

Inform 7

Adam Thornton
Lambda Lounge

3 March 2011

Inform 7

● Domain-specific language for development of
text adventures

Yawn.

Inform 7

● Declarative programming language
● With natural-language syntactic sugar
● Which is why it seemed that it might be

interesting for Lambda Lounge
● Fun to try to wrap your head around; requires a

different problem-solving approach than
procedural, object-oriented, or functional
languages

Audience

● Most functional or dynamic languages we study
are intended for experienced programmers
● Is Haskell anyone's first language? Fifth?

● Inform 7 is designed for nonprogrammers
● In the proud tradition of BASIC, Applescript, and,

yes, COBOL

● Basic conceit: writing a text adventure (modern,
pretentious term: “Interactive Fiction”;
henceforth, “IF”) should feel like playing one

Audience

● So why are we looking at it?
● It's fun to look at a language designed for someone

besides computer language geeks for a change
● Syntax is delightfully weird
● It's really fun and fast to write in, at least if you like

Interactive Fiction
– If you don't, you probably want to go take a smoke break

for the next half hour. Fair warning.

Hello World

World Model

● A text adventure is usually concerned with
simulating a world, and then reasoning about
objects and events within the simulated world.

● World state modeled with hierarchy of built-in
and user-extended types.

● Changes in state modeled with actions invoked
by rules applying to game state.

Standard Rules

● Every game implicitly comes with “The
Standard Rules”; this includes the object type
hierarchy, 26 “activities” (e.g. “writing a
paragraph about something”, “listing contents of
something”), a bunch of standard text-
adventure actions (“taking”, “telling it about”,
“waving hands”), and sequence-of-play
rulebooks.

● All of these things can be overridden, replaced,
or delisted as desired by the author.

Built-in type hierarchy

● Object
● Direction
● Room
● Region
● Thing

– Door
– Container

● Vehicle
● Player's holdall

→ next column

– Supporter
– Backdrop
– Device
– Person

● Man
● Woman
● Animal

● That's all!

Before we get rolling: heads-up

● Identifiers can have spaces in them.
● “Sasquatch's Den is a room.”

● What Inform calls a “kind”, most of us call a
“class”:
● “A coin is a kind of thing.”

● We can define adjectives which are then usable
in play and in world-construction:
● “Shininess is a kind of value. The shininesses are

shiny and dull. A coin has a shininess. A coin is
usually dull. The penny is a shiny coin in the Bank.”

Building the world model

● Done declaratively:
● Muddy Field is a room. Scotland is a region.

Edinburgh, Glasgow and Aberdeen are rooms in
Scotland.

● Spatial relations (by default transitive)
● Aberdeen is northeast of Glasgow. Edinburgh is

east of Glasgow.
● Glasgow is a room. “Gray and grim.” [This sets the

“initial appearance” property.]

Populating the world

● Items are placed with declarations too:
● An ugly American is a man in Europe.
● The wooden table is a supporter in the kitchen. “A

wobbly wooden table rests unsteadily on the floor.”
The description is “The table looks unsteady.”
Some butter is on the wooden table.

● And properties:
● The butter can be edible. It is edible.

● Synonyms:
● Understand “wobbly” and “unsteady” as the table.

World model

● Certainly, it's a simulation
● But it's fundamentally a dramatic or narrative

simulation, not a physical one
● The language pushes this view with its

constructions: things not in any room are “off-
stage”, you “remove X from play”

● Default sense-modeling and object-player
interaction scoping is primitive

● Other IF languages approach this differently: TADS
3 does very detailed sense-transmission modeling
and more physics built into standard library

Kinds

● Object, number, time, truth state, text, indexed
text, snippet, Unicode character, stored action,
scene, table name, equation name, use option,
action name, figure name, sound name,
external file

● “List of” for any kind K, and “List of lists of...”
● List of K, description of K, relation of K to L, K

based rule producing L, K based rulebook
producing L, activity on K, phrase K -> L, K
valued property, K valued table column

Adding Kinds

● Exactly what you'd expect. Either enumeration:
A sphere of dorkiness is a kind of value. The spheres of
dorkiness are Trekkie, Star Wars Fanboy, Tentacle Hentai
Enthusiast, and Joss Whedon Groupie.

● Or subclassing. And often both:
A nerd is a kind of person.

 A nerd has a sphere of dorkiness. A nerd is usually a
Joss Whedon Groupie.

Adjectives

● Understood by parser and in world construction
● A coin is a kind of thing. A coin can be shiny or dull.

A coin is usually dull.
● Understand the shiny property as referring to a coin.

– “referring to” makes it an adjective
● A metal is a kind of value. The metals are copper,

silver, and gold. A coin has a metal. Understand
the metal property as describing a coin.
– “describing” means you can use it as either a noun or an

adjective
● The penny is a shiny copper coin in the bank.

Scoping

● Primitive. Everything is either a global, or a
lexical local defined with “let”.
● It's easy to have confusing errors because you

defined “the wooden table” but referred to it as “the
table”, and the compiler thinks you're talking about
“the table” you defined 20,000 words ago

● Still, works pretty well in practice, once you're done
being surprised the first couple times.

● There's not much variable-passing, because
typically things happen based on world-model state
changes...so using globals actually kinda makes
sense.

Rules

● The world model type hierarchy lets us create
the nouns and adjectives. Now we need to act
on those things with verbs.

● Application of rules to world model.
● Rule conditions map onto sorta-kinda-like-a-

regex-on-the-whole-world-state
● Perhaps an example will make this more clear.

From Ron Newcomb's Inform 7 for
Programmers:

Example rule

● Instead of a suspicious person (called the
suspect) burning something which is evidence
against the suspect when the number of people
in the location is at least two, try the suspect
going a random valid direction.

● Highlights: “Instead” is a rulebook name.
“(called the suspect)” names a variable for
reference later in the same rule. “Try” kicks off
a new action and all its rulebooks. “Valid” is an
adjective on class “Direction.”

Rules

● Sequence of play rules
● “when play begins”
● “every turn”

● Rules governing actions
● Before, instead, check, carry out, report, and after

are the big ones

● Preamble defines when rule is to be applied;
code is what rule does. Preamble + code = rule

Example rules

● Check going up in Peak of Everest: instead say
“There's no more 'up' from here.”

● Every turn when the nymph is in the location:

Let p be a random item enclosed by the player;

Say “The nymph adroitly relieves you of [p]!”;

Now p is held by the nymph.

● This is the stating the license rule:

say “This game is licensed under the Creative
Commons 3.0 Attribution-NonCommercial-
ShareAlike license.”

Adding new actions

● Define its arity, and come up with rules for its
behavior. Really, the first part of this rule
should be a “check” rule, not rolled into “report”

Rulebooks

● Every action gets a new Check, Report, and
Carry out rulebook.

● Making a function call is a “to decide” rule (or
“for deciding”. The thing that is decided on is
the return value.

● “The fancy announce the score rule is listed
instead of the announce the score rule in the
carry out requesting the score rulebook.”

Rulebooks

Relations

● Symmetric/asymmetric, one-to-one, one-to-
various, various-to-one, various-to-various.

A role is a kind of thing. Characterization
relates various roles to various people. The
verb to be played by (he was played by) implies
the characterization relation. Jennifer Aniston is
a woman. Rachel is a role. Rachel was played
by Jennifer Aniston.

● You can do most of this with tables too...which I
find a lot easier.

Tables

● What they sound like. They have rows and
columns; the things in a column are of the same
type.

Choose a row in the Table of Real Cast Members
with a Character entry of “Rachel”. If the met entry
is true....

Syntax and Sugar

● Natural language; some people find it inherently
offensive. I don't mind it.

● Pythonic or Algolic block constructs
● Looping: usually done with “repeat with x

running through...” rather than an explicit loop
variable.

● Lists: apply (==map), filter, reduce. But it's
cheesy because there's no lazy evaluation and
there's no such thing as an infinite list.

More sugar

● Scenes – very useful for story purposes
● Slowly drowning begins when the location is the

Lake. Slowly drowning ends happily when the
lifeguard is in the location. Slowly drowning ends
hellishly when the location is Hades.

● And then you can do things like
● Every turn during slowly drowning....

● Regions: groups of locations
● Can be nested, cannot overlap

WTF Language Features

● Dimensional Analysis:
● “A length is a kind of value. 10 m specifies a length.

 An area is a kind of value. 10 sq m specifies an
area. A length times a length specifies an area. 10
cu m specifies a volume. A length times an area
specifies a volume.”

● And even equation support
● Equation – Volume of a parallelepiped

 V=lwh

Where V is a volume, l is a length, w is a length,
and h is a length

No, seriously, WTF ?
● Graham's a math professor; maybe there's

some pedagogical aim here?

IDE and programmer support

● OS X, Windows, and Linux GNOME ports: nice
IDE.
● Prettyprinting syntax and indentation
● Headings for code management: Volume, Book,

Part, Chapter

● Comprehensive documentation with (in IDE)
Javascript pasting from Recipe Book or doc
examples into source text

● Skein for playthrough-path management

IDE conveniences

● Automagic spatial index map (on Index tab) and
as EPS

● Unit testing with the “test” command; also a way
to fix-seed the PRNG for regression testing

● Comprehensive game index (Actions, Contents,
Kinds, Phrasebook, Rules, Scenes, World)
linked back into code

● Release along with....

More IDE goodies

● Breakpoints and watchpoints, code stepper
● Transcript management, with “play to here”

function, “bless” a transcript (great for
regression testing), Skein integration

●or you can use the underlying ni (“natural
Inform”, command-line tool) compiler directly
and write your source text in the editor of your
choice.

● Collaborative I7 at Guncho: www.guncho.com

http://www.guncho.com/

A snippet from a larger WIP

● About 160,000 words right now; release in
Spring Thing 2011 (early April)

Under the Hood

● Inform 7 compiles to Inform 6 (a much more
traditional OO language), which in turn
compiles to z-code or glulx virtual machine.

● Inform 6:
● Sources: http://inform7.com/sources/i6n/
● Manual: http://www.inform-fiction.org/manual/download_dm4.html

● Z-machine specs:
http://www.inform-fiction.org/zmachine/standards/index.html

● Glulx: http://eblong.com/zarf/glulx/

http://inform7.com/sources/i6n/
http://www.inform-fiction.org/manual/download_dm4.html
http://www.inform-fiction.org/zmachine/standards/index.html
http://eblong.com/zarf/glulx/

Inform 6

Inform 7 Source Code

● Implemented as a very large literate program
● In “Inweb”, a superset of a subset of CWEB,

implemented in Perl.
● Actual code is ANSI C

– Requires GNU make, GCC 3+, Perl 5
– Interfaces have more dependencies
– CLI requires Perl (or Python—XO port could be revived)

● Not yet publicly available as source; will be
someday. In the meantime, the Standard Rules and
Inweb are available as Literate Programs:
http://inform7.com/sources/webs/

http://inform7.com/sources/webs/

IF VMs

● Zcode: Infocom-format story file and virtual
machine. 16-bit, 128K/256K/512K, depending
on version.

● Glulx: 32-bit, a lot like zcode, but also separates
presentation layer (into the glk API)

● Standalone zcode interpreters for damn near
everything (including iPhone and Android) and
glulx for most things modern (no mobile yet)

● Javascript terps; Android/iPhone doesn't quite
work yet (displays, but no input). Fine in
desktop browsers.

zcode/glulx Interpreters

● Standalone:
● Gargoyle is my favorite:http://ccxvii.net/gargoyle/
● Zoom's nice too:

http://www.logicalshift.demon.co.uk/
● Or just poke around on www.ifarchive.org

● Javascript
● Parchment (zcode):

http://code.google.com/p/parchment/
● Quixe (glulx): https://github.com/erkyrath/quixe
● Or just “release along with an interpreter”

http://ccxvii.net/gargoyle/
http://www.logicalshift.demon.co.uk/
http://www.ifarchive.org/
http://code.google.com/p/parchment/
https://github.com/erkyrath/quixe

 Inform 7 Ports

● Full GUI on Mac OS X, Windows, Linux
i386/amd64

● CLI only on Linux (i386,amd64, ppc, armv5tel,
s390, s390x) and FreeBSD (i386, amd64)

● Used to be Solaris CLI ports too
● if you want it and can make hardware available for

me I'm happy to revive it. I stopped when I changed
jobs and lost access to the Solaris boxes.

● And XO
● If you have Python but not Perl. Could revive.

Resources

● Inform and Extensions: http://www.inform7.com
● Ron Newcomb, Inform 7 for Programmers:

http://www.plover.net/~pscion/Inform%207%20for%20Programmers.pdf
● Aaron Reed,Creating Interactive Fiction with

Inform 7 (ISBN 1435455061)
● Aaron Reed's Blue Lacuna source. 736 page

PDF. Really.

http://www.lacunastory.com/BlueLacunaSourceBook.pdf.zip

http://www.inform7.com/
http://www.plover.net/~pscion/Inform%207%20for%20Programmers.pdf
http://www.lacunastory.com/BlueLacunaSourceBook.pdf.zip

Resources

● rec.arts.int-fiction and rec.games.int-fiction
● IF Comp (www.ifcomp.org) , Spring Thing (

www.springthing.net)
● IF Archive: www.ifarchive.org
● IF Wiki: www.ifwiki.org
● Get Lamp: www.getlamp.com

http://www.ifcomp.org/
http://www.springthing.net/
http://www.ifarchive.org/
http://www.ifwiki.org/
http://www.getlamp.com/

