int = sps;

}

Unlinks a buffer from the free list andmarks it busy. The buffer stays on its hash chain.

12.15. bflush() — Flush Dirty Buffers

/* bio.c */
bflush(dev)
{

register struct buf *bp;

loop:
spl6();
for (bp = bfreelist.av_forw; bp != &bfreelist; bp = bp->av_forw) {

if (bp->b_flags&B_DELWRI && (dev == NODEV||dev==bp->b_dev)) {
bp->b_flags =| B_ASYNC;
notavail(bp);
bwrite(bp);
goto loop;

}
}
spl0();

}

Write all dirty buffers for a device (or all devices if NODEV). Called bysync system call andupdate().

12.16. swap() — Swap I/O

/* bio.c */
swap(blkno, coreaddr, count, rdflg)
{
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register int *fp;

fp = &swbuf.b_flags;
spl6();
while (*fp&B_BUSY) {

*fp =| B_WANTED;
sleep(fp, PSWP);

}
*fp = B_BUSY | rdflg | (coreaddr>>6)&B_XMEM;
swbuf.b_dev = swapdev;
swbuf.b_wcount = - (count<<5);
swbuf.b_blkno = blkno;
swbuf.b_addr = coreaddr<<6;
(*bdevsw[swapdev>>8].d_strategy)(&swbuf);
spl6();
while((*fp&B_DONE)==0)

sleep(fp, PSWP);
if (*fp&B_WANTED)

wakeup(fp);
spl0();
*fp =& ~(B_BUSY|B_WANTED);
return(*fp&B_ERROR);

}

Special buffer (swbuf) for swap I/O. Bypasses the normal cache since swapped pages don’t need
caching—they’re only read once when needed.

12.17. The Device Strategy Interface

The buffer cache calls device drivers through the strategy routine:

(*bdevsw[dev.d_major].d_strategy)(bp);

The driver queues the request, starts the device if idle, and returns immediately. When I/O completes,
the device interrupt handler calls iodone(bp).
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12.18. Complete Read Flow

read(fd, buf, 512)
│
▼

readi() ────► bmap() → block number
│
▼

bread(dev, blkno)
│
├──► getblk() ────► Found in cache with B_DONE?
│ │
│ Yes │ No
│ │ │
│ ▼ ▼
│ return Call driver strategy
│ │
│ ▼
│ iowait()
│ │
│ ▼
│ [Device interrupt]
│ │
│ ▼
│ iodone()
│ │
▼ ▼

iomove() ◄─────────────── return buffer
│
▼

brelse()

12.19. Summary

• 15 buffers cache recent disk blocks
• Hash chains enable fast lookup by device + block
• Free list implements LRU replacement
• Delayed write batches writes for efficiency
• Read‑ahead prefetches sequential blocks
• Strategy interface abstracts device differences

12.20. Key Design Points

1. Unified interface: All block I/O goes through bread/bwrite, hiding device complexity.

2. Double linking: Each buffer is on both a hash chain (for lookup) and the free list (for allocation).

3. Lazy writes: bdwrite() defers writing, improving performance for multiple writes to the same
block.
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4. Asynchronous I/O: B_ASYNC allows the CPU to continue while I/O proceeds.

5. LRU replacement: Most recently used blocks stay cached longest.

6. Cache coherence: A block can only be in one buffer—no stale copies.

12.21. Experiments

1. Cache hit rate: Count B_DONE hits in bread() vs disk reads.

2. Buffer starvation: Reduce NBUF and observe performance degradation.

3. Delayed write timing: Track how long B_DELWRI buffers stay dirty before flush.

4. Read‑ahead effectiveness: Compare performance with raflag=0 vs raflag=1.

12.22. Further Reading

• Chapter 14: Block Devices — Device drivers and strategy routines
• Chapter 9: Inodes and Superblock — How the file system uses the cache
• Chapter 10: File I/O — The higher‑level I/O functions

Part III Complete! Next: Part IV — Device Drivers
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Part IV.

Device Drivers
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13. Chapter 13: The TTY Subsystem

13.1. Overview

In 1973, users interacted with UNIX through teletypes—electromechanical terminals that typed charac‑
ters onpaper. TheTTY subsystemhandles all this terminal I/O: echoing characters, processingbackspace
and line‑kill, converting between uppercase and lowercase, expanding tabs, generating signals for inter‑
rupt and quit, andmanaging output flow control.

This is surprisingly complex code because it must handle the mismatch between human typing speeds
and computer processing, while providing a pleasant interactive experience.

13.2. Source Files

File Purpose

usr/sys/tty.h TTY structure and constants

usr/sys/dmr/tty.c Common TTY routines

usr/sys/dmr/kl.c KL‑11 console driver

13.3. Prerequisites

• Chapter 10: File I/O (passc, cpass)
• Character device interface basics
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13.4. The TTY Structure

/* tty.h */
struct tty {

struct clist t_rawq; /* Raw input queue */
struct clist t_canq; /* Canonical input queue */
struct clist t_outq; /* Output queue */
int t_flags; /* Mode flags */
int *t_addr; /* Device register address */
char t_delct; /* Delimiter count (completed lines) */
char t_col; /* Current column position */
char t_intrup; /* Interrupt character */
char t_quit; /* Quit character */
char t_state; /* State flags */
char t_char; /* (unused) */
int t_speeds; /* Baud rate encoding */

};

13.4.1. The Three Queues

Keyboard
│
▼

┌────────────┐ canon() ┌────────────┐ read() User
│ t_rawq │──────────────►│ t_canq │────────────► Process
│ (raw input)│ │ (canonical)│
└────────────┘ └────────────┘

User ┌────────────┐ interrupt Terminal
Process ────────────────────►│ t_outq │─────────────► Screen

write() │ (output) │
└────────────┘

t_rawq (raw queue): Characters as they arrive from the keyboard, before any editing.

t_canq (canonical queue): Completed, edited lines ready for the application.

t_outq (output queue): Characters waiting to be displayed.

What is canonicalization? The canon() function transforms raw input into “canonical” form—a
complete, edited line. This means processing backspace (erase the previous character), kill (erase
theentire line), and recognizingend‑of‑line (newlineor EOT). The termcomes from“canonical form”
in mathematics: a standard, simplified representation. In UNIX, canonical input is line‑buffered,
edited text ready for applications that expect to read complete lines, as opposed to raw input which
is character‑by‑character with no editing.
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13.4.2. Character Lists (clist)

struct clist {
int c_cc; /* Character count */
int c_cf; /* First cblock pointer */
int c_cl; /* Last cblock pointer */

};

struct cblock {
struct cblock *c_next;
char info[6]; /* 6 characters per block */

};

Characters are stored in linked lists of 6‑character blocks. This allows queues to grow and shrink dynam‑
ically without large fixed buffers.

13.5. Mode Flags

/* tty.h */
#define RAW 040 /* No processing, raw I/O */
#define ECHO 010 /* Echo input characters */
#define LCASE 04 /* Map uppercase to lowercase */
#define CRMOD 020 /* Map CR to NL on input, NL to CR+NL on output */
#define XTABS 02 /* Expand tabs to spaces */
#define NODELAY 01 /* No output delays */

RAWmode: Characters pass through unprocessed—no line editing, no signals, no echo. Used by screen
editors and games.

Cooked mode (default): Full line editing with backspace (#) and line‑kill (@), signal generation, and
echo.

13.6. State Flags

#define ISOPEN 04 /* Device is open */
#define WOPEN 02 /* Waiting for open (modem) */
#define CARR_ON 020 /* Carrier present (modem connected) */
#define BUSY 040 /* Output in progress */
#define TIMEOUT 01 /* Delay in progress */
#define SSTART 010 /* Use special start routine */

Briam Rodriguez 165 165



20260116.002 Edition

13.7. Special Characters

#define CERASE '#' /* Erase one character */
#define CKILL '@' /* Kill entire line */
#define CEOT 004 /* End of file (Ctrl-D) */

The quit character (Ctrl-\) and interrupt character (DEL) are stored in the tty structure and can be
changed per‑terminal.

13.8. cinit() — Initialize Character Lists

/* tty.c */
cinit()
{

register int ccp;
register struct cblock *cp;
register struct cdevsw *cdp;

ccp = cfree;
for (cp=(ccp+07)&~07; cp <= &cfree[NCLIST-1]; cp++) {

cp->c_next = cfreelist;
cfreelist = cp;

}
ccp = 0;
for(cdp = cdevsw; cdp->d_open; cdp++)

ccp++;
nchrdev = ccp;

}

Links all cblocks into the free list and counts character devices.

13.9. Input Path

13.9.1. ttyinput() — Receive a Character

Called from the device interrupt handler when a character arrives:

/* tty.c */
ttyinput(ac, atp)
struct tty *atp;
{

register int t_flags, c;
register struct tty *tp;
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tp = atp;
c = ac;
t_flags = tp->t_flags;

if ((c =& 0177) == '\r' && t_flags&CRMOD)
c = '\n';

Strip to 7 bits. If CRMOD is set, convert carriage return to newline.

if ((t_flags&RAW)==0 && (c==tp->t_quit || c==tp->t_intrup)) {
signal(tp, c==tp->t_intrup? SIGINT:SIGQIT);
flushtty(tp);
return;

}

In cooked mode, check for interrupt (DEL) or quit (Ctrl-\). Send the appropriate signal and flush all
queues.

if (tp->t_rawq.c_cc>=TTYHOG) {
flushtty(tp);
return;

}

Prevent buffer overflow—if raw queue exceeds TTYHOG (256), flush everything.

if (t_flags&LCASE && c>='A' && c<='Z')
c =+ 'a'-'A';

putc(c, &tp->t_rawq);

Convert uppercase to lowercase if LCASEmode. Add character to raw queue.

if (t_flags&RAW || c=='\n' || c==004) {
wakeup(&tp->t_rawq);
if (putc(0377, &tp->t_rawq)==0)

tp->t_delct++;
}

In RAWmode, or when a line delimiter arrives (newline or Ctrl‑D), wake up any process waiting for input.
The 0377 character marks the end of a line; t_delct counts complete lines.

if (t_flags&ECHO) {
ttyoutput(c, tp);
ttstart(tp);

}
}

If ECHO is enabled, send the character to output.
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13.9.2. canon() — Canonicalize Input

Converts raw input to edited, canonical form:

/* tty.c */
canon(atp)
struct tty *atp;
{

register char *bp;
char *bp1;
register struct tty *tp;
register int c;

tp = atp;
spl5();
while (tp->t_delct==0) {

if ((tp->t_state&CARR_ON)==0)
return(0); /* Carrier lost */

sleep(&tp->t_rawq, TTIPRI);
}
spl0();

Wait until at least one complete line is available (t_delct > 0).

loop:
bp = &canonb[2];
while ((c=getc(&tp->t_rawq)) >= 0) {

if (c==0377) {
tp->t_delct--;
break; /* End of line */

}

Read characters from raw queue until the delimiter (0377).

if ((tp->t_flags&RAW)==0) {
if (bp[-1]!='\\') {

if (c==CERASE) {
if (bp > &canonb[2])

bp--;
continue;

}
if (c==CKILL)

goto loop; /* Start over */
if (c==CEOT)

continue; /* Ignore Ctrl-D itself */
}
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Why octal? The delimiter 0377 is 255 decimal (0xFF hex). PDP‑11 programmers used octal because
the machine’s architecture favored it: registers are numbered 0‑7 (3 bits), instruction fields are 3
bits wide, and the front panel switches were grouped in threes. You could read MOV R1,R2 di‑
rectly from its encoding 010102. DEC’s earlier 12‑bit machines (PDP‑8) divided perfectly into 4 oc‑
tal digits, establishing the convention. Hexadecimal dominance came later with 8‑bit byte‑oriented
architectures.

Process editing characters:

• # (CERASE): Back up one character
• @ (CKILL): Discard entire line, start over
• Ctrl-D (CEOT): Mark end of file but don’t include in output

} else
if (maptab[c] && (maptab[c]==c || (tp->t_flags&LCASE))) {

if (bp[-2] != '\\')
c = maptab[c];

bp--;
}

}
*bp++ = c;
if (bp>=canonb+CANBSIZ)

break;
}

Handle escape sequences: \{ becomes {, \| becomes |, etc. This allows typing special characters on
terminals that lack them.

bp1 = bp;
bp = &canonb[2];
c = &tp->t_canq;
while (bp<bp1)

putc(*bp++, c);
return(1);

}

Copy the edited line to the canonical queue.

13.9.3. ttread() — Read from TTY

/* tty.c */
ttread(atp)
struct tty *atp;
{

register struct tty *tp;
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tp = atp;
if (tp->t_canq.c_cc || canon(tp))

while (tp->t_canq.c_cc && passc(getc(&tp->t_canq))>=0);
}

If the canonical queue has characters, or canon() can produce some, transfer them to the user’s buffer
via passc().

13.10. Output Path

13.10.1. ttyoutput() — Process Output Character

/* tty.c */
ttyoutput(ac, tp)
struct tty *tp;
{

register int c;
register struct tty *rtp;
register char *colp;
int ctype;

rtp = tp;
c = ac&0177;

if (c==004 && (rtp->t_flags&RAW)==0)
return; /* Suppress Ctrl-D in cooked mode */

if (c=='\t' && rtp->t_flags&XTABS) {
do

ttyoutput(' ', rtp);
while (rtp->t_col&07);
return;

}

Expand tabs to spaces if XTABS is set.

if (rtp->t_flags&LCASE) {
switch (c) {
case '{':

c = '(';
goto esc;

case '}':
c = ')';
goto esc;

case '|':
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c = '!';
goto esc;

case '~':
c = '^';
goto esc;

case '`':
c = '\'';

esc:
ttyoutput('\\', rtp);

}
if ('a'<=c && c<='z')

c =+ 'A' - 'a'; /* Convert to uppercase */
}

For uppercase‑only terminals (LCASE), convert lowercase to uppercase and escape special characters.

if (c=='\n' && rtp->t_flags&CRMOD)
ttyoutput('\r', rtp);

if (putc(c, &rtp->t_outq))
return;

Add carriage return before newline if CRMOD. Put character on output queue.

colp = &rtp->t_col;
ctype = partab[c];
c = 0;
switch (ctype&077) {

case 0: /* ordinary */
(*colp)++;
break;

case 1: /* non-printing */
break;

case 2: /* backspace */
if (*colp)

(*colp)--;
break;

case 3: /* newline */
if (*colp)

c = max((*colp>>4) + 3, 6);
*colp = 0;
break;

case 4: /* tab */
*colp =| 07;
(*colp)++;
break;

case 6: /* carriage return */
c = 6;
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*colp = 0;
}
if (c && (rtp->t_flags&NODELAY)==0)

putc(c|0200, &rtp->t_outq);
}

Track column position and insert delays. Mechanical terminals need time for:

• Carriage return (6 character times)
• Newline (depends on column position)
• Tab (depends on position)

Delay characters have bit 0200 set.

13.10.2. ttwrite() —Write to TTY

/* tty.c */
ttwrite(atp)
struct tty *atp;
{

register struct tty *tp;
register int c;

tp = atp;
while ((c=cpass())>=0) {

spl5();
while (tp->t_outq.c_cc > TTHIWAT) {

ttstart(tp);
sleep(&tp->t_outq, TTOPRI);

}
spl0();
ttyoutput(c, tp);

}
ttstart(tp);

}

Get characters from user space via cpass(). If the output queue exceeds TTHIWAT (50 chars), sleep
until it drains to TTLOWAT (30). This provides flow control.

13.10.3. ttstart() — Start Output

/* tty.c */
ttstart(atp)
struct tty *atp;
{

register int *addr, c;
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register struct tty *tp;

tp = atp;
addr = tp->t_addr;
if (tp->t_state&SSTART) {

(*addr.func)(tp); /* Special start routine */
return;

}
if ((addr->tttcsr&DONE)==0 || tp->t_state&TIMEOUT)

return; /* Device busy or delay pending */

if ((c=getc(&tp->t_outq)) >= 0) {
if (c<=0177)

addr->tttbuf = c | (partab[c]&0200);
else {

timeout(ttrstrt, tp, c&0177);
tp->t_state =| TIMEOUT;

}
}

}

Get a character from the output queue. If it’s a real character (≤0177), send it to the device with parity. If
it’s a delay (>0177), set a timeout.

13.11. The KL‑11 Console Driver

The KL‑11 is the console terminal interface:

13.11.1. klopen() — Open Console

/* kl.c */
klopen(dev, flag)
{

register *addr;
register struct tty *tp;

if(dev.d_minor >= NKL11) {
u.u_error = ENXIO;
return;

}
tp = &kl11[dev.d_minor];
tp->t_quit = 034; /* Ctrl-\ */
tp->t_intrup = 0177; /* DEL */

Set default control characters.
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if (u.u_procp->p_ttyp == 0)
u.u_procp->p_ttyp = tp;

If process has no controlling terminal, this becomes it.

addr = KLADDR;
if(dev.d_minor)

addr = KLBASE-8 + 8*dev.d_minor;
tp->t_addr = addr;
tp->t_flags = XTABS|LCASE|ECHO|CRMOD;
tp->t_state = CARR_ON;
addr->klrcsr =| IENABLE|DSRDY|RDRENB;
addr->kltcsr =| IENABLE;

}

Set device address, default flags, and enable interrupts.

13.11.2. klrint() — Receive Interrupt

/* kl.c */
klrint(dev)
{

register int c, *addr;
register struct tty *tp;

tp = &kl11[dev.d_minor];
addr = tp->t_addr;
c = addr->klrbuf;
addr->klrcsr =| RDRENB; /* Re-enable receiver */
if ((c&0177)==0)

addr->kltbuf = c; /* Hardware botch workaround */
ttyinput(c, tp);

}

Read character from device, re‑enable receiver, pass to ttyinput().

13.11.3. klxint() — Transmit Interrupt

/* kl.c */
klxint(dev)
{

register struct tty *tp;

tp = &kl11[dev.d_minor];
ttstart(tp);
if (tp->t_outq.c_cc == 0 || tp->t_outq.c_cc == TTLOWAT)

wakeup(&tp->t_outq);
}
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Transmit complete—start next character and wake writers if queue has drained.

13.11.4. klsgtty() — Get/Set TTY Parameters

/* kl.c */
klsgtty(dev, v)
int *v;
{

register struct tty *tp;

tp = &kl11[dev.d_minor];
if (v)

v[2] = tp->t_flags; /* Get: return flags */
else {

wflushtty(tp);
tp->t_flags = u.u_arg[2]; /* Set: change flags */

}
}

Used by stty and gtty system calls.

13.12. Flow Control

Output Queue Level

50 +-- TTHIWAT -- ttwrite() sleeps
|

30 +-- TTLOWAT -- klxint() wakes writers
|

0 +-- Empty

When the output queue exceeds 50 characters, writers sleep. When it drops to 30 or below, they’re awak‑
ened. This prevents fast writers from flooding slow terminals.

13.13. Uppercase‑Only Terminals

Many early terminals only had uppercase letters. LCASEmode provides bidirectional mapping:

Input: HELLO → hello

Output: hello → HELLO, { → \(, } → ), etc.

The maptab[] array handles escape sequences like \{ → {.
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13.14. Signal Generation

if ((t_flags&RAW)==0 && (c==tp->t_quit || c==tp->t_intrup)) {
signal(tp, c==tp->t_intrup? SIGINT:SIGQIT);
flushtty(tp);
return;

}

In cookedmode:

• DEL (0177) → SIGINT (interrupt)
• Ctrl-\ (034) → SIGQIT (quit with core dump)

The signal() function sends the signal to all processes with this controlling terminal.

13.15. Summary

• Three queues: raw (unedited), canonical (edited), output
• Cookedmode: Line editing, echo, signal generation
• Rawmode: Unprocessed I/O for special applications
• Flow control: TTHIWAT/TTLOWAT prevent output flooding
• Delays: Mechanical timing for print headmovement
• LCASE: Support for uppercase‑only terminals

13.16. Key Design Points

1. Interrupt‑driven: Characters processed in interrupt handlers, minimal latency.

2. Queue‑based: Decouples user processes from hardware timing.

3. Modal: RAW vs cookedmode serves different application needs.

4. Device‑independent: Common code in tty.c, device‑specific in kl.c.

5. Character blocks: Dynamic allocation avoids fixed buffer sizes.

13.17. Experiments

1. RAWmode: Write a program that reads single characters without echo.

2. Change control characters: Use stty to change erase from # to backspace.
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3. Overflow behavior: Sendmore than TTYHOG characters without newlines.

4. Flow control: Write rapidly to a slow terminal and observe sleeping.

13.18. Further Reading

• Chapter 14: Block Devices — Contrasts with character device model
• Chapter 7: Traps and System Calls — Signal delivery mechanism

Next: Chapter 14 — Block Devices
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14. Chapter 14: Block Devices

14.1. Overview

Block devices transfer data in fixed‑size blocks (512 bytes in UNIX v4) and support random access. The
primary block device is the disk—the RK05 cartridge disk that holds 2.38 MiB on a removable pack. Block
devices go through the buffer cache, providing caching and a uniform interface that hides the complexity
of disk geometry and timing.

This chapter examines the RK05 disk driver as a case study in block device implementation.

14.2. Source Files

File Purpose

usr/sys/conf.h Device switch tables

usr/sys/dmr/rk.c RK05 disk driver

usr/sys/dmr/bio.c Buffer I/O interface

14.3. Prerequisites

• Chapter 12: Buffer Cache (bread, bwrite, strategy interface)

14.4. The Block Device Switch

/* conf.h */
struct bdevsw {

int (*d_open)(); /* Open device */
int (*d_close)(); /* Close device */
int (*d_strategy)(); /* Queue I/O request */
int *d_tab; /* Device queue table */

} bdevsw[];

178



20260116.002 Edition

Every block device provides these four entry points. The d_strategy routine is the key—it accepts
buffer requests and handles all I/O.

Example configuration:

/* conf/c.c */
struct bdevsw bdevsw[] {

&nulldev, &nulldev, &rkstrategy, &rktab, /* 0 = rk */
&nulldev, &nulldev, &tmstrategy, &tmtab, /* 1 = tm (tape) */
0

};

14.5. Device Numbers

/* conf.h */
struct {

char d_minor; /* Unit number within device type */
char d_major; /* Index into bdevsw[] */

};

A device number encodes:

• Major number: Which driver (0=rk, 1=tm, etc.)
• Minor number: Which unit or partition

For example, device 0407 = major 04, minor 07 = RK disk, unit 7.

14.6. The RK05 Disk

The RK05 is a cartridge disk:

• Capacity: 2.38 MiB per pack
• Geometry: 203 cylinders × 2 surfaces × 12 sectors
• Block size: 512 bytes (256 words)
• Total blocks: 4,872 per disk

┌─────────────────────┐
│ RK05 Drive │
│ ┌───────────────┐ │
│ │ Removable │ │
│ │ Cartridge │ │
│ │ 2.38 MiB │ │
│ └───────────────┘ │
└─────────────────────┘
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14.6.1. Hardware Registers

#define RKADDR 0177400 /* Base address */

struct {
int rkds; /* Drive status */
int rker; /* Error register */
int rkcs; /* Control/status */
int rkwc; /* Word count */
int rkba; /* Bus address */
int rkda; /* Disk address */

};

The disk address register encodes cylinder, surface, and sector:

rkda = (drive << 13) | (cylinder << 4) | sector

14.7. rkstrategy() — Queue a Request

The strategy routine is called by the buffer cache to perform I/O:

/* rk.c */
rkstrategy(abp)
struct buf *abp;
{

register struct buf *bp;
register *qc, *ql;
int d;

bp = abp;
d = bp->b_dev.d_minor-7;
if(d <= 0)

d = 1;
if (bp->b_blkno >= NRKBLK*d) {

bp->b_flags =| B_ERROR;
iodone(bp);
return;

}

Validate the block number. If it’s beyond the disk capacity, return an error immediately.

bp->av_forw = 0;
bp->b_flags =& ~B_SEEK;
if(bp->b_dev.d_minor < 8)

d = bp->b_dev.d_minor;
else

d = lrem(bp->b_blkno, d);

Determine which physical drive this request is for.
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spl5();
if ((ql = *(qc = &rk_q[d])) == NULL) {

*qc = bp;
if (RKADDR->rkcs&CTLRDY)

rkstart();
goto ret;

}

If the drive’s queue is empty, add this request and start I/O if the controller is ready.

while ((qc = ql->av_forw) != NULL) {
if (ql->b_blkno<bp->b_blkno
&& bp->b_blkno<qc->b_blkno
|| ql->b_blkno>bp->b_blkno
&& bp->b_blkno>qc->b_blkno) {

ql->av_forw = bp;
bp->av_forw = qc;
goto ret;

}
ql = qc;

}
ql->av_forw = bp;

ret:
spl0();

}

Elevator algorithm: Insert the request in sorted order by block number. This minimizes seek time by
processing requests in the direction the head is moving, like an elevator.

The Elevator Algorithm in CS History. Also known as SCAN, the elevator algorithm is one of the
foundational disk scheduling algorithms. The name comes from its behavior: like an elevator, the
disk head services requests in one direction until exhausted, then reverses. First‑come‑first‑served
(FCFS) scheduling causes the head to thrash wildly across the platter; elevator ordering dramati‑
cally reduces average seek time. Variants include C‑SCAN (circular scan, always sweeping in one
direction) and LOOK (reversing at the last request rather than the disk edge). With the rise of SSDs—
which have no mechanical seek time—elevator scheduling became irrelevant for flash storage, but
it remains essential for understanding I/O scheduling principles and is still used in systems with
rotational media.
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14.8. rkstart() — Initiate Seeks

/* rk.c */
rkstart()
{

register struct buf *bp;
register int *qp;

for (qp = rk_q; qp < &rk_q[NRK];) {
if ((bp = *qp++) && (bp->b_flags&B_SEEK)==0) {

RKADDR->rkda = rkaddr(bp);
rkcommand(IENABLE|SEEK|GO);
if (RKADDR->rkcs<0) {

bp->b_flags =| B_ERROR;
*--qp = bp->av_forw;
iodone(bp);
rkerror();

} else
bp->b_flags =| B_SEEK;

}
}

}

Overlapped seeks: Start seeks on all drives that have pending requests. While one drive is seeking, an‑
other can be transferring data. The RK11 controller supports this parallelism.

14.9. rkaddr() — Compute Disk Address

/* rk.c */
rkaddr(bp)
struct buf *bp;
{

register struct buf *p;
register int b;
int d, m;

p = bp;
b = p->b_blkno;
m = p->b_dev.d_minor - 7;
if(m <= 0)

d = p->b_dev.d_minor;
else {

d = lrem(b, m);
b = ldiv(b, m);

}
return(d<<13 | (b/12)<<4 | b%12);

}

Converts a linear block number to RK05 physical address:
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• Sector = block % 12
• Cylinder = block / 12
• Pack into: (drive << 13) | (cylinder << 4) | sector

14.10. rkintr() — Interrupt Handler

/* rk.c */
rkintr()
{

register struct buf *bp;

if (RKADDR->rkcs < 0) {
if (RKADDR->rker&WLO || ++rktab.d_errcnt>10)

rkpost(B_ERROR);
rkerror();

}

Check for errors. Write‑lock errors are fatal; others retry up to 10 times.

if (RKADDR->rkcs&SEEKCMP) {
rk_ap = &rk_q[(RKADDR->rkds>>13) & 07];
devstart(*rk_ap, &RKADDR->rkda, rkaddr(*rk_ap), 0);

} else
rkpost(0);

}

Two types of interrupts:

1. Seek complete (SEEKCMP): Start the data transfer using devstart()
2. Transfer complete: Call rkpost() to finish up

14.11. devstart() — Start Data Transfer

/* bio.c */
devstart(bp, devloc, devblk, hbcom)
struct buf *bp;
int *devloc;
{

register int *dp;
register struct buf *rbp;
register int com;

dp = devloc;
rbp = bp;
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*dp = devblk; /* Block address */
*--dp = rbp->b_addr; /* Buffer address */
*--dp = rbp->b_wcount; /* Word count */
com = (hbcom<<8) | IENABLE | GO | rbp->b_flags&B_XMEM;
if (rbp->b_flags&B_READ)

com =| RCOM;
else

com =| WCOM;
*--dp = com;

}

Programs the device registers and starts the transfer. The PDP‑11 DMA controller handles the actual data
movement.

14.12. rkpost() — Complete I/O

/* rk.c */
rkpost(errbit)
{

register struct buf *bp;

if (rk_ap) {
bp = *rk_ap;
bp->b_flags =| B_DONE | errbit;
*rk_ap = bp->av_forw;
rk_ap = NULL;
iodone(bp);
rktab.d_errcnt = 0;
rkstart();

}
}

Mark the buffer done, remove from queue, call iodone() to wake waiting processes, and start the next
request.

14.13. Raw I/O: rkread() and rkwrite()

/* rk.c */
rkread(dev)
{

physio(rkstrategy, &rrkbuf, dev, B_READ);
}

rkwrite(dev)
{

Briam Rodriguez 184 184



20260116.002 Edition

physio(rkstrategy, &rrkbuf, dev, B_WRITE);
}

Raw (character) device interface bypasses the buffer cache, transferring directly to/from user memory.
Uses physio() from bio.c.

14.14. physio() — Physical I/O

/* bio.c */
physio(strat, abp, dev, rw)
struct buf *abp;
int (*strat)();
{

register struct buf *bp;
register char *base;
register int nb;

bp = abp;
base = u.u_base;
/* Validate user buffer address */
if (base&01 || u.u_count&01 || base>=base+u.u_count)

goto bad;

Check alignment and bounds.

spl6();
while (bp->b_flags&B_BUSY) {

bp->b_flags =| B_WANTED;
sleep(bp, PRIBIO);

}
bp->b_flags = B_BUSY | rw;
bp->b_dev = dev;
/* Set up transfer parameters */
bp->b_blkno = lshift(u.u_offset, -9);
bp->b_wcount = -(u.u_count>>1);

Wait for the raw buffer, then set it up for transfer.

u.u_procp->p_flag =| SLOCK;
(*strat)(bp);
spl6();
while ((bp->b_flags&B_DONE) == 0)

sleep(bp, PRIBIO);
u.u_procp->p_flag =& ~SLOCK;

Lock process in memory (can’t swap during DMA!), call strategy, wait for completion.
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14.15. I/O Flow Summary

14.15.1. Buffered Read

bread(dev, blkno)
│
▼

getblk() → buffer
│
▼

B_DONE set? ───Yes──► return (cache hit)
│
No
▼

rkstrategy(bp)
│
├──► Insert in queue (elevator order)
│
└──► rkstart() if idle

│
▼

SEEK command
│

[seek interrupt]
│
▼

devstart()
│

[transfer interrupt]
│
▼

rkpost() → iodone()
│
▼

wakeup(bp)
│
▼

iowait() returns
│
▼

return buffer
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14.15.2. Raw Read

read(/dev/rrk0, buf, count)
│
▼

rkread(dev)
│
▼

physio(rkstrategy, &rrkbuf, dev, B_READ)
│
├──► Lock process in memory
│
├──► rkstrategy(bp)
│ │
│ [same as buffered]
│ │
▼ ▼

sleep until B_DONE
│
▼

Unlock process
│
▼

Return to user

14.16. Error Handling

rkerror()
{

register int *qp;
register struct buf *bp;

rkcommand(IENABLE|RESET|GO);
for (qp = rk_q; qp < &rk_q[NRK];)

if ((bp = *qp++) != NULL && bp->b_flags&B_SEEK) {
RKADDR->rkda = rkaddr(bp);
while ((RKADDR->rkds&(DRY|ARDY)) == DRY);
rkcommand(IENABLE|DRESET|GO);

}
}

On error: reset controller, recalibrate all drives that were seeking. The strategy routine will retry up to 10
times before giving up.
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14.17. Multiple Drives

rk_q[0] rk_q[1] rk_q[2] rk_q[3]
┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐
│ bp │ │ bp │ │NULL │ │ bp │
└─────┘ └─────┘ └─────┘ └─────┘

│ │ │
▼ ▼ ▼

┌──────┐ ┌──────┐ ┌──────┐
│ blk │ │ blk │ │ blk │
│ 47 │ │ 102 │ │ 891 │
└──────┘ └──────┘ └──────┘

│ │
▼ ▼

┌──────┐ ┌──────┐
│ blk │ │ blk │
│ 156 │ │ 340 │
└──────┘ └──────┘

Each drive has its own queue. Seeks can overlap across drives—while drive 0 seeks to cylinder 47, drive
1 can be transferring block 102.

14.18. Summary

• Strategy routine: Main entry point, queues requests
• Elevator algorithm: Minimizes seek time
• Overlapped seeks: Multiple drives seek simultaneously
• Interrupt‑driven: CPU free during disk operations
• Error retry: Automatic recovery from transient errors
• Raw I/O: Bypasses cache for special applications

14.19. Key Design Points

1. Asynchronous: rkstrategy() returns immediately; completion via interrupt.

2. Queueing: Requests accumulate and are processed optimally.

3. Parallelism: Controller handles seeks onmultiple drives.

4. Abstraction: Buffer cache sees only strategy()—no geometry details.

5. DMA: Data moves without CPU involvement.

14.20. Experiments

1. Trace seeks: Add printf to see elevator ordering in action.
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2. Measure throughput: Compare sequential vs random block access.

3. Force errors: Observe retry behavior with a bad block.

4. Raw vs buffered: Compare performance for large sequential reads.

14.21. Further Reading

• Chapter 12: Buffer Cache — The interface above block devices
• Chapter 13: TTY Subsystem— Contrasts character device model
• Chapter 15: Character Devices — Non‑block device patterns

Next: Chapter 15 — Character Devices
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15. Chapter 15: Character Devices

15.1. Overview

Character devices transfer data byte‑by‑byte without buffering through the block cache. They include
terminals (Chapter 13), but also pseudo‑devices like /dev/null and /dev/mem. Unlike block devices
that hide behind the buffer cache, character devices interact directly with user processes through their
read and write routines.

This chapter examines thememory pseudo‑devices—elegant examples of the character devicemodel.

15.2. Source Files

File Purpose

usr/sys/conf.h Device switch tables

usr/sys/dmr/mem.c Memory devices

15.3. Prerequisites

• Chapter 10: File I/O (passc, cpass, u.u_offset)
• Chapter 13: TTY Subsystem (character device example)
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15.4. The Character Device Switch

/* conf.h */
struct cdevsw {

int (*d_open)(); /* Open device */
int (*d_close)(); /* Close device */
int (*d_read)(); /* Read from device */
int (*d_write)(); /* Write to device */
int (*d_sgtty)(); /* Get/set TTY parameters */

} cdevsw[];

Character devices provide five entry points. The d_sgtty routine is optional—only terminals use it.

Example configuration:

/* conf/c.c */
struct cdevsw cdevsw[] {

&klopen, &klclose, &klread, &klwrite, &klsgtty, /* 0 = console */
&nulldev,&nulldev, &mmread, &mmwrite, &nodev, /* 1 = mem */
0

};

Why “switch”? The term “switch” in cdevsw doesn’t mean a toggle—it refers to a dispatch table,
like aswitch statement in C.When the kernel needs to performanoperation on a character device,
it uses the major device number as an index into cdevsw and “switches” to the appropriate driver
function: (*cdevsw[major].d_read)(dev). It’s a jump table that routes calls to the right
driver.

15.5. Block vs Character Devices

Aspect Block Device Character Device

Data unit 512‑byte blocks Bytes

Buffering Through buffer cache Direct or driver‑managed

Access Random (any block) Sequential typical

Interface strategy() read(), write()

Examples Disks, tapes Terminals, /dev/null

Many devices have both interfaces:

• /dev/rk0—Block device (buffered)
• /dev/rrk0—Character device (raw, unbuffered)

Briam Rodriguez 191 191



20260116.002 Edition

15.6. The Memory Devices

/*
* Memory special file
* minor device 0 is physical memory
* minor device 1 is kernel memory
* minor device 2 is EOF/RATHOLE
*/

Three pseudo‑devices in one driver:

• /dev/mem (minor 0) — Physical memory
• /dev/kmem (minor 1) — Kernel virtual memory
• /dev/null (minor 2) — Data sink/source

15.7. mmread() — ReadMemory

/* mem.c */
mmread(dev)
{

register c, bn, on;
int a;

if(dev.d_minor == 2)
return; /* /dev/null: EOF immediately */

Reading from /dev/null returns nothing—immediate end‑of‑file.

do {
bn = lshift(u.u_offset, -6); /* Block number (64-byte pages) */
on = u.u_offset[1] & 077; /* Offset within page */
a = UISA->r[0]; /* Save segment register */
spl7();
UISA->r[0] = bn; /* Map to requested page */

The PDP‑11 MMU limits direct access to 64KB. To read arbitrary physical memory, we temporarily remap
segment 0 to point to the desired page.

if(dev.d_minor == 1)
UISA->r[0] = KISA->r[(bn>>7)&07] + (bn & 0177);

For /dev/kmem, translate through the kernel’s address space. This allows reading kernel data struc‑
tures.
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c = fubyte(on); /* Read the byte */
UISA->r[0] = a; /* Restore segment register */
spl0();

} while(u.u_error==0 && passc(c)>=0);
}

Read one byte via fubyte(), restore the mapping, pass to user via passc(). Repeat until done.

15.8. mmwrite() —Write Memory

/* mem.c */
mmwrite(dev)
{

register c, bn, on;
int a;

if(dev.d_minor == 2) {
c = u.u_count;
u.u_count = 0;
u.u_base =+ c;
dpadd(u.u_offset, c);
return;

}

Writing to /dev/null: Accept all data, advance pointers, discard everything. The “rathole” consumes
infinite data.

for(;;) {
bn = lshift(u.u_offset, -6);
on = u.u_offset[1] & 077;
if ((c=cpass())<0 || u.u_error!=0)

break;
a = UISA->r[0];
spl7();
UISA->r[0] = bn;
if(dev.d_minor == 1)

UISA->r[0] = KISA->r[(bn>>7)&07] + (bn & 0177);
subyte(on, c); /* Write the byte */
UISA->r[0] = a;
spl0();

}
}

Samemapping trick as read. Get byte from user via cpass(), write to memory via subyte().
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15.9. Use Cases

15.9.1. /dev/null — The Bit Bucket

$ command > /dev/null # Discard output
$ cat /dev/null # Empty file (0 bytes)

Writing discards data; reading returns EOF immediately.

15.9.2. /dev/mem—Physical Memory

$ od /dev/mem # Dump physical memory

Used by debuggers and system utilities to examine raw memory. Dangerous—can crash the system if
misused.

15.9.3. /dev/kmem—Kernel Memory

$ ps # Reads process table from /dev/kmem

Programs like ps read kernel data structures (proc table, etc.) through this device. The kernel address
translation makes kernel variables accessible.

15.10. The MMU Trick

The PDP‑11’s memory management unit maps virtual addresses to physical:

Virtual Address Physical Address
│ │
▼ ▼

┌────────┐ ┌────────────┐
│ 0-8KB │──UISA[0]────►│ Some page │
│ 8-16KB │──UISA[1]────►│ Some page │
│ ... │ │ ... │
└────────┘ └────────────┘

To access arbitrary physical memory:

1. Save current UISA[0]
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2. Set UISA[0] = target page
3. Access address 0‑8KB (maps to target)
4. Restore UISA[0]

This must be done at high priority (spl7) to prevent interrupts from using the corruptedmapping.

15.11. Contrast with TTY

Both are character devices, but very different:

Aspect TTY Memory

Hardware Real device (terminal) Pseudo‑device

Interrupts Yes (keyboard, transmit) No

Buffering Three queues None

Processing Echo, line editing None

Blocking Waits for input Never blocks

15.12. Other Character Devices

15.12.1. Line Printer (lp.c)

Output‑only device:

• lpwrite()—Send characters to printer
• lpstart()—Start printing from output queue
• lpintr()—Handle printer‑ready interrupt

15.12.2. Paper Tape (pc.c)

pcread() /* Read from paper tape reader */
pcwrite() /* Write to paper tape punch */
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15.12.3. Raw Disk (rk.c)

rkread(dev)
{

physio(rkstrategy, &rrkbuf, dev, B_READ);
}

Character interface to block device. Usesphysio() to bypass buffer cache—data goes directly between
disk and user memory.

15.13. Device Registration

/* conf/c.c */
struct cdevsw cdevsw[] {

&klopen, &klclose, &klread, &klwrite, &klsgtty, /* 0 = kl */
&nulldev, &nulldev, &mmread, &mmwrite, &nodev, /* 1 = mem */
&nulldev, &nulldev, &rkread, &rkwrite, &nodev, /* 2 = rrk */
&pcopen, &pcclose, &pcread, &pcwrite, &nodev, /* 3 = pc */
&lpopen, &lpclose, &nodev, &lpwrite, &nodev, /* 4 = lp */
0

};

nulldev — Does nothing (for devices that don’t need open/close) nodev — Returns error (for unsup‑
ported operations)

15.14. Creating Device Files

# mknod /dev/null c 1 2
# │ │ │ │
# │ │ │ └── minor number (2 = null)
# │ │ └──── major number (1 = mem driver)
# │ └─────── character device
# └───────────────── device file name

The mknod command creates special files that point to device drivers throughmajor/minor numbers.
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15.15. Summary

• Character devices transfer bytes, not blocks
• Direct interface: read(), write() instead of strategy()
• Varied purposes: Terminals, pseudo‑devices, raw disk access
• /dev/null: Discards writes, returns EOF on read
• /dev/mem: Access physical memory via MMU tricks
• /dev/kmem: Access kernel address space

15.16. Key Design Points

1. Simplicity: Most character devices just move bytes—no complex buffering.

2. Flexibility: Same interface for hardware (terminals) and pseudo‑devices (null).

3. Direct access: User process interacts without buffer cache intermediary.

4. MMUmanipulation: Clever use of memory mapping for /dev/mem.

5. Dual interfaces: Block devices often have character (raw) counterparts.

15.17. Experiments

1. Read /dev/mem: Write a program to read the first 1KB of physical memory.

2. Benchmark /dev/null: Time writing large amounts to /dev/null vs a real file.

3. Examine kernel: Read proc table from /dev/kmem (requires knowing the address).

4. Create devices: Use mknod to create new device files.

15.18. Further Reading

• Chapter 13: TTY Subsystem— Complex character device
• Chapter 14: Block Devices — The other device model
• Chapter 10: File I/O — How devices fit in the file abstraction

Part IV Complete! Next: Part V — User Space

Briam Rodriguez 197 197



20260116.002 Edition

Part V.

User Space
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16. Chapter 16: The Shell

16.1. Overview

The shell is the user’s interface to UNIX—a program that reads commands, parses them, and executes
them. In about 800 lines of C, it implements command execution, I/O redirection, pipes, background
processes, and shell scripts. The shell’s elegance comes from its simplicity: it’s just another user program
that happens to orchestrate other programs.

16.2. Source Files

File Purpose

usr/source/s2/sh.c The complete shell

16.3. Prerequisites

• Chapter 5: Process Management (fork, exec, wait)
• Chapter 7: Traps and System Calls (signals)
• Chapter 10: File I/O (file descriptors, dup)

16.4. Shell Overview

The shell is a loop:

1. Print prompt
2. Read a line
3. Parse into a syntax tree
4. Execute the tree
5. Repeat
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loop:
if(promp != 0)

prs(promp);
peekc = getc();
main1();
goto loop;

16.5. Data Structures

16.5.1. Global State

char *dolp; /* Dollar expansion pointer */
char **dolv; /* Argument vector ($1, $2...) */
int dolc; /* Argument count */
char *promp; /* Prompt string (% or #) */
char *linep; /* Current position in line buffer */
char **argp; /* Current position in args array */
int *treep; /* Current position in tree buffer */
char peekc; /* Lookahead character */
char error; /* Syntax error flag */
char uid; /* User ID (0 = root) */
char setintr; /* Interactive mode flag */

16.5.2. Syntax Tree Nodes

/* Tree node layout */
#define dtyp 0 /* Node type */
#define dlef 1 /* Left child or input file */
#define drit 2 /* Right child or output file */
#define dflg 3 /* Flags */
#define dspr 4 /* Subshell pointer */
#define dcom 5 /* Command and arguments start here */

/* Node types */
#define tcom 1 /* Simple command */
#define tpar 2 /* Parenthesized subshell */
#define tfil 3 /* Pipeline */
#define tlst 4 /* List (cmd; cmd) */
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16.6. main() — Shell Startup

main(c, av)
int c;
char **av;
{

register f;
register char *acname, **v;

close(2);
if((f=dup(1)) != 2)

close(f);

Ensure stderr (fd 2) goes to the same place as stdout.

v = av;
acname = "/usr/adm/sh_acct";
promp = "% ";
if(((uid = getuid())&0377) == 0) {

promp = "# ";
acname = "/usr/adm/su_acct";

}

Set prompt: % for normal users, # for root.

if(c > 1) {
promp = 0; /* No prompt for scripts */
close(0);
f = open(v[1], 0); /* Open script as stdin */
if(f < 0) {

prs(v[1]);
err(": cannot open");

}
}

If given a filename argument, run it as a script.

if(**v == '-') {
setintr++;
signal(quit, 1); /* Ignore quit */
signal(intr, 1); /* Ignore interrupt */

}
dolv = v+1;
dolc = c-1;

Login shells (name starts with -) ignore signals. Set up $1, $2, etc.
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16.7. Lexical Analysis: word()

word()
{

register char c, c1;

*argp++ = linep;

loop:
switch(c = getc()) {

case ' ':
case '\t':

goto loop; /* Skip whitespace */

case '\'':
case '"':

c1 = c;
while((c=readc()) != c1) {

if(c == '\n') {
error++;
peekc = c;
return;

}
*linep++ = c|quote; /* Mark as quoted */

}
goto pack;

Quoted strings: characters inside quotes aremarkedwith thequote bit (0200) sometacharacters aren’t
treated specially.

case '&':
case ';':
case '<':
case '>':
case '(':
case ')':
case '|':
case '^':
case '\n':

*linep++ = c;
*linep++ = '\0';
return;

}

Metacharacters are returned as single‑character tokens.

peekc = c;

pack:
for(;;) {
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c = getc();
if(any(c, " '\"\t;&<>()|^\n")) {

peekc = c;
if(any(c, "\"'"))

goto loop;
*linep++ = '\0';
return;

}
*linep++ = c;

}
}

Regular words: collect characters until a metacharacter or whitespace.

16.8. getc() — Character Input with Expansion

getc()
{

register char c;

if(peekc) {
c = peekc;
peekc = 0;
return(c);

}

Handle lookahead character.

getd:
if(dolp) {

c = *dolp++;
if(c != '\0')

return(c);
dolp = 0;

}

If expanding a $n variable, return characters from it.

c = readc();
if(c == '\\') {

c = readc();
if(c == '\n')

return(' '); /* Line continuation */
return(c|quote); /* Escaped character */

}
if(c == '$') {

c = getc();
if(c>='0' && c<='9') {
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if(c-'0' < dolc)
dolp = dolv[c-'0'];

goto getd; /* Expand $n */
}

}
return(c&0177);

}

Handle \ escapes and $1, $2, etc. parameter expansion.

16.9. Parsing: Recursive Descent

The parser builds a syntax tree using recursive descent—a parsing technique where each grammar rule
becomes a function, and functions call each other to match the input structure. The beauty of recursive
descent is that the codemirrors the grammar directly.

Parser Call Hierarchy:

syntax()
|
v

syn1() ─────── handles ; and & (command lists)
|
v

syn2() ─────── handles | (pipelines)
|
v

syn3() ─────── simple commands, (subshells), redirects

Each level handles operators of a specific precedence. Lower precedence operators (;,&) are parsed first
at the top, so they become the root of the tree. Higher precedence operators (|) bind tighter and appear
deeper.

Example Parse Tree for ls | grep foo; echo done:
tlst (;)

/ \
tfil (|) tcom
/ \ "echo"

tcom tcom "done"
"ls" "grep"

"foo"

The tree is executed bottom‑up, left‑to‑right: first the pipeline ls | grep foo runs, then echo
done.
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16.9.1. syntax() — Top Level

syntax(p1, p2)
char **p1, **p2;
{

while(p1 != p2) {
if(any(**p1, ";&\n"))

p1++;
else

return(syn1(p1, p2));
}
return(0);

}

Skip separators, parse command list.

16.9.2. syn1() — Command Lists

/*
* syn1
* syn2
* syn2 & syntax
* syn2 ; syntax
*/
syn1(p1, p2)
char **p1, **p2;
{

register char **p;
register *t, *t1;
int l;

l = 0;
for(p=p1; p!=p2; p++)
switch(**p) {

case '(':
l++;
continue;

case ')':
l--;
continue;

case '&':
case ';':
case '\n':

if(l == 0) {
t = tree(4);
t[dtyp] = tlst;
t[dlef] = syn2(p1, p);
t[dflg] = 0;
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if(**p == '&') {
t1 = t[dlef];
t1[dflg] =| fand|fint; /* Background */

}
t[drit] = syntax(p+1, p2);
return(t);

}
}
return(syn2(p1, p2));

}

Handle ; (sequential) and & (background). Track parentheses depth.

16.9.3. syn2() — Pipelines

/*
* syn2
* syn3
* syn3 | syn2
*/
syn2(p1, p2)
char **p1, **p2;
{

char **p;
int l, *t;

l = 0;
for(p=p1; p!=p2; p++)
switch(**p) {

case '(':
l++;
continue;

case ')':
l--;
continue;

case '|':
case '^':

if(l == 0) {
t = tree(4);
t[dtyp] = tfil;
t[dlef] = syn3(p1, p);
t[drit] = syn2(p+1, p2);
return(t);

}
}
return(syn3(p1, p2));

}

Handle | (pipe). Note ^ is also pipe (older syntax).
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16.9.4. syn3() — Simple Commands

/*
* syn3
* ( syn1 ) [ < in ] [ > out ]
* word word* [ < in ] [ > out ]
*/
syn3(p1, p2)
char **p1, **p2;
{

/* ... parse redirections and command words ... */

if(lp != 0) {
/* Parenthesized subshell */
t = tree(5);
t[dtyp] = tpar;
t[dspr] = syn1(lp, rp);
goto out;

}
/* Simple command */
t = tree(n+5);
t[dtyp] = tcom;
for(l=0; l<n; l++)

t[l+dcom] = b[l];
out:

t[dflg] = flg;
t[dlef] = i; /* Input redirect */
t[drit] = o; /* Output redirect */
return(t);

}

Parse I/O redirections (<, >, >>) and collect command words.

16.10. Execution: execute()

execute(t, pf1, pf2)
int *t, *pf1, *pf2;
{

int i, f, pv[2];
register *t1;

if(t != 0)
switch(t[dtyp]) {

case tcom:
/* Simple command */
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16.10.1. Built‑in Commands

cp1 = t[dcom];
if(equal(cp1, "chdir")) {

if(t[dcom+1] != 0) {
if(chdir(t[dcom+1]) < 0)

err("chdir: bad directory");
}
return;

}
if(equal(cp1, "shift")) {

dolv[1] = dolv[0];
dolv++;
dolc--;
return;

}
if(equal(cp1, "login")) {

execv("/bin/login", t+dcom);
return;

}
if(equal(cp1, "wait")) {

pwait(-1, 0);
return;

}
if(equal(cp1, ":"))

return;

Built‑ins execute in the shell process itself (no fork).

16.10.2. External Commands

case tpar:
f = t[dflg];
i = 0;
if((f&fpar) == 0)

i = fork();
if(i == -1) {

err("try again");
return;

}
if(i != 0) {

/* Parent */
if((f&fand) != 0) {

prn(i);
prs("\n");
return;

}
if((f&fpou) == 0)

pwait(i, t);
return;

}
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Fork a child process. Parent waits (unless &).

/* Child process */
if(t[dlef] != 0) {

close(0);
i = open(t[dlef], 0); /* Input redirect */

}
if(t[drit] != 0) {

if((f&fcat) != 0) {
i = open(t[drit], 1);
seek(i, 0, 2); /* Append */

} else
i = creat(t[drit], 0666);

close(1);
dup(i);
close(i);

}

Handle input/output redirection by manipulating file descriptors before exec.

execv(t[dcom], t+dcom);
/* Try /bin/ and /usr/bin/ */
cp1 = linep;
cp2 = "/usr/bin/";
while(*cp1 = *cp2++)

cp1++;
cp2 = t[dcom];
while(*cp1++ = *cp2++);
execv(linep+4, t+dcom); /* /bin/cmd */
execv(linep, t+dcom); /* /usr/bin/cmd */

Try to execute the command. If not found, try /bin/ and /usr/bin/ prefixes.

16.10.3. Pipelines

case tfil:
f = t[dflg];
pipe(pv);
t1 = t[dlef];
t1[dflg] =| fpou | (f&(fpin|fint));
execute(t1, pf1, pv);
t1 = t[drit];
t1[dflg] =| fpin | (f&(fpou|fint|fand));
execute(t1, pv, pf2);
return;

Create a pipe, execute left side with output to pipe, right side with input from pipe.
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16.10.4. Command Lists

case tlst:
f = t[dflg]&fint;
if(t1 = t[dlef])

t1[dflg] =| f;
execute(t1);
if(t1 = t[drit])

t1[dflg] =| f;
execute(t1);
return;

Execute left side, then right side.

16.11. I/O Redirection

The shell implements redirection by manipulating file descriptors:

/* Input: cmd < file */
close(0);
open(t[dlef], 0); /* Opens as fd 0 */

/* Output: cmd > file */
i = creat(t[drit], 0666);
close(1);
dup(i); /* Duplicates to fd 1 */
close(i);

/* Append: cmd >> file */
i = open(t[drit], 1);
seek(i, 0, 2); /* Seek to end */
close(1);
dup(i);

ClassicUNIX Technique. Theclose(1); dup(i); idiomworks becausedup() always returns
the lowest available file descriptor. After close(1) frees stdout, dup(i) duplicates i into slot
1—effectively redirecting stdout to the file. The order is critical: dup(i); close(1); would
duplicate to some random slot, then close stdout, achieving nothing useful. This “lowest available”
guarantee is baked into the UNIX design and appears throughout early system code.
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16.12. Pipes

/* cmd1 | cmd2 */
pipe(pv); /* Create pipe: pv[0]=read, pv[1]=write */

/* Execute cmd1 with stdout → pipe */
t1[dflg] =| fpou;
execute(t1, pf1, pv);

/* Execute cmd2 with stdin ← pipe */
t1[dflg] =| fpin;
execute(t1, pv, pf2);

In the child processes:

/* Writer (cmd1) */
close(1);
dup(pv[1]); /* stdout → pipe write end */
close(pv[0]);
close(pv[1]);

/* Reader (cmd2) */
close(0);
dup(pv[0]); /* stdin ← pipe read end */
close(pv[0]);
close(pv[1]);

16.13. Background Processes

if(**p == '&') {
t1[dflg] =| fand|fint;

}

/* In execute(): */
if((f&fand) != 0) {

prn(i);
prs("\n"); /* Print PID */
return; /* Don't wait */

}

Background processes:

• Print PID and return immediately
• Have stdin redirected from /dev/null
• Ignore interrupt signals (fint flag)
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16.14. Glob (Wildcard Expansion)

scan(t, &tglob);
if(gflg) {

t[dspr] = "/etc/glob";
execv(t[dspr], t+dspr);

}

If wildcards (*, ?, [) are found, the shell execs /etc/glob to expand them. Glob is a separate program
that does pattern matching.

16.15. Signal Handling

/* In main(): Login shells ignore signals */
if(**v == '-') {

signal(quit, 1);
signal(intr, 1);

}

/* In execute(): Restore signals for children */
if((f&fint) == 0 && setintr) {

signal(intr, 0);
signal(quit, 0);

}

Interactive shells ignore interrupt/quit so they surviveCtrl‑C. Childprocesseshave signals restoredunless
running in background.

16.16. Summary

The shell in ~800 lines:

• Lexer (word): Tokenizes input, handles quotes and escapes
• Parser (syntax, syn1, syn2, syn3): Builds syntax tree
• Executor (execute): Runs commands via fork/exec
• Built‑ins: chdir, shift, wait, login, :
• Redirection: Via file descriptor manipulation
• Pipes: Via pipe() system call
• Background: Fork without wait, print PID
• Glob: Delegated to /etc/glob
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16.17. Key Design Points

1. Simplicity: No complex features—just the essentials.

2. Fork/execmodel: Every external command is a new process.

3. File descriptors: Redirection works because children inherit fds.

4. Recursive descent: Clean, readable parser structure.

5. External glob: Pattern matching is a separate program.

16.18. Experiments

1. Add a built‑in: Implement pwd as a built‑in command.

2. Trace execution: Add printf to see the syntax tree structure.

3. Pipeline depth: Create long pipelines and observe process creation.

4. Signal behavior: Compare Ctrl‑C handling in foreground vs background.

16.19. Further Reading

• Chapter 5: Process Management — fork, exec, wait internals
• Chapter 7: Traps and System Calls — Signal mechanism
• Chapter 10: File I/O — File descriptor operations

Next: Chapter 17 — Core Utilities
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17. Chapter 17: Core Utilities

17.1. Overview

UNIX comeswith dozens of small, focused utilities that work together through pipes and files. This chap‑
ter examines four representative programs spanning the spectrum from tiny assembly routines to sub‑
stantial C applications. Together they demonstrate the UNIX philosophy: simple tools that do one thing
well.

17.2. Source Files

File Lines Language Purpose

usr/source/s1/echo.c 10 C Print arguments

usr/source/s1/cat.s 65 Assembly Concatenate files

usr/source/s1/cp.c 80 C Copy files

usr/source/s1/ls.c 428 C List directory

17.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (for assembly)
• Chapter 7: System Calls (open, read, write, stat)
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17.4. echo— The Simplest Utility

main(argc, argv)
int argc;
char *argv[];
{

int i;

argc--;
for(i=1; i<=argc; i++)

printf("%s%c", argv[i], i==argc? '\n': ' ');
}

Ten lines. Print each argument separated by spaces, end with newline. This is the essence of UNIX
utilities—do exactly one thing.

Usage:

$ echo hello world
hello world

17.5. cat — Concatenate Files (Assembly)

cat is written in assembly for efficiency—it’s used constantly.1

/ cat -- concatenate files

mov (sp)+,r5 / r5 = argc
tst (sp)+ / skip argv[0]
mov $obuf,r2 / r2 = output buffer pointer
cmp r5,$1
beq 3f / no args: read stdin

loop:
dec r5
ble done / no more files
mov (sp)+,r0 / r0 = next filename
cmpb (r0),$'-
bne 2f
clr fin / "-" means stdin
br 3f

2:
mov r0,0f
sys open; 0:..; 0 / open file
bes loop / error: skip file
mov r0,fin

1Thebranch targets like3f and2b are local labels in PDP‑11 assembly. The number (1‑9) is the label name;fmeans “forward”
(find the next occurrence ahead) and bmeans “backward” (find the previous occurrence behind). So beq 3f branches to
the next 3: label, and br 1b loops back to the previous 1:. This lets you reuse simple numeric labels without inventing
unique names.
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Themain loop opens each file argument (or uses stdin for “‑”).

3:
mov fin,r0
sys read; ibuf; 512. / read up to 512 bytes
bes 3f / error or EOF
mov r0,r4 / r4 = bytes read
beq 3f / EOF
mov $ibuf,r3

4:
movb (r3)+,r0 / get byte
jsr pc,putc / output it
dec r4
bne 4b / loop until done
br 3b / read more

3:
mov fin,r0
beq loop / stdin: don't close
sys close
br loop

Read 512 bytes at a time, output byte by byte through putc.

putc:
movb r0,(r2)+ / store in output buffer
cmp r2,$obuf+512.
blo 1f / buffer not full
mov $1,r0
sys write; obuf; 512. / flush buffer
mov $obuf,r2

1:
rts pc

Output is buffered—write 512 bytes at a time for efficiency.

done:
sub $obuf,r2
beq 1f / nothing to flush
mov r2,0f
mov $1,r0
sys write; obuf; 0:.. / flush remaining

1:
sys exit

.bss
ibuf: .=.+512. / input buffer
obuf: .=.+512. / output buffer
fin: .=.+2 / current input fd

Key points: ‑ Buffered I/O for performance ‑ Handles multiple files ‑ “‑” means stdin ‑ ~65 lines of tight
assembly
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17.6. cp — Copy Files

main(argc,argv)
char **argv;
{

int buf[256];
int fold, fnew, n, ct;
char *p1, *p2, *bp;
int mode;

if(argc != 3) {
write(1, "Usage: cp oldfile newfile\n", 26);
exit(1);

}

Basic argument checking.

if((fold = open(argv[1], 0)) < 0) {
write(1, "Cannot open old file.\n", 22);
exit(1);

}
fstat(fold, buf);
mode = buf[2]; /* Preserve file mode */

Open source file and get its mode (permissions).

if((fnew = creat(argv[2], mode)) < 0){
stat(argv[2], buf);
if((buf[2] & 060000) == 040000) {

/* Destination is a directory */
p1 = argv[1];
p2 = argv[2];
bp = buf;
while(*bp++ = *p2++);
bp[-1] = '/';
p2 = bp;
while(*bp = *p1++)

if(*bp++ == '/')
bp = p2;

/* Now buf = "dir/basename" */
if((fnew = creat(buf, mode)) < 0) {

write(1, "Cannot creat new file.\n", 23);
exit(1);

}
} else {

write(1, "Cannot creat new file.\n", 23);
exit(1);

}
}

Create destination. If it’s a directory, append the source filename.
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while(n = read(fold, buf, 512)) {
if(n < 0) {

write(1, "Read error\n", 11);
exit(1);

}
if(write(fnew, buf, n) != n){

write(1, "Write error.\n", 13);
exit(1);

}
}
exit(0);

}

Copy loop: read 512 bytes, write them, repeat until EOF.

Key points: ‑ Preserves file permissions ‑ Handles “cp file dir/” case ‑ 512‑byte block copies ‑ Error check‑
ing at each step

17.7. ls — List Directory

ls is the most complex utility here at 428 lines. It demonstrates:

• Option parsing
• Directory reading
• stat() for file info
• Sorting
• Formatted output

17.7.1. Option Parsing

main(argc, argv)
char **argv;
{

if (--argc > 0 && *argv[1] == '-') {
argv++;
while (*++*argv) switch (**argv) {
case 'a':

aflg++; /* Show hidden files */
continue;

case 's':
sflg++; /* Show sizes */
statreq++;
continue;

case 'l':
lflg++; /* Long format */
statreq++;
uidfil = open("/etc/passwd", 0);
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continue;
case 'r':

rflg = -1; /* Reverse sort */
continue;

case 't':
tflg++; /* Sort by time */
statreq++;
continue;

/* ... more options ... */
}

}

Classic UNIX option style: single dash, single letters, can be combined (ls -la).

17.7.2. Reading Directories

readdir(dir)
char *dir;
{

static struct {
int dinode;
char dname[14];

} dentry;

if (fopen(dir, &inf) < 0) {
printf("%s unreadable\n", dir);
return;

}
for(;;) {

p = &dentry;
for (j=0; j<16; j++)

*p++ = getc(&inf); /* Read 16-byte entry */
if (dentry.dinode==0 /* Empty slot */
|| aflg==0 && dentry.dname[0]=='.')

continue; /* Skip hidden */
if (dentry.dinode == -1)

break; /* End of directory */
ep = gstat(makename(dir, dentry.dname), 0);
/* ... store entry ... */

}
}

Directories are just files with 16‑byte entries (2‑byte inode + 14‑byte name).
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17.7.3. Getting File Information

gstat(file, argfl)
char *file;
{

struct ibuf statb;
register struct lbuf *rep;

if (stat(file, &statb)<0) {
printf("%s not found\n", file);
return(0);

}
rep->lnum = statb.inum;
rep->lflags = statb.iflags;
rep->luid = statb.iuid;
rep->lsize = statb.isize;
rep->lmtime[0] = statb.imtime[0];
rep->lmtime[1] = statb.imtime[1];
/* ... */

}

The stat() system call fills in file metadata: type, permissions, owner, size, times.

17.7.4. Formatting Output

pentry(ap)
struct lbuf *ap;
{

if (iflg)
printf("%5d ", p->lnum); /* Inode number */

if (lflg) {
pmode(p->lflags); /* -rwxr-xr-x */
printf("%2d ", p->lnl); /* Link count */
/* ... owner, size, date ... */

}
printf("%.14s\n", p->lname); /* Filename */

}

17.7.5. Permission Display

int m0[] { 3, DIR, 'd', BLK, 'b', CHR, 'c', '-'};
int m1[] { 1, ROWN, 'r', '-' };
int m2[] { 1, WOWN, 'w', '-' };
int m3[] { 2, SUID, 's', XOWN, 'x', '-' };
/* ... */

pmode(aflag)
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{
register int **mp;
flags = aflag;
for (mp = &m[0]; mp < &m[10];)

select(*mp++);
}

Clever table‑driven approach to print -rwxr-xr-x style permissions.

17.8. System Call Patterns

17.8.1. Error Handling

/* Typical pattern */
if((fd = open(file, 0)) < 0) {

write(2, "error message\n", n);
exit(1);

}

17.8.2. Reading Files

/* Block-at-a-time */
while((n = read(fd, buf, 512)) > 0) {

/* process n bytes in buf */
}

17.8.3. Writing Output

/* Direct write */
write(1, string, length);

/* Using printf (links with library) */
printf("%s\n", string);
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17.9. Assembly vs C Trade‑offs

Aspect Assembly (cat) C (ls)

Size ~300 bytes ~4KB

Speed Optimal Good

Maintenance Difficult Easy

Portability PDP‑11 only Somewhat portable

Assembly was used for:

• Frequently‑used utilities (cat, echo)
• Performance‑critical code
• Tiny programs where every byte mattered

C was used for:

• Complex logic (ls, cp with directory handling)
• Maintainability requirements
• Less performance‑critical utilities

17.10. The UNIX Philosophy

These utilities embody key principles:

1. Do one thing well: cat concatenates, cp copies, echo echoes
2. Text streams: Programs read/write text, enabling pipes
3. Composability: cat file | grep pattern | wc -l
4. No unnecessary output: Silent on success
5. Meaningful exit codes: 0 for success, non‑zero for error

17.11. Summary

• echo: 10 lines—print arguments
• cat: 65 lines assembly—buffered file concatenation
• cp: 80 lines—copy with directory handling
• ls: 428 lines—full‑featured directory listing
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17.12. Experiments

1. Add an option: Add -n to cat to number lines.

2. Trace system calls: Count read/write calls in cat for various file sizes.

3. Benchmark: Compare cat performance with a C version.

4. Extend ls: Add color coding for file types.

17.13. Further Reading

• Chapter 16: The Shell — How utilities are invoked
• Chapter 7: System Calls — The open/read/write interface
• Chapter 11: Path Resolution — How files are found

Next: Chapter 18 — The C Compiler
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18. Chapter 18: The C Compiler

18.1. Overview

The C compiler that compiled UNIX was itself written in C—a bootstrapping achievement that demon‑
strated the language’s power. In roughly 4,000 lines across two passes, it translates C source code into
PDP‑11 assembly language. This chapter examines the compiler’s architecture, showing howa complete
language implementation fits in such compact form.

18.2. Source Files

File Lines Purpose

usr/c/c00.c 744 Lexer, symbol table, expression parser

usr/c/c01.c ~600 Statements, declarations

usr/c/c02.c ~400 Expression building

usr/c/c03.c ~300 Type checking

usr/c/c04.c ~200 Output utilities

usr/c/c10.c 942 Code generator main

usr/c/c11.c ~500 Code generation helpers

usr/c/c12.c ~400 More code generation

18.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (target machine)
• Understanding of basic compiler concepts
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18.4. Two‑Pass Architecture

Source (.c)
│
▼

┌─────────────────────┐
│ Pass 0 (c0) │
│ - Lexer │
│ - Parser │
│ - Symbol table │
│ - Type checking │
└─────────────────────┘

│
│ Intermediate form
│ (trees + text)
▼

┌─────────────────────┐
│ Pass 1 (c1) │
│ - Tree optimizer │
│ - Code generator │
│ - Peephole opt │
└─────────────────────┘

│
▼

Assembly (.s)
│
▼

┌─────────────────────┐
│ Assembler (as) │
└─────────────────────┘

│
▼

Object (.o)
│
▼

┌─────────────────────┐
│ Linker (ld) │
└─────────────────────┘

│
▼

Executable (a.out)
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18.5. Pass 0: Lexical Analysis

18.5.1. Keyword Table

struct kwtab {
char *kwname;
int kwval;

} kwtab[] {
"int", INT,
"char", CHAR,
"float", FLOAT,
"double", DOUBLE,
"struct", STRUCT,
"auto", AUTO,
"extern", EXTERN,
"static", STATIC,
"register", REG,
"goto", GOTO,
"return", RETURN,
"if", IF,
"while", WHILE,
"else", ELSE,
"switch", SWITCH,
"case", CASE,
"break", BREAK,
"continue", CONTIN,
"do", DO,
"default", DEFAULT,
"for", FOR,
"sizeof", SIZEOF,
0, 0,

};

All 22 C keywords in one table. Keywords are installed in the symbol table at startupwith class KEYWC.

18.5.2. The Lexer: symbol()

symbol() {
register c;
register char *sp;

if (peeksym>=0) {
c = peeksym;
peeksym = -1;
return(c);

}
/* ... get character ... */

loop:
switch(ctab[c]) {
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case SPACE:
c = getchar();
goto loop;

case NEWLN:
line++;
c = getchar();
goto loop;

case PLUS:
return(subseq(c,PLUS,INCBEF)); /* + or ++ */

case MINUS:
return(subseq(c,subseq('>',MINUS,ARROW),DECBEF));

case ASSIGN:
/* Handle =, ==, +=, etc. */
...

case DIVIDE:
if (subseq('*',1,0))

return(DIVIDE);
/* Skip comment */
...

case LETTER:
/* Collect identifier */
while(ctab[c]==LETTER || ctab[c]==DIGIT) {

if (sp<symbuf+ncps) *sp++ = c;
c = getchar();

}
csym = lookup();
if (csym->hclass==KEYWC)

return(KEYW);
return(NAME);

}
}

The lexer uses a character classification table (ctab[]) for fast dispatch. Multi‑character tokens like ++,
->, and == are handled by subseq().

18.5.3. Symbol Table

struct hshtab {
char name[ncps]; /* Symbol name (8 chars) */
char hclass; /* Storage class */
char htype; /* Type encoding */
int hoffset; /* Offset or value */
int dimp; /* Dimension pointer */

};

struct hshtab *lookup()
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{
int ihash;
register struct hshtab *rp;

/* Hash the symbol name */
ihash = 0;
for (sp=symbuf; sp<symbuf+ncps;)

ihash =+ *sp++ & 0177;
rp = &hshtab[ihash%hshsiz];

/* Linear probe for match or empty slot */
while (*(np = rp->name)) {

for (sp=symbuf; sp<symbuf+ncps;)
if ((*np++&0177) != *sp++)

goto no;
return(rp); /* Found */

no:
if (++rp >= &hshtab[hshsiz])

rp = hshtab; /* Wrap around */
}
/* Install new symbol */
...
return(rp);

}

Simple hash table with linear probing. Symbol names limited to 8 characters.

18.6. Pass 0: Parsing

18.6.1. Expression Parser

The expression parser uses operator precedence parsing:

tree() {
int *op, opst[SSIZE], *pp, prst[SSIZE];
register int andflg, o;

op = opst;
pp = prst;
*op = SEOF;
*pp = 06; /* Lowest precedence */
andflg = 0; /* Expecting operand? */

advanc:
switch (o=symbol()) {

case NAME:
/* Push operand */
*cp++ = block(2,NAME,cs->htype,...);
goto tand;
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case CON:
*cp++ = block(1,CON,INT,0,cval);
goto tand;

tand:
if (andflg)

goto syntax; /* Two operands in a row */
andflg = 1;
goto advanc;

case PLUS:
case MINUS:

if (!andflg) {
o = NEG; /* Unary minus */

}
andflg = 0;
goto oponst;

}

oponst:
p = (opdope[o]>>9) & 077; /* Get precedence */
/* Reduce higher-precedence operators on stack */
while (p <= *pp) {

/* Pop and build tree node */
build(*op--);
--pp;

}
/* Push this operator */
*++op = o;
*++pp = p;
goto advanc;

}

The opdope[] table encodes operator properties: precedence, associativity, whether binary or
unary.

18.6.2. Tree Building

build(op) {
register struct tnode *p1, *p2;

p2 = *--cp;
if (opdope[op] & BINARY)

p1 = *--cp;
/* Type check and convert */
...
/* Build node */
*cp++ = block(2, op, type, 0, p1, p2);

}
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18.7. Pass 1: Code Generation

18.7.1. Main Loop

main(argc, argv)
char *argv[];
{

while ((c=getc(ascbuf)) > 0) {
if(c=='#') {

/* Expression tree follows */
tree = getw(binbuf);
table = tabtab[getw(binbuf)];
tree = optim(tree); /* Optimize */
rcexpr(tree, table, 0); /* Generate code */

} else
putchar(c); /* Copy through */

}
}

Pass 1 reads the intermediate file, optimizes expression trees, and generates code.

18.7.2. Table‑Driven Code Generation

char *match(tree, table, nrleft)
struct tnode *tree;
struct table *table;
{

op = tree->op;
d1 = dcalc(tree->tr1, nrleft); /* Difficulty of left */
d2 = dcalc(tree->tr2, nrleft); /* Difficulty of right */

/* Find matching table entry */
for (; table->op==op; table++)

for (opt = table->tabp; opt->tabdeg1!=0; opt++) {
if (d1 > (opt->tabdeg1&077))

continue;
if (d2 > (opt->tabdeg2&077))

continue;
/* Check type compatibility */
if (notcompat(tree->tr1, opt->tabtyp1))

continue;
return(opt); /* Match found */

}
return(0);

}

Code templates are stored in tables. The generator matches tree patterns against templates and emits
the corresponding code.
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18.7.3. Code Template Example

A template might specify:

ADD instruction:
Operand 1: register (difficulty ≤ 12)
Operand 2: any (difficulty ≤ 12)
Output: "add A2,R\n"

The cexpr() function interprets template strings:

• A— address of operand 1
• B— address of operand 2
• R— result register
• M— instruction mnemonic

18.7.4. Optimization

optim(tree) {
if ((dope&COMMUTE)!=0) {

/* Reorder commutative operations */
tree = acommute(tree);

}
if (tree->tr2->op==CON && op==MINUS) {

/* Convert x-c to x+(-c) */
tree->op = PLUS;
tree->tr2->value = -tree->tr2->value;

}
if (tree->tr1->op==CON && tree->tr2->op==CON) {

/* Fold constants */
const(op, &tree->tr1->value, tree->tr2->value);
return(tree->tr1);

}
...

}

Optimizations include:

• Constant folding
• Strength reduction (multiply by power of 2 → shift)
• Common subexpression handling
• Register allocation
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18.8. Type System

Types are encoded in a small integer:

/* Base types */
#define INT 0
#define CHAR 1
#define FLOAT 2
#define DOUBLE 3
#define STRUCT 4

/* Type modifiers (in higher bits) */
#define PTR 010 /* Pointer to */
#define FUNC 020 /* Function returning */
#define ARRAY 030 /* Array of */

So int *x has type PTR|INT, and int (*f)() has type PTR|FUNC|INT.

18.9. Generated Code Example

Source:

int x, y;
x = y + 1;

Generated assembly:

.globl _x

.globl _y

.comm _x,2

.comm _y,2
mov _y,r0
inc r0
mov r0,_x

18.10. Compilation Flow

$ cc foo.c

1. Preprocessor (cpp)
foo.c → /tmp/ctm1

2. Pass 0 (c0)
/tmp/ctm1 → /tmp/ctm2 (text) + /tmp/ctm3 (trees)

3. Pass 1 (c1)
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/tmp/ctm2 + /tmp/ctm3 → /tmp/ctm4.s

4. Assembler (as)
/tmp/ctm4.s → foo.o

5. Linker (ld)
foo.o + libc.a → a.out

18.11. Summary

The C compiler in ~4,000 lines:

• Lexer: Character classification, symbol table with hashing
• Parser: Operator precedence for expressions, recursive descent for statements
• Type system: Compact encoding of C’s type hierarchy
• Code generator: Table‑driven pattern matching
• Optimizer: Constant folding, strength reduction

18.12. Key Design Points

1. Two passes: Separates analysis from code generation cleanly.

2. Table‑driven: Code templates make the generator compact andmaintainable.

3. Bootstrapped: The compiler compiles itself—proving the language works.

4. PDP‑11 targeted: Code generation exploits the architecture’s features.

5. No preprocessor: #include handled by a separate cpp program.

18.13. Experiments

1. Trace compilation: Add printf to see token stream and parse trees.

2. New operator: Add a simple operator and trace through both passes.

3. Optimization effect: Compare generated code with/without optimization.

4. Type encoding: Decode type integers to understand the encoding.

18.14. Further Reading

• Chapter 2: PDP‑11 Architecture — Target instruction set
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• Chapter 19: The Assembler — Next stage in compilation
• Original C Reference Manual by Dennis Ritchie

Next: Chapter 19 — The Assembler
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19. Chapter 19: The Assembler

19.1. Overview

The UNIX assembler translates PDP‑11 assembly language into executable object code. Written in as‑
sembly language itself, it demonstrates a classic two‑pass design: pass 1 builds the symbol table, pass 2
generates code. The assembler is the final stage in the compilation pipeline before linking.

19.2. Source Files

File Purpose

usr/source/s1/as11.s ‑ as19.s Pass 1 (lexer, parser, symbol table)

usr/source/s1/as21.s ‑ as29.s Pass 2 (code generation)

19.3. Prerequisites

• Chapter 2: PDP‑11 Architecture (instruction set)
• Chapter 18: C Compiler (produces assembly input)

235



20260116.002 Edition

19.4. Two‑Pass Architecture

Source (.s)
│
▼

┌─────────────────────┐
│ Pass 1 (as1) │
│ - Lexical scan │
│ - Build symbols │
│ - Compute sizes │
└─────────────────────┘

│
│ Symbol table
│ + intermediate
▼

┌─────────────────────┐
│ Pass 2 (as2) │
│ - Generate code │
│ - Resolve refs │
│ - Output object │
└─────────────────────┘

│
▼

Object (.o)

19.4.1. Why Two Passes?

Forward references are the problem:

jmp later / Can't know address yet
...

later: mov r0,r1 / Defined here

Pass 1 computes the address of later. Pass 2 uses it.

19.5. Pass 1 Structure

/ as11.s - Main entry

start:
jsr pc,assem / Main assembly loop
movb pof,r0
sys write; outbuf; 512.
...
sys exec; fpass2; ... / Chain to pass 2

Pass 1 processes the source, building the symbol table, then exec’s pass 2.
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19.5.1. Assembly Loop

assem:
jsr pc,readop / Get next token
cmp r4,$5 / End of file?
beq 1f
jsr pc,checkeos / End of statement?
br assem

1: rts pc

19.5.2. Symbol Table

Symbols are stored in a simple table:

Entry format:
Bytes 0-7: Symbol name (8 chars, null-padded)
Byte 8: Type/flags
Bytes 9-10: Value (address or constant)

Types include:

• Undefined (forward reference)
• Absolute (constant)
• Text segment
• Data segment
• BSS segment
• External

19.5.3. Location Counter

The assembler tracks the current address with . (dot):

.text / Switch to text segment
mov r0,r1 / . = 0, instruction at 0
add r2,r3 / . = 2, instruction at 2

.data / Switch to data segment
foo: .word 42 / . = 0 in data, foo = 0

Briam Rodriguez 237 237



20260116.002 Edition

19.6. Instruction Encoding

PDP‑11 instructions are encoded in 16‑bit words:

Single Operand (CLR, INC, TST, etc.):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| opcode | mode | reg |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Double Operand (MOV, ADD, CMP, etc.):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| opcode | src mode |src reg| dst mode |dst|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Branch (BEQ, BNE, BR, etc.):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| opcode | offset |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Jump/Subroutine (JSR, JMP):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| opcode | reg | mode | dst reg |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

19.6.1. Addressing Modes

Mode Syntax Meaning
0 Rn Register
1 (Rn) Register indirect
2 (Rn)+ Autoincrement
3 @(Rn)+ Autoincrement indirect
4 -(Rn) Autodecrement
5 @-(Rn) Autodecrement indirect
6 X(Rn) Index
7 @X(Rn) Index indirect

Special cases with PC (R7):

Mode 2: #n Immediate (literal follows)
Mode 3: @#n Absolute
Mode 6: n Relative
Mode 7: @n Relative indirect
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19.7. Pass 2 Structure

Pass 2 reads the intermediate output and symbol table from pass 1:

/ as21.s - Pass 2 main

start2:
/ Read symbol table from temp file
mov $usymtab,r1
sys read; ...

loop2:
jsr pc,readop / Get opcode
jsr pc,opline / Process operands
jsr pc,outw / Output word
br loop2

19.7.1. Code Generation

For each instruction:

1. Look up opcode in table
2. Parse operands
3. Encode addressing modes
4. Output instruction word(s)

opline:
mov optab(r0),r1 / Get opcode template
jsr pc,addres / Parse first operand
swab r3 / Shift to source field
bis r3,r1
jsr pc,addres / Parse second operand
bis r3,r1 / Add to destination field
mov r1,outbuf / Store result
rts pc

19.7.2. Relocation

The assembler generates relocation information for the linker:

Object file format:
Header:
- Magic number
- Text size
- Data size
- BSS size
- Symbol table size
- Entry point
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- Relocation size

Text segment
Data segment
Text relocation
Data relocation
Symbol table

Relocation entries indicate which words need adjustment when the program is loaded at a different ad‑
dress.

19.8. Directives

.globl sym / Make symbol global

.text / Switch to text segment

.data / Switch to data segment

.bss / Switch to BSS segment

.byte 1,2,3 / Output bytes

.word 1,2,3 / Output words

.even / Align to word boundary

.=.+n / Advance location counter

19.9. Assembly Language Features

19.9.1. Labels

foo: mov r0,r1 / Define label
jmp foo / Reference label

19.9.2. Local Labels

1: mov r0,r1
bne 1b / Back to 1:
br 1f / Forward to next 1:

1: clr r0

1bmeans “label 1, searching backward”; 1fmeans forward.
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19.9.3. Expressions

mov $foo+4,r0
.word bar-baz
.=.+100

The assembler evaluates expressions involving +, -, *, /, &, |, symbols, and constants.

19.10. Example Assembly

Source:

.globl _main

.text
_main:

mov $1,r0
sys write; 1f; 2f-1f
clr r0
sys exit

.data
1: <hello\n>
2:

Object code (hex):

15c0 0001 mov $1,r0
8904 000c 0006 sys write; L1; 6
0a00 clr r0
8901 sys exit
6865 6c6c 6f0a "hello\n"

19.11. Error Handling

filerr:
mov (r5)+,r4 / Get filename
mov $1,r0
sys write; ... / Print filename
sys write; "?\n"; 2 / Print "?"

Errors are terse: typically just the filename and “?”. Debug by examining the source line.
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19.12. Summary

The UNIX assembler:

• Two passes: Build symbols, then generate code
• Self‑hosting: Written in the assembly language it processes
• PDP‑11 specific: Encodes all addressing modes and instructions
• Relocation: Generates position‑independent code for linker
• Minimal: No macros, simple expression evaluation

19.13. Key Design Points

1. Simplicity: No macro processor—that’s separate (m4).

2. Two passes: Clean separation of symbol resolution from code generation.

3. Tables: Instruction encodings stored in lookup tables.

4. Temp files: Pass 1 writes intermediate data for pass 2.

5. exec chain: Pass 1 directly exec’s pass 2, avoiding shell overhead.

19.14. Experiments

1. Trace assembly: Add print statements to see symbol table construction.

2. New instruction: Add a pseudo‑instruction like .ascii.

3. Object dump: Write a program to decode a.out format.

4. Forward reference: Trace how a forward branch is resolved.

19.15. Further Reading

• Chapter 2: PDP‑11 Architecture — Target instruction set
• Chapter 18: C Compiler — Producer of assembly input
• PDP‑11 Processor Handbook — Instruction encoding details
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Part VI.

Appendices
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20. Appendix A: System Call Reference

This appendix provides a complete reference for all system calls implemented in UNIX Fourth Edition.
Each entry includes the system call number, C library interface, arguments, return value, and a brief de‑
scription.

20.1. Overview

UNIX v4 implements 35 active system calls (out of 64 slots in the system call table). System calls are
invoked via the sys instruction on the PDP‑11, which causes a trap to kernel mode. The kernel looks
up the system call number insysent[] (defined inusr/sys/ken/sysent.c) and dispatches to the
appropriate handler.

20.1.1. Argument Passing

• Arguments are passed in the u.u_arg[] array in the user structure
• Return values are placed in registers r0 (and sometimes r1)
• Errors are indicated by setting u.u_error to an error code

20.1.2. Error Codes

Code Name Meaning

1 EPERM Not owner

2 ENOENT No such file or directory

3 ESRCH No such process

4 EINTR Interrupted system call

5 EIO I/O error

6 ENXIO No such device or address
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Code Name Meaning

7 E2BIG Argument list too long

8 ENOEXEC Exec format error

9 EBADF Bad file number

10 ECHILD No children

11 EAGAIN Nomore processes

12 ENOMEM Not enoughmemory

13 EACCES Permission denied

14 EFAULT Bad address

15 ENOTBLK Block device required

16 EBUSY Mount device busy

17 EEXIST File exists

18 EXDEV Cross‑device link

19 ENODEV No such device

20 ENOTDIR Not a directory

21 EISDIR Is a directory

22 EINVAL Invalid argument

23 ENFILE File table overflow

24 EMFILE Toomany open files

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy

27 EFBIG File too large

28 ENOSPC No space left on device

29 ESPIPE Illegal seek
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20.2. System Call Reference

20.2.1. 0 ‑ indir (indirect system call)

syscall(number, args...)

Description: Execute an indirect system call. The first argument is the system call number, followed by
that call’s arguments. Primarily used for implementing system call stubs.

Implementation: nullsys() ‑ does nothing in UNIX v4

20.2.2. 1 ‑ exit

exit(status)
int status;

Arguments: ‑ status ‑ Exit status (passed in r0, shifted left 8 bits)

Returns: Does not return

Description: Terminate the calling process. All open file descriptors are closed, the current directory
inode is released, and the process enters the zombie state until its parent calls wait(). The exit status
is saved for retrieval by the parent.

Implementation: rexit() in usr/sys/ken/sys1.c

20.2.3. 2 ‑ fork

pid = fork()
int pid;

Arguments: None

Returns: ‑ In parent: PID of child process ‑ In child: PID of parent process (note: parent’s PID, not 0) ‑ On
error: ‑1
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Description: Create a new process. The child is an exact copy of the parent, including all open file de‑
scriptors and current file positions. The child inherits the parent’s memory image but has a separate
copy.

Notes: ‑ Fork returns twice ‑ once in each process ‑ The parent’s PC is advanced by 2 so it skips to the
instruction after fork ‑ Process times (user, system) are reset to 0 in the child

Implementation: fork() in usr/sys/ken/sys1.c

20.2.4. 3 ‑ read

nread = read(fd, buffer, nbytes)
int fd;
char *buffer;
int nbytes;

Arguments: ‑ fd ‑ File descriptor (in r0) ‑ buffer ‑ Address of buffer to read into ‑ nbytes ‑ Number of
bytes to read

Returns: Number of bytes actually read, or ‑1 on error

Description: Read data from a file. For regular files, reads from the current file position and advances it.
For pipes, blocks if no data available. For device files, behavior depends on the device driver.

Implementation: read() in usr/sys/ken/sys2.c

20.2.5. 4 ‑ write

nwritten = write(fd, buffer, nbytes)
int fd;
char *buffer;
int nbytes;

Arguments: ‑ fd ‑ File descriptor (in r0) ‑ buffer ‑ Address of buffer to write from ‑ nbytes ‑ Number
of bytes to write

Returns: Number of bytes actually written, or ‑1 on error

Description: Write data to a file. For regular files, writes at the current position and advances it. For
pipes, blocks if the pipe buffer is full.

Implementation: write() in usr/sys/ken/sys2.c
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20.2.6. 5 ‑ open

fd = open(name, mode)
char *name;
int mode;

Arguments: ‑ name ‑ Pathname of file to open ‑ mode ‑ Access mode: 0=read, 1=write, 2=read/write

Returns: File descriptor, or ‑1 on error

Description: Open an existing file for reading and/or writing. The filemust exist (usecreat() to create
files). Access permissions are checked based on the mode.

Implementation: open() in usr/sys/ken/sys2.c

20.2.7. 6 ‑ close

close(fd)
int fd;

Arguments: ‑ fd ‑ File descriptor (in r0)

Returns: 0 on success, ‑1 on error

Description: Close an open file descriptor. Releases the file table entry and decrements the inode refer‑
ence count.

Implementation: close() in usr/sys/ken/sys2.c

20.2.8. 7 ‑ wait

pid = wait()
int pid;
/* Status returned in r1 */
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Arguments: None

Returns: ‑ r0: PID of terminated child ‑ r1: Exit status of child ‑ ‑1 if no children exist

Description: Wait for a childprocess to terminate. If a child has already terminated (zombie state), return
immediately with its status. Otherwise, block until a child terminates.

Implementation: wait() in usr/sys/ken/sys1.c

20.2.9. 8 ‑ creat

fd = creat(name, mode)
char *name;
int mode;

Arguments: ‑ name ‑ Pathname of file to create ‑ mode ‑ Permission bits (masked with 07777)

Returns: File descriptor opened for writing, or ‑1 on error

Description: Create a new file or truncate an existing file. If the file exists, it is truncated to zero length
and opened for writing. If it doesn’t exist, a new file is created with the specified permissions (modified
by umask).

Implementation: creat() in usr/sys/ken/sys2.c

20.2.10. 9 ‑ link

link(name1, name2)
char *name1, *name2;

Arguments: ‑ name1 ‑ Pathname of existing file ‑ name2 ‑ New pathname (link) to create

Returns: 0 on success, ‑1 on error

Description: Create a hard link. The new pathname refers to the same inode as the existing file. Both
pathnames must be on the same filesystem. The link count of the inode is incremented. Only superuser
can link directories.

Errors: ‑ EEXIST ‑ name2 already exists ‑ EXDEV ‑ Cross‑device link attempted

Implementation: link() in usr/sys/ken/sys2.c
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20.2.11. 10 ‑ unlink

unlink(name)
char *name;

Arguments: ‑ name ‑ Pathname to remove

Returns: 0 on success, ‑1 on error

Description: Remove a directory entry. Decrements the link count of the inode. When the link count
reaches zero and no processes have the file open, the file’s blocks are freed. Only superuser can unlink
directories.

Implementation: unlink() in usr/sys/ken/sys3.c

20.2.12. 11 ‑ exec

exec(name, argv)
char *name;
char *argv[];

Arguments: ‑name ‑ Pathnameof executable file ‑argv ‑ Array of argument strings, NULL‑terminated

Returns: Does not return on success, ‑1 on error

Description: Execute a program. The current process image is replacedwith the newprogram. Open file
descriptors remain open (unless close‑on‑exec is set). Signals are reset to default.

Executable Format: ‑ Word 0: Magic number (0407 or 0410) ‑ Word 1: Text size ‑ Word 2: Data size ‑ Word
3: BSS size

Implementation: exec() in usr/sys/ken/sys1.c

20.2.13. 12 ‑ chdir

chdir(dirname)
char *dirname;
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Arguments: ‑ dirname ‑ Pathname of new current directory

Returns: 0 on success, ‑1 on error

Description: Change the currentworking directory. The specified pathnamemust be a directory and the
process must have execute permission.

Implementation: chdir() in usr/sys/ken/sys3.c

20.2.14. 13 ‑ time

time()
/* Returns time in r0 (high) and r1 (low) */

Arguments: None

Returns: Current time in seconds since epoch (Jan 1, 1970) as a 32‑bit value split across r0 (high 16 bits)
and r1 (low 16 bits)

Description: Get the current system time.

Implementation: gtime() in usr/sys/ken/sys3.c

20.2.15. 14 ‑ mknod

mknod(name, mode, dev)
char *name;
int mode;
int dev;

Arguments: ‑ name ‑ Pathname for new node ‑ mode ‑ File type and permissions ‑ dev ‑ Device number
(major/minor) for device files

Returns: 0 on success, ‑1 on error

Description: Create a special file (device node). Only superuser can create device nodes. The mode
specifies the file type:

• 040000 (IFDIR) ‑ Directory
• 020000 (IFCHR) ‑ Character device
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• 060000 (IFBLK) ‑ Block device

Implementation: mknod() in usr/sys/ken/sys2.c

20.2.16. 15 ‑ chmod

chmod(name, mode)
char *name;
int mode;

Arguments: ‑ name ‑ Pathname of file ‑ mode ‑ New permission bits

Returns: 0 on success, ‑1 on error

Description: Change file permissions. Only the file owner or superuser can change permissions.

Implementation: chmod() in usr/sys/ken/sys3.c

20.2.17. 16 ‑ chown

chown(name, owner)
char *name;
int owner;

Arguments: ‑ name ‑ Pathname of file ‑ owner ‑ New owner UID

Returns: 0 on success, ‑1 on error

Description: Change file owner. Only superuser can change file ownership. When a non‑superuser
changes ownership, the setuid bit is cleared.

Implementation: chown() in usr/sys/ken/sys3.c
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20.2.18. 17 ‑ break (sbrk)

brk(addr)
char *addr;

Arguments: ‑ addr ‑ New end of data segment

Returns: 0 on success, ‑1 on error

Description: Change the program break (end of data segment). Used to allocate or deallocate memory
for the heap. The break address is rounded up to a 64‑byte boundary.

Implementation: sbreak() in usr/sys/ken/sys1.c

20.2.19. 18 ‑ stat

stat(name, buf)
char *name;
struct stat *buf;

Arguments: ‑ name ‑ Pathname of file ‑ buf ‑ Buffer for stat structure

Returns: 0 on success, ‑1 on error

Description: Get file status. Fills in a stat structure with information about the file.

Stat Structure (36 bytes):

struct stat {
int st_dev; /* Device */
int st_ino; /* Inode number */
int st_mode; /* Mode and permissions */
char st_nlink; /* Link count */
char st_uid; /* Owner UID */
char st_gid; /* Group GID */
char st_size0; /* Size high byte */
int st_size1; /* Size low word */
int st_addr[8];/* Block addresses */
int st_atime[2]; /* Access time */
int st_mtime[2]; /* Modification time */

};

Implementation: stat() in usr/sys/ken/sys3.c
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20.2.20. 19 ‑ seek (lseek)

seek(fd, offset, whence)
int fd;
int offset;
int whence;

Arguments: ‑ fd ‑ File descriptor (in r0) ‑ offset ‑ Position offset ‑ whence ‑ Base for offset: ‑ 0: From
beginning ‑ 1: From current position ‑ 2: From end ‑ 3: Like 0, but offset is in 512‑byte blocks ‑ 4: Like 1,
but offset is in 512‑byte blocks ‑ 5: Like 2, but offset is in 512‑byte blocks

Returns: 0 on success, ‑1 on error

Description: Reposition file offset. Cannot seek on pipes.

Implementation: seek() in usr/sys/ken/sys2.c

20.2.21. 20 ‑ (unimplemented)

Reserved for getpid (not implemented in v4)

20.2.22. 21 ‑ mount

mount(special, dir, rwflag)
char *special;
char *dir;
int rwflag;

Arguments: ‑special ‑ Pathnameof block device ‑dir ‑ Pathnameofmount point ‑rwflag ‑ 0=read‑
/write, 1=read‑only

Returns: 0 on success, ‑1 on error

Description: Mount a filesystem. Theblockdevice ismountedon the specifieddirectory. Only superuser
canmount filesystems.

Implementation: smount() in usr/sys/ken/sys3.c
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20.2.23. 22 ‑ umount

umount(special)
char *special;

Arguments: ‑ special ‑ Pathname of block device to unmount

Returns: 0 on success, ‑1 on error

Description: Unmount a filesystem. Fails if any files on the filesystem are open.

Implementation: sumount() in usr/sys/ken/sys3.c

20.2.24. 23 ‑ setuid

setuid(uid)
int uid;

Arguments: ‑ uid ‑ New user ID (in r0, low byte only)

Returns: 0 on success, ‑1 on error

Description: Set user ID. If the caller is superuser or the newUIDmatches the real UID, both effective and
real UID are changed.

Implementation: setuid() in usr/sys/ken/sys3.c

20.2.25. 24 ‑ getuid

uid = getuid()
/* Returns real UID in low byte of r0, effective UID in high byte */

Arguments: None

Returns: Real UID in r0 low byte, effective UID in r0 high byte

Description: Get user ID. Returns both the real and effective user IDs.

Implementation: getuid() in usr/sys/ken/sys3.c
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20.2.26. 25 ‑ stime

stime()
/* Time passed in r0 (high) and r1 (low) */

Arguments: Time value in r0/r1

Returns: 0 on success, ‑1 on error

Description: Set system time. Only superuser can set the time.

Implementation: stime() in usr/sys/ken/sys3.c

20.2.27. 26‑27 ‑ (unimplemented)

Reserved

20.2.28. 28 ‑ fstat

fstat(fd, buf)
int fd;
struct stat *buf;

Arguments: ‑ fd ‑ File descriptor (in r0) ‑ buf ‑ Buffer for stat structure

Returns: 0 on success, ‑1 on error

Description: Get status of an open file. Like stat(), but operates on a file descriptor instead of a path‑
name.

Implementation: fstat() in usr/sys/ken/sys3.c

20.2.29. 29 ‑ (unimplemented)

Reserved
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20.2.30. 30 ‑ smdate

smdate(name)
char *name;

Arguments: ‑ name ‑ Pathname (1 word in sysent)

Description: Set modification date. This syscall is defined in the system call table but implemented
as nullsys(), meaning it does nothing and returns immediately. Likely a placeholder for planned
functionality that was never completed in v4.

Implementation: nullsys() (no‑op)

20.2.31. 31 ‑ stty

stty(fd, argp)
int fd;
int *argp;

Arguments: ‑ fd ‑ File descriptor of terminal (in r0) ‑ argp ‑ Pointer to 3‑word structure

Returns: 0 on success, ‑1 on error

Description: Set terminal parameters. The structure contains:

• Word 0: Input modes
• Word 1: Output modes
• Word 2: Erase and kill characters

Implementation: stty() in usr/sys/dmr/tty.c

20.2.32. 32 ‑ gtty

gtty(fd, argp)
int fd;
int *argp;
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Arguments: ‑ fd ‑ File descriptor of terminal (in r0) ‑ argp ‑ Pointer to 3‑word buffer

Returns: 0 on success, ‑1 on error

Description: Get terminal parameters.

Implementation: gtty() in usr/sys/dmr/tty.c

20.2.33. 33 ‑ (unimplemented)

Reserved

20.2.34. 34 ‑ nice

nice(incr)
int incr;

Arguments: ‑ incr ‑ Priority adjustment (in r0)

Returns: Previous nice value

Description: Change process priority. Positive values decrease priority (make process nicer). Values are
clamped to 0‑20. Only superuser can decrease the nice value (increase priority).

Implementation: nice() in usr/sys/ken/sys3.c

20.2.35. 35 ‑ sleep

sleep(seconds)
int seconds;

Arguments: ‑ seconds ‑ Number of seconds to sleep (in r0)

Returns: 0

Description: Suspend execution for the specified number of seconds.

Implementation: sslep() in usr/sys/ken/sys2.c
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20.2.36. 36 ‑ sync

sync()

Arguments: None

Returns: 0

Description: Flush all filesystem buffers to disk. Writes all modified buffer cache blocks and su‑
perblocks.

Implementation: sync() in usr/sys/ken/sys3.c

20.2.37. 37 ‑ kill

kill(pid, sig)
int pid;
int sig;

Arguments: ‑ pid ‑ Process ID to signal (in r0) ‑ sig ‑ Signal number

Returns: 0 on success, ‑1 on error

Description: Send a signal to a process. The sender must have the same controlling terminal as the
target, or be superuser.

Implementation: kill() in usr/sys/ken/sys4.c

20.2.38. 38 ‑ switch (getcsw)

csw = getcsw()

Arguments: None

Returns: Console switch register value

Description: Read the console switch register. Used for debugging and system configuration on the PDP‑
11.

Implementation: getswit() in usr/sys/ken/sys3.c
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20.2.39. 39‑40 ‑ (unimplemented)

Reserved

20.2.40. 41 ‑ dup

newfd = dup(fd)
int fd;

Arguments: ‑ fd ‑ File descriptor to duplicate (in r0)

Returns: New file descriptor, or ‑1 on error

Description: Duplicate a file descriptor. Returns the lowest available file descriptor number that refers
to the same open file.

Implementation: dup() in usr/sys/ken/sys3.c

20.2.41. 42 ‑ pipe

pipe()
/* Returns read fd in r0, write fd in r1 */

Arguments: None

Returns: ‑ r0: Read end file descriptor ‑ r1: Write end file descriptor ‑ ‑1 on error

Description: Create a pipe. Data written to the write end can be read from the read end. Used for inter‑
process communication.

Implementation: pipe() in usr/sys/dmr/pipe.c

20.2.42. 43 ‑ times
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times(buffer)
int *buffer;

Arguments: ‑ buffer ‑ Pointer to 6‑word buffer

Returns: 0

Description: Get process times. Fills buffer with:

• Word 0‑1: User time of current process
• Word 2‑3: System time of current process
• Word 4‑5: Sum of children’s user and system times

Implementation: times() in usr/sys/ken/sys4.c

20.2.43. 44 ‑ profil

profil(buff, bufsiz, offset, scale)
int *buff;
int bufsiz;
int offset;
int scale;

Arguments: ‑buff ‑ Buffer forprofile counters ‑bufsiz ‑ Sizeof buffer ‑offset ‑ PCoffset forprofiling
‑ scale ‑ Scaling factor for PC

Returns: 0

Description: Enable execution profiling. The kernel periodically samples the PC and increments a
counter in the buffer based on where the process was executing.

Implementation: profil() in usr/sys/ken/sys4.c

20.2.44. 45 ‑ (unimplemented)

Reserved (tiu ‑ was used for TIU hardware)
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20.2.45. 46 ‑ setgid

setgid(gid)
int gid;

Arguments: ‑ gid ‑ New group ID (in r0, low byte only)

Returns: 0 on success, ‑1 on error

Description: Set group ID. Like setuid, but for group ID.

Implementation: setgid() in usr/sys/ken/sys3.c

20.2.46. 47 ‑ getgid

gid = getgid()
/* Returns real GID in low byte of r0, effective GID in high byte */

Arguments: None

Returns: Real GID in r0 low byte, effective GID in r0 high byte

Description: Get group ID.

Implementation: getgid() in usr/sys/ken/sys3.c

20.2.47. 48 ‑ signal

old = signal(sig, func)
int sig;
int (*func)();

Arguments: ‑ sig ‑ Signal number ‑ func ‑ Handler: 0=default, 1=ignore, or address of handler func‑
tion

Returns: Previous handler value

Description: Set signal handler. Cannot change handler for signal 9 (KILL).
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Signals in UNIX v4:

Number Name Default Action

1 SIGHUP Terminate

2 SIGINT Terminate

3 SIGQIT Core dump

4 SIGINS Core dump

5 SIGTRC Core dump

6 SIGIOT Core dump

7 SIGEMT Core dump

8 SIGFPT Core dump

9 SIGKIL Terminate (cannot catch)

10 SIGBUS Core dump

11 SIGSEG Core dump

12 SIGSYS Core dump

13 SIGPIP Terminate

Implementation: ssig() in usr/sys/ken/sys4.c

20.2.48. 49‑63 ‑ (unimplemented)

Reserved for future use
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20.3. System Call Summary Table

# Name Args Description

0 indir 0 Indirect system call

1 exit 0 Terminate process

2 fork 0 Create child process

3 read 2 Read from file

4 write 2 Write to file

5 open 2 Open file

6 close 0 Close file

7 wait 0 Wait for child

8 creat 2 Create file

9 link 2 Create hard link

10 unlink 1 Remove directory entry

11 exec 2 Execute program

12 chdir 1 Change directory

13 time 0 Get system time

14 mknod 3 Create device node

15 chmod 2 Change permissions

16 chown 2 Change owner

17 break 1 Change data segment size

18 stat 2 Get file status

19 seek 2 Seek in file

21 mount 3 Mount filesystem

22 umount 1 Unmount filesystem

23 setuid 0 Set user ID

24 getuid 0 Get user ID

25 stime 0 Set system time

28 fstat 1 Get open file status

30 smdate 1 Set modification date (stub)
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# Name Args Description

31 stty 1 Set terminal params

32 gtty 1 Get terminal params

34 nice 0 Set priority

35 sleep 0 Sleep

36 sync 0 Flush buffers

37 kill 1 Send signal

38 switch 0 Read console switches

41 dup 0 Duplicate fd

42 pipe 0 Create pipe

43 times 1 Get process times

44 profil 4 Execution profiling

46 setgid 0 Set group ID

47 getgid 0 Get group ID

48 signal 2 Set signal handler

20.4. See Also

• Chapter 7: Traps and System Calls
• usr/sys/ken/sysent.c ‑ System call table
• usr/sys/ken/sys1.c ‑ Process system calls
• usr/sys/ken/sys2.c ‑ File I/O system calls
• usr/sys/ken/sys3.c ‑ File system calls
• usr/sys/ken/sys4.c ‑ Miscellaneous system calls
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21. Appendix B: File Formats

This appendix documents the binary file formats used in UNIX Fourth Edition, including the a.out exe‑
cutable format, archive format, and the on‑disk filesystem layout.

21.1. a.out Executable Format

The a.out format is the executable file format used by UNIX v4. The name comes from “assembler out‑
put,” as it’s the default output file produced by the assembler.

21.1.1. Header Structure

Every a.out file begins with an 8‑word (16‑byte) header:

Offset Size Field Description
------ ---- ----- -----------
0 2 a_magic Magic number (0407 or 0410)
2 2 a_text Size of text segment (bytes)
4 2 a_data Size of initialized data (bytes)
6 2 a_bss Size of uninitialized data (bytes)
8 2 a_syms Size of symbol table (bytes)
10 2 a_entry Entry point (usually 0)
12 2 a_unused Unused
14 2 a_flag Relocation flags

21.1.2. Magic Numbers

Magic Octal Description

0407 0407 Normal executable (text not read‑only)

0410 0410 Read‑only text (shared text segment)

0407 Format: ‑ Text and data are combined into a single segment ‑ Cannot share text between processes
‑ Simpler memory layout
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0410Format: ‑ Separate text anddata segments ‑ Text is read‑only and canbe sharedbetweenprocesses
‑ Used for larger programs to save memory

21.1.3. File Layout

+------------------+ Offset 0
| Header | 16 bytes
+------------------+ Offset 020 (16)
| |
| Text Segment | a_text bytes
| |
+------------------+ Offset 020 + a_text
| |
| Data Segment | a_data bytes
| |
+------------------+
| |
| Relocation Info | (if present)
| |
+------------------+
| |
| Symbol Table | a_syms bytes
| |
+------------------+
| |
| String Table | (symbol names)
| |
+------------------+
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21.1.4. Memory Layout at Execution

When exec() loads a 0407 file:

Address 0
+------------------+
| Text + Data | Combined segment
+------------------+
| BSS | Zero-initialized
+------------------+
| |
| Stack | Grows downward
+------------------+ Address 64KB

When exec() loads a 0410 file:

Address 0
+------------------+
| Text | Read-only, shared
+------------------+
| Data | Per-process
+------------------+
| BSS | Zero-initialized
+------------------+
| |
| Stack | Grows downward
+------------------+ Address 64KB

21.1.5. Relocation

When the file contains relocation information (not stripped), the relocation entries follow the data seg‑
ment. Each relocation entry is 8 bytes:

struct reloc {
int r_vaddr; /* Address to relocate */
int r_symndx; /* Symbol index or segment */
int r_type; /* Relocation type */

};

21.1.6. Symbol Table

Symbol table entries are 12 bytes each:

struct sym {
char s_name[8]; /* Symbol name (truncated to 8 chars) */
int s_type; /* Type and storage class */
int s_value; /* Value (address) */

};
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Symbol types:

Value Meaning

0 Undefined

1 Absolute

2 Text

3 Data

4 BSS

037 File name

21.1.7. Example: Examining an a.out File

$ od -o a.out | head
0000000 000407 000062 000004 000000
0000020 ...

Breaking down the header:

• 000407 = Magic (normal executable)
• 000062 = Text size (50 bytes)
• 000004 = Data size (4 bytes)
• 000000 = BSS size (0 bytes)
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21.2. Archive Format (.a files)

Archives are used by the linker to package multiple object files into a single library. The ar command
creates andmanipulates archives.

21.2.1. Archive Structure

+------------------+
| Archive Header | Magic string
+------------------+
| Member Header |
+------------------+
| Member Content | (object file)
+------------------+
| Member Header |
+------------------+
| Member Content |
+------------------+

...

21.2.2. Archive Magic

Archives begin with the magic string:

!<arch>\n

(8 bytes: !<arch> followed by newline)

21.2.3. Member Header

Each archive member is preceded by a 60‑byte header:

struct ar_hdr {
char ar_name[16]; /* Member name, blank padded */
char ar_date[12]; /* Modification time (decimal) */
char ar_uid[6]; /* User ID (decimal) */
char ar_gid[6]; /* Group ID (decimal) */
char ar_mode[8]; /* File mode (octal) */
char ar_size[10]; /* Size in bytes (decimal) */
char ar_fmag[2]; /* Magic: "`\n" */

};

Notes: ‑ All fields are ASCII, not binary ‑ Names longer than 16 characters are truncated ‑ The ar_fmag
fieldcontains thestring`\n (backquote, newline) ‑Membercontent follows immediatelyafter theheader
‑ If member size is odd, a padding newline is added
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21.2.4. Symbol Table (__.SYMDEF)

If the archive contains a symbol table (created by ranlib), it appears as the first member named
__.SYMDEF:
struct ranlib {

int ran_off; /* Offset of symbol name in string table */
int ran_foff; /* File offset of archive member */

};

21.3. Filesystem Format

The UNIX v4 filesystem uses a simple and elegant on‑disk layout. This section describes the physical
structure of data on disk.

21.3.1. Disk Layout

Block 0: Boot Block
Block 1: Superblock
Blocks 2-N: Inode List
Blocks N+1-end: Data Blocks

21.3.2. Boot Block (Block 0)

The first 512‑byte block is reserved for the boot loader. On a bootable disk, it contains code to load and
execute the kernel. On non‑bootable filesystems, it may be unused.

21.3.3. Superblock (Block 1)

The superblock contains filesystemmetadata. It is defined in usr/sys/filsys.h:

struct filsys {
int s_isize; /* Size of inode list in blocks */
int s_fsize; /* Size of filesystem in blocks */
int s_nfree; /* Number of entries in s_free */
int s_free[100]; /* Free block list cache */
int s_ninode; /* Number of entries in s_inode */
int s_inode[100]; /* Free inode cache */
char s_flock; /* Lock for free list manipulation */
char s_ilock; /* Lock for inode list manipulation */
char s_fmod; /* Superblock modified flag */
char s_ronly; /* Read-only flag */
int s_time[2]; /* Last modification time */

};
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Total size: 412 bytes

Field descriptions:

Field Description

s_isize Number of blocks in inode list (starting at block 2)

s_fsize Total blocks in filesystem

s_nfree Count of block numbers in s_free[] (0‑100)

s_free[] Cache of free block numbers

s_ninode Count of inode numbers in s_inode[]

s_inode[] Cache of free inode numbers

s_flock Prevents concurrent free list modification

s_ilock Prevents concurrent inode list modification

s_fmod Set when superblock needs writing

s_ronly Set for read‑only mounted filesystems

s_time Time of last modification

21.3.4. Free Block List

Free blocks are managed using a linked list of block groups. The superblock caches up to 100 free block
numbers in s_free[]. When this cache is exhausted, s_free[0] contains a pointer to a block that
contains another 100 free block numbers, and so on.
Superblock s_free[]:
+----+----+----+----+...+----+
|ptr | b1 | b2 | b3 |...| b99|
+----+----+----+----+...+----+

|
v

Block containing more free block numbers:
+----+----+----+----+...+----+
|ptr | b1 | b2 | b3 |...| b99|
+----+----+----+----+...+----+

|
v
...

21.3.5. Inode List

Inodes are stored sequentially starting at block 2. Each inode is 32 bytes, so 16 inodes fit per 512‑byte
block.
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Inode number to block calculation:

block = (inode_number + 31) / 16;
offset = ((inode_number + 31) % 16) * 32;

Note: Inode numbers start at 1 (inode 0 is unused). The +31 accounts for this offset.
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21.3.6. On‑Disk Inode Structure

Each inode is 32 bytes on disk:

Offset Size Field Description
------ ---- ----- -----------
0 2 di_mode Type, permissions, flags
2 1 di_nlink Number of hard links
3 1 di_uid Owner user ID
4 1 di_gid Owner group ID
5 1 di_size0 File size high byte
6 2 di_size1 File size low word
8 16 di_addr[8] Block addresses (8 x 16-bit)
24 4 di_atime Access time
28 4 di_mtime Modification time

Total: 32 bytes

21.3.7. Inode Mode Field

The di_mode field encodes file type and permissions:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| A | type | L | U | G | | r | w | x | r | w | x | r | w | x |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+

| \__(2)__/ | | | \___(3)____/ \___(3)____/ \___(3)____/
| | | | | | | |
| | | | | owner group other
| | | | |
| | | | +---- ISGID (02000) set-group-ID
| | | +--------- ISUID (04000) set-user-ID
| | +-------------- ILARG (010000) large file
| +--------------------- IFMT (060000) file type
+----------------------------- IALLOC (0100000) allocated

Bits Value Meaning

15 IALLOC (0100000) Inode is allocated

14‑13 IFMT (060000) File type

00 Regular file

01 Character device (020000)

10 Directory (040000)

11 Block device (060000)

12 ILARG (010000) Large file (indirect blocks)

11 ISUID (04000) Set user ID on execution
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Bits Value Meaning

10 ISGID (02000) Set group ID on execution

9 (01000) Unused1

8‑6 Owner permissions (rwx)

5‑3 Group permissions (rwx)

2‑0 Other permissions (rwx)

21.3.8. Block Addressing

The di_addr[] array holds 8 block addresses as 16‑bit integers2 (16 bytes total):
di_addr storage (16 bytes = 8 addresses x 2 bytes each):

byte: 0 1 2 3 4 5 14 15
+----+----+----+----+----+----+ +----+----+
| addr[0] | addr[1] | addr[2] |....| addr[7] |
+----+----+----+----+----+----+ +----+----+
blk 0 blk 1 blk 2 blk 7

Small files (ILARG not set): ‑ di_addr[0‑7] point directly to data blocks ‑ Maximum file size: 8 * 512 =
4KB

Large files (ILARG set): ‑ di_addr[0‑6] point to indirect blocks ‑ Each indirect block contains 256 block
numbers (512 bytes / 2 bytes per number) ‑ di_addr[7] points to a doubly‑indirect block ‑ Maximum file
size: (7 * 256 + 256 * 256) * 512 = approximately 33MB
Small file:
di_addr[0] --> data block
di_addr[1] --> data block
...

Large file:
di_addr[0] --> indirect block --> 256 data blocks
di_addr[1] --> indirect block --> 256 data blocks
...
di_addr[7] --> double indirect --> 256 indirect blocks --> 65536 data blocks

21.3.9. Directory Format

Directories are regular files with a specific internal format. Each directory entry is 16 bytes:
1Bit 9 became ISVTX (sticky bit) in UNIX Seventh Edition (1979). On executables, it kept the program text in swap space after
exit. On directories, it restricted file deletion to owners.

2UNIX v4 stores block addresses as simple 16‑bit integers with no packing. Starting in v6, addresses were stored in a packed
3‑byte (24‑bit) format using the l3tol() and ltol3() conversion functions to support larger filesystems. Some docu‑
mentation incorrectly attributes this 3‑byte packing to v4.
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struct direct {
int d_ino; /* Inode number (2 bytes) */
char d_name[14]; /* Filename (14 bytes, null-padded) */

};

Notes: ‑ Filenames are limited to 14 characters ‑ A d_ino of 0 indicates an empty (deleted) directory
entry ‑ The . and .. entries are always present

21.3.10. Special Inodes

Inode Purpose

1 Root directory (/)

2 Usually /lost+found or reserved

21.3.11. Device Files

For device files (character or block special files), the di_addr[0] field contains the device number:

di_addr[0]:
+--------+--------+
| major | minor |
+--------+--------+

8 bits 8 bits

• Major number: Identifies the device driver
• Minor number: Identifies the specific device instance

21.3.12. Example Filesystem Calculation

For a filesystem on an RK05 disk (4872 blocks):

Block 0: Boot block
Block 1: Superblock
Blocks 2-41: Inode list (40 blocks = 640 inodes)
Blocks 42-4871: Data blocks (4830 blocks)

Settings in superblock:

s_isize = 40 (blocks in inode list)
s_fsize = 4872 (total filesystem blocks)
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21.4. Object File Format

Object files (produced by the assembler before linking) use the samebasic structure as executables, with
different magic numbers and additional relocation information.

21.4.1. Object File Header

Same as a.out header, but with different magic values:

• 0407: Relocatable object with relocation info
• 0410: Pure (read‑only text) relocatable object

21.4.2. Relocation Entries

Object files contain relocation entries that tell the linker how to adjust addresses when combiningmulti‑
ple object files:

struct reloc {
int r_address; /* Address to patch */
int r_symbolnum; /* Symbol or segment reference */
int r_type; /* Type of relocation */

};

21.5. Summary

UNIX v4’s file formats are characterized by:

1. Simplicity ‑ Minimal headers, straightforward layouts
2. Efficiency ‑ Packed formats to save space
3. Fixed limits ‑ 14‑character filenames, 64KB address space

These constraints reflect the limited resources of the PDP‑11 era while still providing the foundation for
a fully functional operating system.
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21.6. See Also

• Chapter 9: Inodes and Superblock
• Chapter 11: Path Resolution
• Chapter 18: The C Compiler
• Appendix C: PDP‑11 Quick Reference
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22. Appendix C: PDP‑11 Quick Reference

This appendix provides a concise reference for the PDP‑11 architecture as used by UNIX Fourth Edition.
It covers registers, addressing modes, instruction set, and other essential details for understanding the
source code.

22.1. Registers

The PDP‑11 has eight 16‑bit general‑purpose registers:

Register Name UNIX Usage

r0 General Return value, temporary

r1 General Return value (high word), temporary

r2 General Temporary, preserved across calls

r3 General Temporary, preserved across calls

r4 General Temporary, preserved across calls

r5 General Frame pointer (fp), preserved

r6 sp Stack pointer

r7 pc Program counter

CallingConvention: ‑ r0‑r1: Used for return values, caller‑saved ‑ r2‑r4: Callee‑saved (must bepreserved
by called function) ‑ r5: Frame pointer, callee‑saved ‑ r6/sp: Stack pointer ‑ r7/pc: Program counter
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22.1.1. Processor Status Word (PSW)

Located at address 0177776:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|CM|PM| |RS| | | | |PR|PR|PR| T| N| Z| V| C|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Bits Name Description

15‑14 CM Current mode (00=kernel, 11=user)

13‑12 PM Previous mode

11 RS Register set (not used in 11/40)

7‑5 PR Processor priority (0‑7)

4 T Trace trap

3 N Negative (result < 0)

2 Z Zero (result = 0)

1 V Overflow

0 C Carry

22.2. Addressing Modes

The PDP‑11 uses a flexible addressing mode system. Each operand uses 6 bits: 3 for mode and 3 for
register.

22.2.1. Mode Encoding

Mode Syntax Name Description

0 Rn Register Operand is in register

1 (Rn) Register deferred Register contains address

2 (Rn)+ Autoincrement Use address, then increment register
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Mode Syntax Name Description

3 @(Rn)+ Autoincrement
deferred

Double indirection with increment

4 ‑(Rn) Autodecrement Decrement register, then use address

5 @‑(Rn) Autodecrement
deferred

Double indirection with decrement

6 X(Rn) Index Address is register + offset X

7 @X(Rn) Index deferred Double indirection with index

22.2.2. PC‑Relative Modes (using r7)

Mode Syntax Name Description

27 #n Immediate Operand follows instruction

37 @#n Absolute Address follows instruction

67 n Relative PC‑relative address

77 @n Relative deferred Indirect through PC‑relative address

22.2.3. Examples

mov r0,r1 ; Register to register
mov (r0),r1 ; Memory[r0] to r1
mov (r0)+,r1 ; Memory[r0] to r1, r0 += 2
mov -(sp),r1 ; Push: sp -= 2, Memory[sp] to r1
mov 4(r5),r1 ; Memory[r5+4] to r1
mov $100,r0 ; Immediate: 100 to r0
mov *$addr,r0 ; Absolute: Memory[addr] to r0
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22.3. Instruction Set

22.3.1. Data Movement

Instruction Operation Description

mov src,dst dst = src Move word

movb src,dst dst = src Move byte

clr dst dst = 0 Clear word

clrb dst dst = 0 Clear byte

com dst dst = ~dst Complement (bitwise NOT)

comb dst dst = ~dst Complement byte

neg dst dst = ‑dst Negate (two’s complement)

negb dst dst = ‑dst Negate byte

inc dst dst++ Increment

incb dst dst++ Increment byte

dec dst dst– Decrement

decb dst dst– Decrement byte

swab dst Swap bytes in word

22.3.2. Arithmetic

Instruction Operation Description

add src,dst dst += src Add

sub src,dst dst ‑= src Subtract

cmp src,dst src ‑ dst Compare (set flags only)

cmpb src,dst src ‑ dst Compare bytes

tst src src ‑ 0 Test (set flags only)

tstb src src ‑ 0 Test byte

adc dst dst += C Add carry

sbc dst dst ‑= C Subtract carry
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Instruction Operation Description

mul src,reg reg = reg * src Multiply (result in reg:reg+1)

div src,reg reg = reg:reg+1 / src Divide

ash shift,reg Arithmetic shift

ashc shift,reg Arithmetic shift combined

22.3.3. Logical

Instruction Operation Description

bit src,dst src & dst Bit test (set flags only)

bitb src,dst src & dst Bit test byte

bic src,dst dst &= ~src Bit clear

bicb src,dst dst &= ~src Bit clear byte

bis src,dst dst = src

bisb src,dst dst = src

xor reg,dst dst ^= reg Exclusive OR

22.3.4. Rotate/Shift

Instruction Operation Description

asr dst dst »= 1 Arithmetic shift right

asrb dst dst »= 1 Arithmetic shift right byte

asl dst dst «= 1 Arithmetic shift left

aslb dst dst «= 1 Arithmetic shift left byte

ror dst Rotate right through carry

rorb dst Rotate right byte

rol dst Rotate left through carry

rolb dst Rotate left byte
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22.3.5. Branches

All branches are PC‑relative with an 8‑bit signed offset (range: ‑128 to +127 words).

Instruction Condition Description

br addr Always Branch always

bne addr Z=0 Branch if not equal

beq addr Z=1 Branch if equal

bpl addr N=0 Branch if plus

bmi addr N=1 Branch if minus

bvc addr V=0 Branch if overflow clear

bvs addr V=1 Branch if overflow set

bcc addr C=0 Branch if carry clear

bcs addr C=1 Branch if carry set

bge addr N^V=0 Branch if greater or equal (signed)

blt addr N^V=1 Branch if less than (signed)

bgt addr Z (N^V)=0

ble addr Z (N^V)=1

bhi addr C Z=0

blos addr C Z=1

22.3.6. Jumps and Subroutines

Instruction Operation Description

jmp dst pc = dst Jump

jsr reg,dst tmp=dst; ‑(sp)=reg; reg=pc;
pc=tmp

Jump to subroutine

rts reg pc=reg; reg=(sp)+ Return from subroutine

mark n Mark stack (for complex returns)

sob reg,addr if (–reg) br addr Subtract one and branch
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Common calling patterns:

; Call function
jsr pc,func ; Push old PC, jump to func
; ... or ...
jsr r5,func ; Push old r5, jump (used with mark)

; Return
rts pc ; Pop return address into PC
; ... or ...
rts r5 ; Restore r5, return

22.3.7. Stack Operations

The stack grows downward (toward lower addresses). SP (r6) always points to the top item.

; Push
mov r0,-(sp) ; Decrement SP, store r0

; Pop
mov (sp)+,r0 ; Load r0, increment SP

; Push multiple
mov r2,-(sp)
mov r3,-(sp)
mov r4,-(sp)

; Pop multiple
mov (sp)+,r4
mov (sp)+,r3
mov (sp)+,r2

22.3.8. Traps and Interrupts

Instruction Vector Description

trap n 034 Trap (n in low byte of instruction)

emt n 030 Emulator trap

bpt 014 Breakpoint trap

iot 020 I/O trap

rti Return from interrupt

rtt Return from trap (trace trap)

halt Halt processor
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Instruction Vector Description

wait Wait for interrupt

reset Reset UNIBUS

22.3.9. System Calls (UNIX‑specific)

sys n ; System call number n
; Arguments in words following sys instruction
; or in registers depending on call

Example:

sys write ; sys 4
fout ; file descriptor
buf ; buffer address
count ; byte count

22.3.10. Condition Code Operations

Instruction Description

clc Clear C

clv Clear V

clz Clear Z

cln Clear N

ccc Clear all flags

sec Set C

sev Set V

sez Set Z

sen Set N

scc Set all flags

nop No operation
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22.4. Memory Map

22.4.1. PDP‑11/40 with 28Kwords (56KB)

Address (octal) Contents
000000-000377 Interrupt vectors
000400-037777 User text/data (when in user mode)
040000-157777 User text/data continued
160000-167777 Kernel/User stack or I/O page
170000-177777 I/O page and device registers

22.4.2. I/O Page (160000‑177777)

Address Device/Register

177560 Console receiver status

177562 Console receiver data

177564 Console transmitter status

177566 Console transmitter data

177570 Console switch register

177572 Memory management registers

177776 Processor status word (PSW)

22.5. Interrupt Vectors

Vector (octal) Interrupt Source

000 Reserved

004 Bus timeout, illegal instruction

010 Illegal instruction

014 BPT (breakpoint)

020 IOT

024 Power fail
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Vector (octal) Interrupt Source

030 EMT

034 TRAP

060 Console input

064 Console output

100 Line clock

104 Programmable clock

200 RK disk

Each vector location contains two words:

• Vector + 0: New PC
• Vector + 2: New PSW

22.6. Assembly Syntax (UNIX as)

22.6.1. Directives

Directive Description

.text Switch to text segment

.data Switch to data segment

.bss Switch to BSS segment

.globl name Declare global symbol

.byte val,… Emit bytes

.even Align to word boundary

.comm name,size Define common block
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22.6.2. Expressions

label: ; Define label at current address
. ; Current location counter
label + 4 ; Arithmetic on labels
<expr ; Force 8-bit value
>expr ; Force 16-bit value

22.6.3. Numeric Constants

10. ; Decimal 10
10 ; Octal 10 (= decimal 8)
0x10 ; (not standard, use octal)
'a ; Character constant (ASCII value)
"str ; String (each char is a word)

22.6.4. Common Patterns

; Function prologue
func:

mov r5,-(sp) ; Save frame pointer
mov sp,r5 ; Set new frame pointer
; ... function body ...
mov (sp)+,r5 ; Restore frame pointer
rts pc ; Return

; Access argument (first arg at 4(r5) after prologue)
mov 4(r5),r0 ; First argument
mov 6(r5),r1 ; Second argument

; Local variables
sub $4,sp ; Allocate 4 bytes
; -2(r5) is first local, -4(r5) is second
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22.7. PDP‑11 Models Used with UNIX v4

Model Memory Notes

11/20 28KB Original UNIX development

11/40 64KB Memory management

11/45 256KB Separate I/D space

UNIX v4 was primarily developed on the PDP‑11/40 with memory management enabled.

22.8. Quick Reference Card

22.8.1. Most Common Instructions

mov src,dst ; Copy word
add src,dst ; dst += src
sub src,dst ; dst -= src
cmp src,dst ; Compare (set flags)
tst src ; Test (set flags)
beq label ; Branch if equal
bne label ; Branch if not equal
jsr pc,func ; Call function
rts pc ; Return from function

22.8.2. Register Usage Summary

r0 Return value, scratch
r1 Return value (pair), scratch
r2-r4 Preserved across calls
r5 Frame pointer (preserved)
sp Stack pointer
pc Program counter

Briam Rodriguez 290 290



20260116.002 Edition

22.8.3. Stack Frame Layout

+----------------+
| Argument n |
+----------------+
| ... |
+----------------+
| Argument 1 | 4(r5)
+----------------+
| Return address | 2(r5)
+----------------+

r5 --> | Old r5 | 0(r5)
+----------------+
| Local 1 | -2(r5)
+----------------+
| Local 2 | -4(r5)
+----------------+

sp --> | ... |
+----------------+

22.9. See Also

• Chapter 2: PDP‑11 Architecture
• Chapter 4: Boot Sequence
• Chapter 7: Traps and System Calls
• Appendix A: System Call Reference
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23. Appendix D: Glossary

This glossary defines key terms, data structures, functions, and concepts used throughout the UNIX
Fourth Edition source code and this commentary.

23.1. A

a.out The default output filename produced by the assembler and linker. Also refers to the executable
file format used by UNIX v4. See Appendix B.

address space The range of memory addresses accessible to a process. On the PDP‑11, each process
has a 64KB (16‑bit) address space divided into text, data, and stack segments.

alloc() Function in alloc.c that allocates a free disk block from the filesystem’s free list.
APR (Active Page Register) PDP‑11 memory management register that defines the mapping between

virtual and physical addresses for eachmemory segment.

23.2. B

bio.c Buffer I/O source file (usr/sys/dmr/bio.c) containing the buffer cache implementation in‑
cluding bread(), bwrite(), and brelse().

bmap() Function insubr.c thatmaps a logical file block number to a physical disk block number, han‑
dling both direct and indirect block addressing.

bread() “Block read” ‑ reads a disk block into a buffer, returning a pointer to the buffer. Blocks until I/O
completes.

brelse() “Buffer release” ‑ returns a buffer to the free list after use. The buffer remains in the cache for
potential reuse.

BSS “Block Started by Symbol” ‑ the uninitialized data segment of a program, zero‑filled at load time.
buffer cache A pool of memory buffers used to cache disk blocks, reducing the need for disk I/O. Man‑

aged by bio.c.
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bwrite() “Blockwrite” ‑writes a buffer’s contents to disk. May be synchronous or asynchronous depend‑
ing on flags.

23.3. C

callout A deferred function call, typically scheduled by timeout() to execute after a specified delay.
cdevsw[] Character device switch table ‑ an array of function pointers for character device operations

(open, close, read, write).
clist Character list ‑ a linked list of small buffers (c‑blocks) used for TTY input and output queuing.
clock() Clock interrupthandler inclock.c, called60 timesper second. Updates time, handles schedul‑

ing, and processes callouts.
context switch The process of saving one process’s state and restoring another’s, performed by

swtch() in slp.c.
copyin()/copyout() Functions to safely copy data between user and kernel address spaces.
core Physical memory. “Core map” refers to the data structure tracking physical memory allocation.
coremap[] Array tracking allocation of physical memory (core) in 64‑byte blocks.

23.4. D

data segment The portion of a process’s address space containing initialized global and static variables.
device driver Kernel code thatmanages a hardware device, providing a standard interface (open, close,

read, write, strategy) to the rest of the kernel.
device number A number identifying a device, consisting of a major number (device type/driver) and

minor number (specific device instance).
device switch table Arrays (bdevsw[], cdevsw[]) mapping device major numbers to driver func‑

tions.
direct block A disk block address stored directly in an inode’s i_addr[] array, as opposed to an indi‑

rect block.
directory A special file containing a list of (inode number, filename) pairs. See namei().
dmr Dennis M. Ritchie ‑ author of device driver code in usr/sys/dmr/.
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23.5. E

effective UID/GID The user/group ID used for permission checking, which may differ from the real
UID/GID due to setuid/setgid bits.

estabur() “Establishuser registers” ‑ configuresmemorymanagement registers for aprocess’s text, data,
and stack segments.

exec() System call that replaces the current process image with a new program from an executable file.
expand() Function to change a process’s memory allocation, either growing or shrinking its address

space.

23.6. F

falloc() Allocate a free entry in the system file table.
file descriptor A small integer (0‑14 in UNIX v4) that identifies an open file within a process. Index into

u.u_ofile[].
file structure Kernel structure (struct file) representing an open file, containing the file offset and

pointer to the inode.
file table System‑wide array of struct file entries, shared among all processes.
filsys structure The superblock structure defined in filsys.h, containing filesystemmetadata.
fork() System call that creates a new process as a copy of the calling process.
free list Linked list of available resources (disk blocks, inodes, buffers, etc.).
fubyte()/fuword() “Fetch user byte/word” ‑ safely read a byte/word from user space.

23.7. G

getblk() Get a buffer for a specified device and block number. May return a cached buffer or allocate a
new one.

getf() Get file structure pointer from a file descriptor.
geterror() Extract error status from a buffer after I/O completion.

Briam Rodriguez 294 294



20260116.002 Edition

23.8. H

hash chain Linked list of buffers or inodes with the same hash value, used for quick lookup.

23.9. I

i‑list The contiguous area on disk (blocks 2 through N) containing all inodes for a filesystem.
i‑node See inode.
ialloc() Allocate a free inode from the filesystem.
ifree() Free an inode, returning it to the filesystem’s free inode list.
iget() Get a locked, in‑memory copy of an inode, reading from disk if necessary.
ILARG Inode flag indicating “large file” ‑ the inode uses indirect block addressing.
indirect block A disk block containing block numbers rather than file data, used to address large files.
init Process 1, the ancestor of all user processes. Created by the kernel during boot, it spawns getty

processes and adopts orphaned processes.
inode “Index node” ‑ data structure containing all metadata about a file except its name. Stored both on

disk and cached in memory.
interrupt Hardware signal that causes the CPU to suspend current execution and transfer control to an

interrupt handler.
interrupt vector Memory location containing the address of an interrupt handler.
iomove() Copy data between a buffer and user space during file I/O.
iput() Release an inode obtained via iget(), decrementing its reference count and writing to disk if

modified.
itrunc() Truncate a file to zero length, freeing all its data blocks.
iupdat() Update an inode on disk if it has beenmodified.

23.10. K

ken Ken Thompson ‑ author of core kernel code in usr/sys/ken/.
kernel mode Privileged processor mode with full access to hardware and memory. Also called supervi‑

sor mode.
kernel stack Per‑process stack used when executing in kernel mode, stored in the user structure.
KL11 The console terminal interface on the PDP‑11, driven by kl.c.
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23.11. L

link count Number of directory entries (hard links) referring to an inode. When it reaches zero and no
processes have the file open, the file is deleted.

lock Mechanism to ensure exclusive access to a resource. In UNIX v4, typically a flag that causes pro‑
cesses to sleep until cleared.

23.12. M

magic number The first word(s) of a file identifying its format. For executables: 0407 (combined text/‑
data) or 0410 (separate text).

major device number Upper byte of device number, identifying the device driver.
maknode() Create a new inode in a directory.
malloc() Allocatecontiguousblocks fromaresourcemap (corememoryor swapspace). Not theC library

malloc.
memorymanagement Hardware and software mechanisms for mapping virtual addresses to physical

addresses and protecting memory regions.
mfree() Return blocks to a resource map.
minor device number Lower byte of device number, identifying a specific device instance to the driver.
MMU (Memory Management Unit) Hardware that translates virtual addresses to physical addresses

and enforces memory protection.
mount Attach a filesystem to a directory in the existing file hierarchy.
mount table Array of struct mount entries tracking mounted filesystems.

23.13. N

namei() “Name to inode” ‑ converts apathname toan inode, following thedirectoryhierarchy. Theheart
of pathname resolution.

newproc() Create a new process structure and copy the parent’s context. Called by fork().
nice value Process priority adjustment. Higher nice values mean lower scheduling priority.
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23.14. O

open file table Per‑process array (u.u_ofile[]) of pointers to file structures for open files.
openi() Perform device‑specific open operations when opening a special file.

23.15. P

panic() Kernel function called for unrecoverable errors. Prints a message and halts the system.
PDP‑11 Digital Equipment Corporation minicomputer family for which UNIX v4 was written. See Ap‑

pendix C.
physio() Perform physical (raw) I/O directly between a device and user memory, bypassing the buffer

cache.
pipe Inter‑process communicationmechanismallowingoneprocess towrite data that another can read.

Implemented in pipe.c.
priority Scheduling priority determining which process runs next. Lower values mean higher priority.
proc structure Per‑process data structure (struct proc) containing process state, priority, memory

allocation info, etc.
proc[] System‑wide array of process structures.
process An executing programwith its own address space, resources, and execution context.
process ID (PID) Unique identifier assigned to each process.
prele() Release a locked inode’s lock without decrementing its reference count.
PSW (Processor Status Word) PDP‑11 register containing condition codes and processor mode/prior‑

ity.

23.16. R

raw device Character device interface to a block device, bypassing the buffer cache. Typically named
with an ‘r’ prefix (e.g., /dev/rrk0).

read‑ahead Optimization where the system reads additional blocks beyond what was requested, antic‑
ipating future reads.

readi() Read data from an inode into the user area, handling block mapping and buffer cache.
real UID/GID The actual user/group ID of the process owner, as opposed to the effective UID/GID.
reference count Count of pointers/handles to a resource (inode, file structure). Resource is freed when

count reaches zero.
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register Fast CPU storage location. The PDP‑11 has 8 general registers (r0‑r7).
resourcemap Data structure for managing allocation of contiguous blocks (memory, swap space).
RK05 DEC disk drive with 2.4MB capacity, commonly used with UNIX v4. Driven by rk.c.
root directory The top‑level directory of the filesystem, referenced by inode 1 and accessed as /.

23.17. S

sched() The scheduler function in slp.c, also known as process 0 or the swapper.
segment A region of the address space (text, data, or stack) with specific permissions andmapping.
setrun() Mark a process as runnable after it was sleeping.
signal Software notification sent to a process, causing it to execute a handler or terminate.
sleep() Put the current process to sleep waiting on a channel (event). Process is awakened by

wakeup() on that channel.
slp.c Source file containing process switching, sleep/wakeup, and scheduler code.
special file A file representing adevice rather thandata ondisk. Block special files usebdevsw[]; char‑

acter special files use cdevsw[].
stack segment Region of address space for the process stack, growing downward from high addresses.
strategy() Block device driver function that queues I/O requests. Called by buffer cache code.
subyte()/suword() “Store user byte/word” ‑ safely write a byte/word to user space.
superblock Block 1 of a filesystem, containing filesystemmetadata (size, free lists, etc.).
sureg() “Set user registers” ‑ loadmemory management registers with process‑specific values.
swap device Disk (or partition) used for swapping process images in and out of memory.
swap() Move a process image betweenmemory and the swap device.
swapmap Resource map tracking allocation of swap space.
swapper Process 0, which moves processes betweenmemory and swap space whenmemory is scarce.
switch register Console panel switches on the PDP‑11, readable via the switch system call.
swtch() Perform a context switch to the highest‑priority runnable process.
sysent[] System call entry table mapping system call numbers to handler functions.
system call Request from user program to kernel for a service. Invoked via the sys (trap) instruction.

23.18. T

text segment Read‑only portion of address space containing program instructions. May be shared be‑
tween processes running the same program.
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text structure Kernel structure tracking shared text segments among processes.
time System time in seconds since January 1, 1970 (the UNIX epoch). Stored as two 16‑bit words.
timeout() Schedule a function to be called after a specified number of clock ticks.
trap Exception or interrupt caused by executing a special instruction (like sys) or error condition.
trap() Kernel trap handler in trap.c, dispatching system calls and handling faults.
TTY (teletype) Terminal device. The TTY subsystem handles input/output processing for character‑

based terminals.

23.19. U

u (user structure) Per‑process kernel data structure containing open files, current directory, signal han‑
dlers, saved registers, and the kernel stack. Always mapped at a fixed kernel address.

u.u_ar0 Pointer to saved user registers in the user structure.
u.u_base I/O transfer address for current system call.
u.u_cdir Pointer to inode of current working directory.
u.u_count I/O transfer count for current system call.
u.u_error Error code frommost recent system call.
u.u_offset[] File offset for current I/O operation.
u.u_ofile[] Array of pointers to open file structures.
u.u_procp Pointer to the current process’s proc structure.
u.u_signal[] Array of signal handler addresses.
ufalloc() Allocate a free file descriptor in the current process.
USIZE Size of user structure in 64‑byte blocks (typically 16, or 1KB).
user mode Unprivileged processormode for running user programs, with restricted access to hardware

andmemory.

23.20. V

vector See interrupt vector.
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23.21. W

wait channel (wchan) Address used to identify what event a sleeping process is waiting for. Processes
are awakened when wakeup() is called with their wait channel.

wait() System call to wait for a child process to terminate and retrieve its exit status.
wakeup() Wake all processes sleeping on a specified channel (address).
wdir() Write a directory entry.
working directory The current directory for pathname resolution. Changed by chdir().
writei() Write data from the user area to an inode, handling block mapping and buffer cache.

23.22. X

xalloc() Allocate shared text segment for a process.
xfree() Free a process’s reference to its shared text segment.

23.23. Z

zombie A terminated process whose parent has not yet called wait(). The process structure remains
allocated to hold the exit status.

23.24. Numeric/Symbol

0407 Magic number for normal (non‑pure) executable files.
0410 Magic number for pure (shared text) executable files.
/dev Directory containing device special files.
/etc Directory containing system configuration files.
/etc/init The init program, first user process executed after boot.
/etc/passwd User account database.
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23.25. Source File Quick Reference

File Location Contents

alloc.c ken/ Disk block allocation

bio.c dmr/ Buffer cache

clock.c ken/ Clock interrupt handler

fio.c ken/ File descriptor operations

iget.c ken/ Inode operations

kl.c dmr/ Console driver

main.c ken/ Kernel entry point

mem.c dmr/ Memory device driver

nami.c ken/ Path resolution (namei)

pipe.c dmr/ Pipe implementation

prf.c ken/ printf functions

rdwri.c ken/ readi/writei

rk.c dmr/ RK05 disk driver

sig.c ken/ Signal handling

slp.c ken/ Sleep/wakeup, scheduler

subr.c ken/ bmap and utilities

sys1.c ken/ fork, exec, exit, wait

sys2.c ken/ open, read, write, close

sys3.c ken/ unlink, chdir, chmod, etc.

sys4.c ken/ signal, kill, times, etc.

sysent.c ken/ System call table

text.c ken/ Shared text segments

trap.c ken/ Trap handler

tty.c dmr/ TTY line discipline
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23.26. See Also

• Appendix A: System Call Reference
• Appendix B: File Formats
• Appendix C: PDP‑11 Quick Reference
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24. Appendix E: Running UNIX v4

This appendix explains how to runUNIX v4 on amodern computer using theOpenSIMHPDP‑11 simulator.
Running the actual system lets you experiment with the code discussed throughout this book.

24.1. Resources

The UNIX v4 restoration and emulation documentation is maintained at:

• squoze.net—http://squoze.net/UNIX/v4/ — Complete restoration by Angelo Papenhoff
• Internet Archive—https://archive.org/details/utah_unix_v4_raw—Original tape image
• Turnkey version—http://squoze.net/UNIX/v4/turnkey/ — Pre‑built, ready to boot

For themost up‑to‑date instructions, consult squoze.net. The instructions below provide a quick start.

24.2. Prerequisites

24.2.1. macOS (MacPorts)

sudo port install opensimh

OpenSIMH executables have a simh- prefix (e.g., simh-pdp11).

24.2.2. Debian/Ubuntu

sudo apt install simh

The executable is named pdp11.
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24.3. Quick Start with Turnkey Version

The fastest way to get running:

# Download pre-built disk and boot script
curl -O http://squoze.net/UNIX/v4/turnkey/disk.rk
curl -O http://squoze.net/UNIX/v4/turnkey/boot.ini

# Boot UNIX v4
simh-pdp11 boot.ini

At the boot prompt:

k
unix

Login as root (no password).

24.4. Installation from Tape

For the full installation experience:

24.4.1. Step 1: Download Files

curl -O http://squoze.net/UNIX/v4/unix_v4.tap
curl -O http://squoze.net/UNIX/v4/install.ini
curl -O http://squoze.net/UNIX/v4/boot.ini

24.4.2. Step 2: Run Installation

simh-pdp11 install.ini

At the = prompt, enter:

=mcopy
'p' for rp; 'k' for rk
k
disk offset
0
tape offset
75
count
4000
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=uboot
k
unix

You should see:

mem = 64530

login: root

24.4.3. Step 3: Verify Installation

# ls
bin
dev
etc
lib
mnt
tmp
unix
usr
# sync
# sync

24.5. Basic Usage

24.5.1. Important: Use chdir not cd

UNIX v4 predates the cd alias. Youmust use chdir to change directories:

# chdir /usr # correct
# cd /usr # wrong - no such command

24.5.2. Essential Commands

# ls # list files
# ls -l # long listing
# pwd # print working directory
# chdir /usr # change directory
# cat file # display file
# ps # show processes
# who # show logged-in users
# date # show date (will show 1974!)
# df # disk free space
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24.5.3. Text Editing with ed

The only editor is ed, a line editor:

# ed filename
a # append mode
Type your text here
. # period alone exits append mode
w # write (save)
q # quit

24.5.4. Compiling C Programs

# ed hello.c
a
main()
{

printf("Hello from UNIX v4!\n");
}
.
w
q
# cc hello.c # compile
# a.out # run
Hello from UNIX v4!

24.6. Shutdown Procedure

Critical: Always follow this procedure to prevent data loss.

# sync # flush buffers
# sync # run twice to ensure completion

Then press Ctrl+E to enter the simulator prompt:

Simulation stopped, PC: 002040 (MOV (SP)+,177776)
sim> quit
Goodbye

Why sync twice? The first sync starts the buffer flush but doesn’t guarantee completion. The second
ensures all data is written.

24.7. Optional: Rebuilding the Kernel

If ps doesn’t work or you want to customize the kernel:
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24.7.1. Step 1: Download Kernel Build Files

curl -O http://squoze.net/UNIX/v4/sys.tp

24.7.2. Step 2: Update boot.ini

set cpu 11/45
set tc en
att rk0 disk.rk
att tc1 sys.tp
d sr 2
boot rk

24.7.3. Step 3: Extract and Build

# chdir /usr/sys
# tp 1x # extract from DECtape
# sh run # build kernel
# mv a.out /nunix
# sync
# sync

24.7.4. Step 4: Boot New Kernel

Restart the simulator and at the boot prompt:

k
nunix # boot new kernel instead of "unix"

If successful, replace the old kernel:

# mv /unix /unix.old
# mv /nunix /unix

24.8. Optional: Installing Manual Pages

UNIX v4 didn’t include manual pages. The restoration provides them from v6:

curl -O http://squoze.net/UNIX/v4/nroff.tp
curl -O http://squoze.net/UNIX/v4/man.tap
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See squoze.net for detailed installation instructions. Note that nroff has a known bug where it resets
the terminal to uppercasemode—use output redirection (man cat > temp && cat temp) to work
around this.

24.9. Troubleshooting

Stuck at = prompt: Type uboot then k then unix

Lost data after reboot: Always run sync twice before exiting

ps command doesn’t work: Rebuild the kernel with the updated files from sys.tp

Terminal stuck in UPPERCASE: Run stty -lcase or logout and login again

24.10. Experiments to Try

With a running UNIX v4 system, you can verify the code discussed in this book:

1. Examine the filesystem:

# ls -l /dev
# cat /etc/passwd
# od /unix | head

2. Watch process creation:

# ps a
# sh &
# ps a

3. Explore the C compiler:

# chdir /usr/c
# ls
# cat c00.c | head -50

4. Look at the kernel source:

# chdir /usr/sys/ken
# ls
# cat main.c

5. Try the assembler:

# chdir /usr/source/s1
# ls *.s
# cat cat.s
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24.11. File Descriptions

File Description

unix_v4.tap Original tape in SIMH format

disk.rk RK05 disk image (your filesystem)

install.ini SIMH config for installation

boot.ini SIMH config for booting

sys.tp DECtape with kernel build files

nroff.tp Text formatting system from v6

man.tap Manual pages

24.12. Notes

• UNIX v4 has no password for root by default
• The system uses 64KB of memory
• RK05 disk images are approximately 2.4MB
• Press Ctrl+E at any time for the SIMH prompt
• The date will show 1974—this is correct for the tape

For comprehensive documentation and the latest updates, visit squoze.net/UNIX/v4.
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and technical literature.

His early professional work included writing Linux kernel device drivers at Tangent POS, developing key‑
board anddisplay drivers for point‑of‑sale systemsbasedon the Intel SA1110StrongARMplatformduring
the Linux 2.4 era. He went on to lead development of Congressional Moments for iPad, the Lexee voice
assistant at Angel.com, and the Salesforce Cloud CTI integration. His experience spans kernel develop‑
ment, iOS applications, and full‑stack web engineering, with production work in C, Python, Objective‑C,
Perl, PHP, C++, and assembly.

He holds five U.S. patents:

• Systems and Methods for Maintaining Internet Protocol Address During and After Failover (US‑
20240121697‑A1, 2024)

• Conversation Assistant (US‑10129720‑B1, 2012)
• Display Screen with Graphical User Interface (US‑D763863‑S, US‑D771643, US‑D802613‑S; 2016)

He currently serves as Senior Vice President of Engineering for the POTS In A Box offering at DataRemote,
Inc.

This book represents both a personal debt and a professional aspiration. The debt is to Ritchie, Thomp‑
son, Kernighan, and the Bell Labs engineers whose work enabled his career. The aspiration is to provide
what he once searched for and could not find: a guide to UNIX internals written with the clarity and con‑
cision that distinguished The C Programming Language—explaining notmerely what the code does, but
why it was designed that way.

Theoriginal UNIX authorswrote systemsof remarkable eleganceunder severe constraints. This commen‑
tary is an attempt to make their thinking accessible to a new generation of programmers.
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In 1974, amagnetic tape containingUNIX Fourth Editionwas sent fromBell Labs to theUniversity of Utah.
Fifty years later, it was rediscovered in a storage closet—the only surviving copy of the first UNIX written
in C.

This book is a complete guide to that code.

At just 10,000 lines, UNIX v4 is small enough for one person to understand completely—yet it contains
a fully functional operating system with multiprocessing, a hierarchical filesystem, device drivers, and a
shell. Every concept that defines modern computing is here, in its purest form.

What you’ll learn:

• How an operating system boots and initializes itself
• How processes are created, scheduled, and terminated
• How the filesystem stores and retrieves data
• How system calls bridge user programs and the kernel
• How device drivers interface hardware to software
• How the shell parses and executes commands
• How the C compiler transforms source into machine code

Who this book is for:

• Systems programmers who want to understand operating systems at the deepest level
• Computer science students seeking a comprehensible, complete OS to study
• Historians of computing exploring UNIX’s origins
• Anyone curious how 10,000 lines of code changed the world

The code is elegant. The design is timeless. The ideas are foundational.

”UNIX is basically a simple operating system, but you have to be a genius to understand the simplicity.”
– Dennis Ritchie
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