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PREFACE

We —or the Black Chamber— have a little agreement with [Knuth];
he doesn’t publish the real Volume 4 of The Art of Computer Programming,
and they don't render him metabolically challenged.

— CHARLES STROSS, The Atrocity Archive (2001)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material
has not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, 3,
and 4A were at the time of their first printings. And alas, those carefully-checked
volumes were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this pre-fascicle contains an exposition of
mathematical material (mostly about probability theory) that I plan to include
at the beginning of Volume 4B. Its raison d’étre is explained below, in an excerpt
from the preface to that volume.

Probability theory has made huge strides since I “completed” my college
education in 1963; hence I'm basically self-taught with respect to these new-
fangled ideas, and I fear that in many respects my knowledge lags behind that
of today’s students. I've tried my best to get the story right, yet I fear that in
many respects I'm woefully ignorant.

For example, I urgently need your help with respect to some exercises that I
made up as I was preparing this material. I certainly don’t like to receive credit
for things that have already been published by others, and most of these results
are quite natural “fruits” that were just waiting to be “plucked.” Therefore
please tell me if you know who deserves to be credited, with respect to the ideas
found in exercises 6, 8, 9, 19, 32, 33, 38, 73, 88, or 96.
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iv PREFACE

* * *

Special thanks are due to Persi Diaconis, Omid Etesami, Svante Janson, Sheldon
Ross, Ernst Schulte-Geers, and ... for their detailed comments on my early
attempts at exposition, as well as to numerous other correspondents who have
contributed crucial corrections.

* * *

I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is first
reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
21 October 2012
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Part of the Preface to Volume 4B

During the years that I’'ve been preparing Volume 4, I've often run across
basic techniques of probability theory that I would have put into Section 1.2
of Volume 1 if I’d been clairvoyant enough to anticipate them in the 1960s.
Finally I realized that I ought to collect most of them together in one place,
near the beginning of Volume 4B, because the story of these developments is too
interesting to be broken up into little pieces scattered here and there.

Therefore this volume begins with a special section entitled “Mathematical
Preliminaries Redux,” and future sections use the abbreviation ‘MPR’ to refer
to its equations and its exercises.

January 19, 2017
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Here mine aduice shall be to these Artificers that will profite in this,

or any of my bookes, now published, or that hereafter shall be,

first confusely to reade them through; then with more iudgement.

Reade at the third reading, wittely to practise: So fewe things shall be vnknowne.

— LEONARD DIGGES, A Booke named Tectonicon (1556)

In books of this nature | can only suggest you keep it
as simple as the subject will allow.

— KODE VICIOUS (2012)
January 19, 2017
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MATHEMATICAL PRELIMINARIES REDUX

MANY PARTS of this book deal with discrete probabilities, namely with a finite or
countably infinite set {2 of atomic events w, each of which has a given probability
Pr(w), where

0<Pr(w)<1 and > Prw)=1 (1)

weR

This set €2, together with the function Pr, is called a “probability space.” For
example, 2 might be the set of all ways to shuffle a pack of 52 playing cards,
with Pr(w) = 1/52! for every such arrangement.

An event is, intuitively, a proposition that can be either true or false with
certain probability. It might, for instance, be the statement “the top card is an
ace,” with probability 1/13. Formally, an event A is a subset of 2, namely the
set of all atomic events for which the corresponding proposition A is true; and

Pr(4) = > Pr(w) = Y Pr(w)[weA] (2)
wEA wenN
A random variable is a function that assigns a value to every atomic event.
We typically use uppercase letters for random variables, and lowercase letters
for the values that they might assume; thus, we might say that the probability
of the event X =z is Pr(X = 2) = ) o Pr(w)[X (w)==z]. In our playing card
example, the top card T is a random variable, and we have Pr(T = Q&) = 1/52.
(Sometimes, as here, the lowercase-letter convention is ignored.)
The random variables X, ..., X are said to be independent if

Pr(X; =z and --- and Xy, =) = Pr(X; =z1)...Pr(Xy = xx) (3)

for all (zy,...,z). For example, if F' and S denote the face value and suit of
the top card T, clearly F' and S are independent. Hence in particular we have
Pr(T = Q#) = Pr(F = Q) Pr(S = #). But T is not independent of the bottom
card, B; indeed, we have Pr(T =t and B = b) # 1/522 for any cards t and b.

A system of n random variables is called k-wise independent if no k of
its variables are dependent. With pairwise (2-wise) independence, for example,
we could have variable X independent of Y, variable Y independent of Z, and
variable Z independent of X; yet all three variables needn’t be independent
(see exercise 6). Similarly, k-wise independence does not imply (k + 1)-wise
independence. But (k + 1)-wise independence does imply k-wise independence.

The conditional probability of an event A, given an event B, is

Pra| B) = PO - PEAED) (1)

1

January 19, 2017

discrete probabilities
atomic events
probability space
shuffle

playing cards

event

random variable
independent

random variables
k-wise independent
pairwise independent random variables
conditional probability



2 MATHEMATICAL PRELIMINARIES REDUX

when Pr(B) > 0, otherwise it’s Pr(A4). Imagine breaking the whole probability
space ) into two parts, Q' = B and Q' = B = Q \ B, with Pr(Q') = Pr(B) and
Pr(Q") = 1—Pr(B). If we assign new probabilities to atomic events by the rules
Prw)we®] v Prw)we”]
= P =P QN=——
oy Pr@) = Prlw|) = UTEEE
we obtain new probability spaces Q' and Q" allowing us to contemplate a world
where B is always true and another world where B is always false. It’s like taking
two branches in a tree, each of which has its own logic. Conditional probability is
important for the analysis of algorithms because algorithms often get into differ-
ent states where different probabilities are relevant. Notice that we always have

Pr'(w) = Pr(w|Q) =

Pr(A) = Pr(A|B)-Pr(B) + Pr(A|B) - Pr(B). (5)
The events Ay, ..., Ay are said to be independent if the random variables
[A1], ..., [Ak] are independent. (Bracket notation applies in the usual way to

events-as-statements, not just to events-as-subsets: [A] = 1if A is true, otherwise
[A] = 0.) Exercise 20 proves that this happens if and only if

Pr( N Aj) = [IPr4y),  forall g C{1,....k}. (6)

jeJ jeJ

In particular, events A and B are independent if and only if Pr(A|B) = Pr(A).

When the values of a random variable X are real numbers or complex
numbers, we’ve defined its expected value E X in Section 1.2.10: We said that

EX = ) X(w)Prw) = Y 2Pr(X =u1), (7)
we T
provided that this definition makes sense when the sums are taken over infinitely
many nonzero values. (The sum should be absolutely convergent.) A simple but
extremely important case arises when A is any event, and when X = [A] is a
binary random variable representing the truth of that event; then
E[4] = Y [A)w)Pr(w) = Y [weA]Pr(w) = > Pr(w) = Pr(4). (8)
wEQ wEeN wEA
We’ve also noted that the expectation of a sum, E(X; + --- + X}), always
equals the sum of the expectations, (E X;) 4+ --- 4+ (E X), whether or not the
random variables X; are independent. Furthermore the expectation of a product,
EX; ... Xk, is the product of the expectations, (E X;)...(E X}), if those vari-
ables do happen to be independent. In Section 3.3.2 we defined the covariance,

covar(X,Y) = E(X —EX)(Y —EY)) = (EXY)—(EX)(EY), (9)
which tends to measure the way X and Y depend on each other. The variance,
var(X), is covar(X, X); the middle formula in (9) shows why it is nonnegative

whenever the random variable X takes on only real values.
All of these notions of expected value carry over to conditional expectation,

B(X]4) = ¥ Xy = Dot )
wEA x
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MATHEMATICAL PRELIMINARIES REDUX 3

conditioned on any event A, when we want to work in the probability space for
which A is true. One of the most important formulas, analogous to (5), is

EX = ) E(X|Y=y) Pr(Y =y)

= ZZmPr(X:x|Y:y) Pr(Y =y). (11)

Furthermore there’s also another important kind of conditional expectation:
When X and Y are random variables, it’s often helpful to write ‘E(X |Y)’ for
“the expectation of X given Y.” Using that notation, Eq. (11) becomes simply

EX = E(E(X|Y)). (12)

This is a truly marvelous identity, great for hand-waving and for impressing
outsiders— except that it can be confusing until you understand what it means.

In the first place, if Y is a Boolean variable, ‘E(X |Y")’ might look as if it
means ‘E(X |Y =1)’, thus asserting that Y is true, just as ‘E(X | A)’ asserts the
truth of A in (10). Noj; that interpretation is wrong, quite wrong. Be warned.

In the second place, you might think of E(X |Y) as a function of Y. Well,
yes; but the best way to understand E(X |Y') is to regard it as a random variable.
That’s why we’re allowed to compute its expected value in (12).

All random variables are functions of the atomic events w. The value of
E(X]Y) at w is the average of X (w') over all events w’ such that Y (') = Y (w):

B(X[Y)(w) = 3. X() Pr)[Y (@) =Y (@)]/Pr(Y =Y(w).  (13)
w'eN

Similarly, E(X |Y1,...,Y;) averages over events withY;(w')=Y;(w) for 1<j<r.
For example, suppose X; through X, are binary random variables con-
strained by the condition that (X, ... X,,) = X1 +---+X,, = m, where m and n
are constants with 0 < m < n; all (Z) such bit vectors X ... X,, are assumed to
be equally likely. Clearly E X; = m/n. But what is E(X»| X;1)? If Xy =0, the
expectation of X5 is m/(n — 1); otherwise that expectation is (m —1)/(n — 1);
consequently E(X»| X;) = (m—X1)/(n—1). And what is E(X | Xy,..., Xg—1)?
The answer is easy, once you get used to the notation: If v(X;... Xx_1) =7,
then X ...X, is a random bit vector with v(Xy ...X,,) = m — r; hence the
average value of X will be (m —r)/(n + 1 — k) in that case. We conclude that

m—l/(Xl...kal)
n+1-—k

The random variables on both sides of these equations are the same.

E(Xk|X1>"')Xk71) = ) fOI']_SkSTL (14)

Inequalities. In practice we often want to prove that certain events are rare,
in the sense that they occur with very small probability. Conversely, our goal
is sometimes to show that an event is not rare. And we’re in luck, because
mathematicians have devised several fairly easy ways to derive upper bounds or
lower bounds on probabilities, even when the exact values are unknown.

January 19, 2017
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4 MATHEMATICAL PRELIMINARIES REDUX

We’ve already discussed the most important technique of this kind in Sec-
tion 1.2.10. Stated in highly general terms, the basic idea can be formulated as
follows: Let f be any nonnegative function such that f(x) > s >0 when x € S.
Then

Pr(X € §) < Ef(X)/s, (15)
provided that Pr(X € S) and E f(X) both exist. For example, f(z) = |z| yields
Pr(X| > m) < B|X|/m (16)

whenever m > 0. The proof is amazingly simple, because we obviously have
Ef(X) > Pr(X €S)-s+Pr(X ¢5)-0. (17)

Formula (15) is often called Markov’s inequality, because A. A. Markov discussed
the special case f(z) = |z|* in Izviestiia Imp. Akad. Nauk (6) 1 (1907), 707-716.
If we set f(r) = (r — EX)?, we get the famous 19th-century inequality of
Bienaymé and Chebyshev:

Pr(|X —EX|>r) < var(X)/r% (18)

The case f(z) = e®* is also extremely useful.

Another fundamental estimate, known as Jensen’s inequality [Acta Mathe-
matica 30 (1906), 175-193], applies to convez functions f; we’ve seen it so far
only as a “hint” to exercise 6.2.2-36(!). The real-valued function f is said to be
convex in an interval I of the real line, and —f is said to be concave in I, if

flpr+qy) < pf(x)+qf(y) forallz,yel, (19)

whenever p > 0, ¢ > 0, and p+¢ = 1. This condition turns out to be equivalent to
saying that f"(z) > 0 for all z € I, if f has a second derivative f”. For example,
the functions e® and z2" are convex for all constants a and all nonnegative
integers n; and if we restrict consideration to positive values of z, then f(z) = 2"

is convex for all integers n (notably f(z) = 1/x when n = —1). The functions
In(1/z) and zInz are also convex for > 0. Jensen’s inequality states that
fEX) < E(f(X)) (20)

when f is convex in the interval I and the random variable X takes values only
in I. (See exercise 42 for a proof.) For example, we have 1/EX < E(1/X) and
INEX >EInX and (EX)InEX < E(X In X), when X is positive. Notice that
(20) actually reduces to the very definition of convexity, (19), in the special case
when X = x with probability p and X = y with probability q.

Third and fourth on our list of remarkably useful inequalities are two classical
results that apply to any random variable X whose values are nonnegative
integers:

Pr(X >0) <EX; (“the first moment principle”) (21)
Pr(X > 0) > (EX)?/(EX?). (“the second moment principle”) (22)

Formula (21) is obvious, because the left side is p; + ps + ps + - - - when py is the
probability that X = k, while the right side is p1 + 2ps + 3p3 + - - - .
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MATHEMATICAL PRELIMINARIES REDUX b}

Formula (22) isn’t quite so obvious; it is p; + pa + p3 + - -+ on the left and
(p1 +2p2 +3p3 + -+ )?/(p1 + 4p2 + 9p3 + - - - ) on the right. However, as we saw
with Markov’s inequality, there is a remarkably simple proof, once we happen to
discover it:

EX?=E(X?|X > 0)Pr(X > 0) + E(X?| X = 0) Pr(X =0)
=E(X?|X > 0)Pr(X >0)
> (B(X|X > 0))°Pr(X > 0) = (EX)?/Pr(X >0). (23)

In fact this proof shows that the second moment principle is valid even when X is
not restricted to integer values (see exercise 46). Furthermore the argument can
be strengthened to show that (22) holds even when X can take arbitrary negative
values, provided only that E X > 0 (see exercise 47). See also exercise 118.

Exercise 54 applies (21) and (22) to the study of random graphs.

Another important inequality, which applies in the special case where X =
X1+ -+ X,y is the sum of binary random variables X, was introduced more
recently by S. M. Ross [Probability, Statistics, and Optimization (New York:
Wiley, 1994), 185-190], who calls it the “conditional expectation inequality”:

r(X > 0) 22_: X|X:1) (24)

Ross showed that the right-hand side of this inequality is always at least as big
as the bound (E X)?/(E X?) that we get from the second moment principle (see
exercise 50). Furthermore, (24) is often easier to compute, even though it may
look more complicated at first glance.

For example, his method applies nicely to the problem of estimating a
reliability polynomial, f(p1,...,pn), when f is a monotone Boolean function;
here p; represents the probability that component j of a system is “up.” We ob-
served in Section 7.1.4 that reliability polynomials can be evaluated exactly, using
BDD methods, when n is reasonably small; but approximations are necessary
when f gets complicated. The simple example f(z1,...,25) = 12223V T2T324V
z4xs illustrates Ross’s general method: Let (Y7,...,Y5) be independent binary
random variables, with EY; = p;; and let X = X;+X,+X3, where X; = Y;Y5Y3,
Xy = Y5Y3Y,, and X3 = Y,Y5 correspond to the prime implicants of f. Then
PI'(X > 0) = Pr(f(Yi, c. )YE')) = 1) = Ef(Yh c. '7Y5) = f(ph s 7p5)> because
the Y’s are independent. And we can evaluate the bound in (24) easily:

D1DP2ps3 D2P3pa Daps (25)
1+ps+paps pr+1+ps  pipeps +peps+1

If, for example, each p; is 0.9, this formula gives ~ 0.848, while (E X)?/(E X?) ~
0.847; the true value, p1paps + p2pspa + paps — P1P2DPsP4 — P2P3Paps, is 0.9558.

Many other important inequalities relating to expected values have been
discovered, of which the most significant for our purposes in this book is the
FKG inequality discussed in exercise 61. It yields easy proofs that certain events
are correlated, as illustrated in exercise 62.

Pr(X >0) >

January 19, 2017

Markov’s inequality

binary

Ross

conditional expectation inequality
reliability polynomial

monotone Boolean function

BDD

prime implicants

FKG inequality



6 MATHEMATICAL PRELIMINARIES REDUX

Martingales. A sequence of dependent random variables can be difficult to
analyze, but if those variables obey invariant constraints we can often exploit
their structure. In particular, the “martingale” property, named after a classic
betting strategy (see exercise 67), proves to be amazingly useful when it applies.
Joseph L. Doob featured martingales in his pioneering book Stochastic Processes
(New York: Wiley, 1953), and developed their extensive theory.

The sequence (Z,) = Zy, Z1, Za, ... of real-valued random variables is
called a martingale if it satisfies the condition

E(Zns1|Z0,.. .1 %n) = Z,  forallm>0. (26)

(We also implicitly assume, as usual, that the expectations E Z,, are well defined.)
For example, when n = 0, the random variable E(Z; | Zp) must be the same as
the random variable Z, (see exercise 63).

Figure 1 illustrates George Pdlya’s famous “urn model” [F. Eggenberger
and G. Pdlya, Zeitschrift fiir angewandte Math. und Mech. 3 (1923), 279-289],
which is associated with a particularly interesting martingale. Imagine an urn
that initially contains two balls, one red and one black. Repeatedly remove a
randomly chosen ball from the urn, then replace it and contribute a new ball of
the same color. The numbers (r,b) of red and black balls will follow a path in
the diagram, with the respective local probabilities indicated on each branch.

One can show without difficulty that all n+1 nodes on level n of Fig. 1 will be
reached with the same probability, 1/(n + 1). Furthermore, the probability that
a red ball is chosen when going from any level to the next is always 1/2. Thus
the urn scheme might seem at first glance to be rather tame and uniform. But
in fact the process turns out to be full of surprises, because any inequity between
red and black tends to perpetuate itself. For example, if the first ball chosen is
black, so that we go from (1,1) to (1,2), the probability is only 2In2 — 1 ~ .386
that the red balls will ever overtake the black ones in the future (see exercise 88).

One good way to analyze Pdlya’s process is to use the fact that the ratios
r/(r + b) form a martingale. Each visit to the urn changes this ratio either to
(r+1)/(r+b+1) (with probability »/(r+b)) or to r/(r+b+1) (with probability
b/(r+0b)); so the expected new ratio is (rb+r>+7)/((r+b)(r+b+1)) = r/(r+b),
no different from what it was before. More formally, let Xy = 1, and for n > 0
let X, be the random variable ‘[the nth ball chosen is red]’. Then there are
Xo+ -+ X, red balls and Xg + ---+ X,, + 1 black balls at level n of Fig. 1;
and the sequence (Z,,) is a martingale if we define

Zn=Xo+--+Xp)/(n+2). (27)

In practice it’s usually most convenient to define martingales Zy, Z1, ...
in terms of auxiliary random variables Xy, X1, ..., as we’ve just done. The
sequence (Z,) is said to be a martingale with respect to the sequence (X,) if
Z, is a function of (Xo,...,X,,) that satisfies

E(Zns1|Xo,..., Xp) = Zn  forall n > 0. (28)
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MATHEMATICAL PRELIMINARIES REDUX 7

Level 0

Level 1

Level 2

Level 3

Fig. 1. Poélya’s urn model. The probability of taking any downward path
from (1,1) to (r,b) is the product of the probabilities shown on the branches.

Furthermore we say that a sequence (Y,,) is fair with respect to the sequence (X,,)
if Y, is a function of (Xo,...,X,,) that satisfies the simpler condition

E(Yit1]Xo0,...,X,) =0 for all n > 0; (29)
and we call (Y},) fair whenever
E(Yot1|Y0,...,Yn) =0 for all n > 0. (30)

Exercise 77 proves that (28) implies (26) and that (29) implies (30); thus an
auxiliary sequence (X,,) is sufficient but not necessary for defining martingales
and fair sequences.

Whenever (Z,) is a martingale, we obtain a fair sequence (Y,) by letting
Yo = Zo and Y,, = Z,, — Z,—1 for n > 0, because the identity E(Yj,t1 |
20y v Zy) = BE(Zpy1 — Zn | Zo,-..,2Zy) = Zn — Zy shows that (Y),) is fair
with respect to (Z,). Conversely, whenever (Y,,) is fair, we obtain a martingale
(Z,) by letting Z,, =Yy + - - + Y}, because the identity E(Z,+1|Yo,...,Ys) =
E(Z, + Yo | Yo,...,Y,) = Z, shows that (Z,,) is a martingale with respect
to (Y,). In other words, fairness and martingaleness are essentially equivalent.
The Y’s represent unbiased “tweaks” that change one Z to its successor.

It’s easy to construct fair sequences. For example, every sequence of inde-
pendent random variables with mean 0 is fair. And if (Y},) is fair with re-
spect to (X,), so is the sequence (Y)!) defined by Y, = f,(Xo,...,Xn_1)¥n
when f,(Xo,...,Xn—1) is almost any function whatsoever! (We need only
keep f, small enough that EY, is well defined.) In particular, we can let
fn(Xo,...,Xn-1) =0 for all large n, thereby making (Z,) eventually fixed.

A sequence of functions N, (xo,...,x,—1) is called a stopping rule if each
value is either 0 or 1 and if N,(xo,...,Zn—1) = 0 implies Ny, +1(xo,...,2Zn) = 0.
We can assume that Ny = 1. The number of steps before stopping, with respect
to a sequence of random variables (X,,), is then the random variable

N = Ny(Xo) + Na(Xo, X1) + N3(Xo, X1, Xo) +---. (31)

(Intuitively, N,(zo,...,Zn—1) means [the values Xy = zq, ..., X;,-1 = 2,1 do
not stop the process]; hence it’s really more about “going” than “stopping.”)
Any martingale Z,, = Yo + --- + Y}, with respect to (X,) can be adapted to
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8 MATHEMATICAL PRELIMINARIES REDUX

stop with this strategy if we change it to Z], = Y + --- + Y, where Y] =
Np(Xo,--.,Xn-1)Y,. Gamblers who wish to “quit when ahead” are using the
stopping rule Np41(Xo, ..., X,) = [Z], <0], when Z], is their current balance.

Notice that if the stopping rule always stops after at most m steps—in
other words, if the function Ny, (o, ..., Zm—1) is identically zero— then we have
Z, = ZY, because Z, doesn’t change after the process has stopped. Therefore
EZ,=EZ, =EZj=EZ, Nostopping rule can change the expected outcome
of a martingale when the number of steps is bounded.

An amusing game of chance called Ace Now illustrates this optional stopping
principle. Take a deck of cards, shuffle it and place the cards face down; then
turn them face up one at a time as follows: Just before seeing the nth card, you
are supposed to say either “Stop” or “Deal,” based on the cards you’ve already
observed. (If n = 52 you must say “Stop.”) After you've decided to stop, you
win $12 if the next card is an ace; otherwise you lose $1. What is the best
strategy for playing this game? Should you hold back until you have a pretty
good chance at the $127 What is the worst strategy? Exercise 82 has the answer.

Tail inequalities from martingales. The essence of martingales is equality
of expectations. Yet martingales turn out to be important in the analysis of
algorithms because we can use them to derive inequalities, namely to show that
certain events occur with very small probability.

To begin our study, let’s introduce inequality into Eq. (26): A sequence (Z,,)
is called a submartingale if it satisfies

E(Zni11Z0y-.-12Z0) > Zy, for all n > 0. (32)

Similarly, it’s called a supermartingale if ‘>’ is changed to ‘<’ in the left-hand
part of this definition. (Thus a martingale is both sub- and super-.) In a
submartingale we have E Zy < EZ; < EZ, < ---, by taking expectations in (32).
A supermartingale, similarly, has ever smaller expectations as n grows. One way
to remember the difference between submartingales and supermartingales is to
observe that their names are the reverse of what you might expect.

Submartingales are significant largely because of the fact that they’re quite
common. Indeed, if (Z,,) is any martingale and if f is any convex function, then
(f(Z,)) is a submartingale (see exercise 84). For example, the sequences (| Z,|)
and (max(Z,,c)) and (Z2) and (e?") all are submartingales whenever (Z,) is
known to be a martingale. If, furthermore, Z,, is always positive, then (Z3) and
(1/Z,) and (In(1/Z,)) and (Z,,1n Z,), etc., are submartingales.

If we modify a submartingale by applying a stopping rule, it’s easy to see that
we get another submartingale. Furthermore, if that stopping rule is guaranteed
to quit within m steps, we’ll have EZ,, > EZ, = EZ}, = EZ],. Therefore no
stopping rule can increase the expected outcome of a submartingale, when the
number of steps is bounded.

That comparatively simple observation has many important consequences.
For example, exercise 86 uses it to give a simple proof of the so-called “maximal
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inequality”: If (Z,) is a nonnegative submartingale then
Pr(max(Zo, Z1,...,2Zs) > 2) < (EZ,)/x, for all z > 0. (33)
Special cases of this inequality are legion. For instance, martingales (Z,,) satisfy
Pr(max(|Zol, |Z1],. .-, |Zn]) > z) E(|Z,])/z, for all z > 0; (34)

<
Pr(max(Z3,7%,...,Z%) > z) < E(Z2)/z, for all z > 0. (35)

Relation (35) is known as Kolmogorov’s inequality, because A. N. Kolmogorov
proved it when Z, = X; + - - -+ X, is the sum of independent random variables
with E X, = 0 and var(Xy) = o} for 1 <k < n [Math. Annalen 99 (1928), 309-
311]. In that case var(Z,) = 07 +---+02 = 02, and the inequality can be written

PI‘(|X1| < tO’,|X1 +X2| < tU,...,|X1 ++Xn| < tO’) >1- ]./t2 (36)

Chebyshev’s inequality gives only Pr(|X; +-- -+ X,| < to) > 1 —1/t*, which is
a considerably weaker result.

Another important inequality applies in the common case where we have
good bounds on the terms Y3, ..., Y, that enter into the standard representation
Zn=Yy+Y1+---+Y, of a martingale. This one is called the Hoeffding—Azuma
inequality, after papers by W. Hoeffding [J. Amer. Statistical Association 58
(1963), 13-30] and K. Azuma [Téhoku Math. Journal (2) 19 (1967), 357-367].
It reads as follows: If (Y,,) is any fair sequence with a,, <Y, < b, then

Pr(Yi 44 Yy 2 2) < o2 /(1o et Ouman)) (37)
The same bound applies to Pr(Y; +---+Y,, < —x), since —b,, < =Y, < —a,; so
Pr(|Yi 4 4 Y| > 2) < 2e 207/ (br=0)* 44 (bn—an)®) (38)

Exercise 90 breaks the proof of this result into small steps. In fact, the proof
even shows that a,, and b, may be functions of {Yp,...,Y,_1}.

Applications. The Hoeffding—Azuma, inequality is useful in the analysis of
many algorithms because it applies to “Doob martingales,” a very general class
of martingales that J. L. Doob featured as Example 1 in his Stochastic Processes
(1953), page 92. (In fact, he had already considered them many years earlier,
in Trans. Amer. Math. Soc. 47 (1940), 486.) Doob martingales arise from any
sequence of random variables (X,,), independent or not, and from any other
random variable @): We simply define

Zn = E(Q[Xo,..., Xy). (39)

Then, as Doob pointed out, the resulting sequence is a martingale (see exercise
91). In our applications, @ is an aspect of some algorithm that we wish to study,
and the variables Xy, X1, ... reflect the inputs to the algorithm. For example,
in an algorithm that uses random bits, the X’s are those bits.

Consider a hashing algorithm in which ¢ objects are placed into m random
lists, where the nth object goes into list X,; thus 1 < X, <mfor 1 <n <t, and
we assume that each of the m! possibilities is equally likely. Let Q(x1,...,z;) be
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the number of lists that remain empty after the objects have been placed into lists
Z1, ..., xt, and let Z, = E(Q|X1,...,X,) be the associated Doob martingale.
Then Zy = E(Q) is the average number of empty lists; and Z; = Q(X1, ..., X¢)
is the actual number, in any particular run of the algorithm.

What fair sequence corresponds to this martingale? If 1 < n < ¢, the random
variable Y, = Z,, — Z,,_1 is fn(X1,...,Xy), where f,(z1,...,z,) is the average
of

m
Axy,...,2¢) = ZPr(Xn = CU)(Q(ZEl, U R B/ oy T B )
e=1 —Q(.’L’l,...,.’I,'n_l,.’I,',.’L'n+1,...,.Tt)) (40)
taken over all m!=" values of (zp41,...,%¢).

In our application the function Q(x1, ..., ;) has the property that

|Q(m1,...,xn_l,:n',:nn+1,...,a:t) - Q(xl,...,xn_l,x,xn+1,...,xt)| <1 (41)

for all z and ', because a change to any one hash address always changes the
number of empty lists by either 1, 0, or —1. Consequently, for any fixed setting
of the variables (z1,...,Zn—1,Tn+1,.-.,%t), we have

max A(zy,...,x¢) < minA(zy,...,z) + 1. (42)

The Hoeffding—Azuma inequality (37) therefore allows us to conclude that
PI'(Zt —Zy > 1‘) = Pr(Yv1 + 4+ Y > :L’) < 672z2/t. (43)

Furthermore, Zy in this example is m(m — 1){/m!, because exactly (m — 1) of
the m! possible hash sequences leave any particular list empty. And the random
variable Z; is the actual number of empty lists when the algorithm is run. Hence
we can, for example, set © = /tInf(¢) in (43), thereby proving that

Pr(Zy > (m —1)Ym'~" +\/tInf(t)) < 1/f(t)>, whenever f(t) >1. (44)

The same upper bound applies to Pr(Z; < (m —1))/m!~! — \/tInf(t)).

Notice that the inequality (41) was crucial in this analysis. Therefore
the strategy we’ve used to prove (43) is often called the “method of bounded
differences.” In general, a function Q(z1,...,z;) is said to satisfy a Lipschitz
condition in coordinate n if we have

|Q(£L’1,...,$n,1,1',$n+1,...,1't) _Q(xlr"7mnflax,7mn+17”'7mt)| S Cn (45)

for all £ and z'. (This terminology mimics a well-known but only slightly
similar constraint that was introduced long ago into functional analysis by Rudolf
Lipschitz [Crelle 63 (1864), 296-308].) Whenever condition (45) holds, for a
function () associated with a Doob martingale for independent random variables
X1, ..., Xy, we can prove that Pr(Y; +---+Y; > x) < exp(=22%/(c? +- - +¢7)).

Let’s work out one more example, due to Colin McDiarmid [London Math.
Soc. Lecture Notes 141 (1989), 148-188, §8(a)]: Again we consider independent
integer-valued random variables Xy, ..., X; with 1 < X, <m for1 < n <t
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but this time we allow each X, to have a different probability distribution.
Furthermore we define Q(x1,...,z:) to be the minimum number of bins into
which objects of sizes 1, ..., x; can be packed, where each bin has capacity m.

This bin-packing problem sounds a lot harder than the hashing problem that
we just solved. Indeed, the task of evaluating Q(z1,...,z;) is well known to be
NP-complete [see M. R. Garey and D. S. Johnson, SICOMP 4 (1975), 397—411].
Yet @ obviously satisfies the condition (45) with ¢, = 1 for 1 < n < t. Therefore
the method of bounded differences tells us that inequality (43) is true, in spite
of the apparent difficulty of this problem!

The only difference between this bin-packing problem and the hashing prob-
lem is that we’re clueless about the value of Zy. Nobody knows how to compute
EQ(X1,...,X;), except for very special distributions of the random variables.
However —and this is the magic of martingales— we do know that, whatever the
value is, the actual numbers Z; will be tightly concentrated around that average.

If all the X’s have the same distribution, the values 8; = EQ(Xy,...,X})
satisfy Biap < Bi+Py, because we could always pack the t and ¢’ items separately.
Therefore, by the subadditive law (see the answer to exercise 2.5-39), fB;/t
approaches a limit 8 ast — oo. Still, however, random trials won’t give us decent
bounds on that limit, because we have no good way to compute the () function.

If only he could have enjoyed Martingale for its beauty and its peace
without being chained to it by this band of responsibility and guilt!

— P. D. JAMES, Cover Her Face (1962)

Statements that are almost sure, or quite sure. Probabilities that depend
on an integer n often have the property that they approach 0 or 1 as n — oo,
and special terminology simplifies the discussion of such phenomena. If, say, A,
is an event for which lim,,_,, Pr(4,,) = 1, it’s convenient to express this fact
in words by saying, “A,, occurs almost surely, when n is large.” (Indeed, we
usually don’t bother to state that n is large, if we already understand that n is
approaching infinity in the context of the current discussion.)

For example, if we toss a fair coin n times, we’ll find that the coin almost
surely comes up heads more than .49n times, but fewer than .51n times.

Furthermore, we’ll occasionally want to express this concept tersely in for-
mulas, by writing just ‘a.s.” instead of spelling out the words “almost surely.”
For instance, the statement just made about n coin tosses can be formulated as

AIn < Xy + -+ X, < .5ln as., (46)

if Xy, ..., X,, are independent binary random variables, each with E X; = 1/2.
In general a statement such as “A4, a.s.” means that lim, ., Pr(4,) = 1; or,
equivalently, that lim,,_,., Pr(4,) = 0.

If A, and B,, are both a.s., then the combined event C,, = A, N B, is
also a.s., regardless of whether those events are independent. The reason is that
Pr(C,) = Pr(A, UB,) < Pr(4,) + Pr(B,), which approaches 0 as n — oco.

Thus, to prove (46) we need only show that X; + -+ + X,, > .49n a.s. and
that X7 +---+ X, < .51n a.s., or in other words that Pr(X; +---+ X,, < .49n)
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and Pr(X; +---+ X, > .51n) both approach 0. Those probabilities are actually
equal, by symmetry between heads and tails; so we need only show that p, =
Pr(X; + -+ X,, < .49n) approaches 0. And that’s no sweat, because we know
from exercise 1.2.10-21 that p, < e—0001n,

In fact, we’ve proved more: We’ve shown that p,, is superpolynomially small,
namely that

pn = O(n™K) for all fixed numbers K. (47)

When the probability of an event, 4,, is superpolynomially small, we say that A4,
holds “quite surely,” and abbreviate that by ‘q.s.”. In other words, we’ve proved

AIn < Xy +---+ X, < B5In qgs. (48)

We’ve seen that the combination of any two a.s. events is a.s.; hence the com-
bination of any finite number of a.s. events is also a.s. That’s nice, but q.s. events
are even nicer: The combination of any polynomial number of q.s. events is
also q.s. For example, if n* different people each toss n coins, it is quite sure that
every one of them, without exception, will obtain between .49n and .51n heads!

(When making such asymptotic statements we ignore the inconvenient truth
that our bound on the failure of the assertion, 2n*e—:%°°1" in this case, becomes
negligible only when n is greater than 700,000 or so.)

EXERCISES
1. [M21] (Nontransitive dice.) Suppose three biased dice with the respective faces

A=t opolelied oo o=l o

are rolled independently at random.
a) Show that Pr(A>B)=Pr(B>C)=Pr(C>A)=5/9.
b) Find dice with Pr(A> B), Pr(B>C), Pr(C > A) all greater than 5/9.
c) If Fibonacci dice have F, faces instead of just six, show that we could have

Pr(A>B)=Pr(B>C) = Fp-1/Fy and Pr(C>A)=Fy_1/Fn+1/F..

2. [M52] Prove that the previous exercise is asymptotically optimum, in the sense
that min(Pr(A> B),Pr(B>C),Pr(C > A)) < 1/¢, regardless of the number of faces.

3. [22] (Lake Wobegon dice.) Continuing the previous exercises, find three dice such
that Pr(A>1(A+B+C)) > Pr(B>1(A+B+C)) >Pr(C>L1(A+B+0C)) > 16/27.
Each face of each die should be [-] or [.] or [-] or [3] or [] or [3.

4. [22] (Nontransitive Bingo.) Each player in the game of NanoBingo has a card
containing four numbers from the set S = {1,2,3,4,5,6}, arranged in two rows. An
announcer calls out the elements of S, in random order; the first player whose card has
a horizontal row with both numbers called shouts “Bingo!” and wins. (Or victory is
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shared when there are multiple Bingoes.) For example, consider the four cards

1:2 B:23 C=34 D:14

4 =550 16| 15 26|

If the announcer calls “6, 2, 5, 1” when A plays against B, then A wins; but the sequence
“1, 3, 2” would yield a tie. One can show that Pr(A4 beats B) = 222, Pr(B beats 4) =
312

55, and Pr(A and B tie) = %. Determine the probabilities of all possible outcomes

when there are (a) two (b) three (c) four different players using those cards.
5. [HM22] (T. M. Cover, 1989.) Common wisdom asserts that longer games favor
the stronger player, because they provide more evidence of the relative skills.
However, consider an n-round game in which Alice scores A1+ -+ A, points while
Bob scores Bi + - -+ + By points, where each of A1, ..., A, are independent random
variables representing Alice’s strength, and each of By, ..., B, independently represent
Bob’s (and are independent of the A’s). Suppose Alice wins with probability P,.

a) Show that it’s possible to have P1 = .99 but Piooo < .0001.

b) Let my = 2’“3, ng = 2k2+k, and g = 2_k2/D, where D =2"042"1 427442794
-+ &2 1.56447. Suppose A and B are zero except that A = m;, with probability
qr when k > 0 is even, B = my, with probability ¢ when k > 1 is odd. What are
Pr(A > B), Pr(A < B), and Pr(A = B)?

¢) With the distributions in (b), prove that P,, — [keven] as k — co.

6. [M22] Consider n > 2 random Boolean (or binary) variables X ... X, with the
following joint distribution: The vector &1 ...z, occurs with probability 1/(n — 1)? if
z1 + -+ + x, = 2, with probability (n —2)/(2n — 2) if z1 +--- + z, = 0, and with
probability 0 otherwise. Show that the variables are pairwise independent (that is, X;
is independent of X; when i # j); but they are not k-wise independent for k > 2.

Also find a joint distribution, depending only on vo = x1 +- - - 4+ x,, that is k-wise
independent for £ = 2 and k = 3 but not k = 4.

7. [M30] (Ernst Schulte-Geers, 2012.) Generalizing exercise 6, construct a vz-based
distribution that has k-wise but not (k + 1)-wise independence, given k > 1.

8. [M20] Suppose the Boolean vector xi ...z, occurs with probability (2+ (—1)"%)/
2"+ where ve = &1 + - - - + x,. For what k is this distribution k-wise independent?

9. [M20] Find a distribution of Boolean vectors «1 ...z, such that any two variables
are dependent; yet if we know the value of any x;, the remaining variables are (n — 1)-
wise independent. Hint: The answer is so simple, you might feel hornswoggled.

10. [M21] Let Y1, ..., Yy be independent and uniformly distributed elements of
{0,1,...,p — 1}, where p is prime. Also let X; = (™ 4+ Y1j™ ! +--- +Y;,) mod p, for
1 < j < n. For what k are the X’s k-wise independent?

11. [M20] If Xy, ..., Xopn are independent random variables with the same discrete
distribution, and if « is any real number whatsoever, prove that

X1+ + X _aD .

< |
n

<‘X1+---+X2n ‘
Prl]|———— —«
2n

12. [18] Which of the following four statements are equivalent to the statement that
Pr(A|B) > Pr(A)? (i) Pr(B|A) > Pr(B); (ii) Pr(4|B) > Pr(A|B); (iii) Pr(B|A) >
Pr(B|A); (iv) Pr(A|B) > Pr(A|B).

13. [15] True or false: Pr(A|C) > Pr(A) if Pr(A|B) > Pr(A) and Pr(B|C) > Pr(B).
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14. [10] (Thomas Bayes, 1763.) Prove the “chain rule” for conditional probability:
PI‘(A1 n---N An) = PI‘(A1) PI‘(A2|A1) . PI‘(An | AiN---N An_l).

15. [12] True or false: Pr(A| BNC)Pr(B|C)=Pr(ANB|C).
16. [M15] Under what circumstances is Pr(4|B) =Pr(AUC | B)?
17. [15] Evaluate the conditional probability Pr(T is an ace | B = Q®#) in the playing
card example of the text, where 7" and B denote the top and bottom cards.
18. [20] Let M and m be the maximum and minimum values of the random vari-
able X. Prove that var(X) < (M —EX)(EX —m).
19. [HM28] Let X be a random nonnegative integer, with Pr(X = z) = 1/2"*" and
suppose that X = ( .. X2X1X0)2 and X +1= ( .. Y2Y1Y0)2 in bina.ry notation.

a) What is E X,,? Hint: Express this number in the binary number system.
) Prove that the random variables {Xo, X1,..., X,_1} are independent.
) Find the mean and variance of S = Xo + X1 + X2 + - --.
) Find the mean and variance of R=Xo® X1 ® X2 P ---.
) Let m = (11.pop1p2 . ..)2. What is the probability that X, = p, for all n > 0?
) What is EY,? Show that Yo and Y1 are not independent.
) Find the mean and variance of T =Yo + Y1 + Yo + ---.
20. [M18] Let Xi, ..., X; be binary random variables for which we know that
E(HjeJ X;) = [I;c; EX; forall J C {1,...,k}. Prove that the X’s are independent.
21. [M20] Find a small-as-possible example of random variables X and Y that satisfy
covar(X,Y) = 0, that is, EXY = (EX)(EY), although they aren’t independent.

22. [M20] Use Eq. (8) to prove the “union inequality”
Pr(AiU---UA,) < Pr(A1) + -+ Pr(4n).

23. [M21] If each X} is an independent binary random variable with E X, = p, the
cumulative binomial distribution By, »(p) is the probability that X1 +--- + X,, < m.
Thus it’s easy to see that Bu.n(p) = > py (2)p" (1 —p)" "

Show that Bm,»(p) is also equal to >} ("7m,:1+k)pk(1 —p)" ", for 0 <m < mn.
Hint: Consider the random variables Ji, Ja, ..., and T defined by the rule that X; =0
if and only if j has one of the T values {J1,J2,...,Jr}, where 1 < J; < Jo < -+- <
Jr <n. What is Pr(T > r and J, = s)?

24. [HM27] The cumulative binomial distribution also has many other properties.
a) Prove that B .(p) = (n—m)() fpl £™(1 — )" " ™dx, for 0 < m < n.
b) Use that formula to prove that B, .(m/n) > 1, for 0 < m < n/2. Hint: Show

that fom/" (1 — )" e < fi/n ™ (1 —z)" " d

¢) Show furthermore that By, .(m/n) > + when n/2 < m < n. [Thus m is the

median value of X; + -+ 4+ X,,, when p = m/n and m is an integer.]

25. [M25] Suppose X1, X», ... are independent random binary variables, with means
E X) = pi. Let (%)) be the probability that X+« -+X,, = k; thus (7)) = pa (7)) +
2. (") =" (@ + p12) ... (qn + pnz), where g =1 — pi.

a) Prove that ((})) > ((kil)), ifp; <(k+1)/(n+1)for1 <j<n.

b) Furthermore ((})) < (})p*¢" ", it pj <p <k/nfor 1 <j<n.
26. [M27] Continuing exercise 25, prove that ((}))* > ((,",)) ((kL)) (1+)(1+-2%)
for 0 < k < n. Hint: Consider 1y, = ((Z))/(Z)
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27. [M22] Find an expression for the generalized cumulative binomial distribution
> ieo (7)) that is analogous to the alternative formula in exercise 23.

28. [HM28] (W. Hoeffding, 1956.) Let X = X1+ -+ X, and pr+ - +p, =np in
exercise 25, and suppose that E g(X) = >} _, g(k)((})) for some function g.
a) Prove that Eg(X) < 3 p_ g(k)(})p"(1 —p)"~* if g is convex in [0..n].
b) If g isn’t convex, show that the maximum of E g(X'), over all choices of {p1,...,pn}
with p1 4+ - -+ + p, = np can always be attained by a set of probabilities for which
at most three distinct values {0, a,1} occur among the p;.
¢) Furthermore 7" (%)) < Bm.n(p), whenever p1 + -+ +p, =np > m+ 1.

29. [HM29] (S. M. Samuels, 1965.) Continuing exercise 28, prove that we have
Brn(p) > (L —p)(m+1)/((1 —p)m +1))"~™ whenever np < m + 1.
30. [HM34] Let X1, ..., X, be independent random variables whose values are non-
negative integers, where EX;, =1 for all k, and let p = Pr(X:1 + --- + X,, <n).

a) What is p, if each X}, takes only the values 0 and n + 1?7

b) Show that, in any set of distributions that minimize p, each X}, assumes only two

integer values, 0 and my, where 1 < my <n+ 1.
c¢) Furthermore we have p > 1/e, if each X}, has the same two-valued distribution.

31. [M20] Assume that A1, ..., A, are random events such that, for every subset
I C{1,...,n}, the probability Pr([,.; 4i) that all A; for i € I occur simultaneously
is 7rr; here 77 is a number with 0 < 77 < 1, and 7y = 1. Show that the probability of
any combination of the events, Pr(f([A1],...,[Axr])) for any Boolean function f, can be
found by expanding f’s multilinear reliability polynomial f([A1],...,[A»]) and replac-
ing each term [, ,[A:] by m7. For example, the reliability polynomial of 1@ z2® w3 is
z1 + x2 + 23 — 2x102 — 20103 — 2w2w3 + 4r1zaxs; hence Pr([Ai] & [A2] ® [A3]) =
T + w2 + w3 — 2mwi2 — 2mw13 — 2mas3 + 4mi0s. (Here ‘12’ is short for T(1,2}, etc.)

32. [M21] Not all sets of numbers 77 in the preceding exercise can arise in an actual
probability distribution. For example, if I C J we must have 7; > 7;. What is a
necessary and sufficient condition for the 2" values of 77 to be legitimate?

33. [M20] Suppose X and Y are binary random variables whose joint distribution is

defined by the probability generating function G(w,z) = E(w™2¥) = pw + ¢z + rwz,

where p,q,7 > 0 and p 4+ q+ r = 1. Use the definitions in the text to compute the
probability generating function E(z2*™)) for the conditional expectation E(X|Y').
34. [M17] Write out an algebraic proof of (12), using the definitions (7) and (13).
35. [M22] True or false: (a) E(E(X|Y)|Y)=E(X|Y); (b) E(E(X|Y)|Z)=E(X|2).
36. [M21] Simplify the formulas (a) E(f(X)|X); (b) E(f(Y)E(g(X)|Y)).

37. [M20] Suppose X ...X, is a random permutation of {1,...,n}, with every per-
mutation occurring with probability 1/n!. What is E(Xj | X1, ..., Xx-1)?

38. [M26] Let Xi...X, be arandom restricted growth string of length n, each with
probability 1/, (see Section 7.2.1.5). What is E(X} | X1,..., Xp_1)?

39. [HM21] A hen lays N eggs, where Pr(N = n) = e #u"/n! obeys the Poisson
distribution. Each egg hatches with probability p, independent of all other eggs. Let
K be the resulting number of chicks. Express (a) E(K |N), (b) E K, and (c) E(IV| K)
in terms of N, K, pu, and p.

40. [M16] Suppose X is a random variable with X < M, and let m be any value with
m < M. Show that Pr(X > m) > (EX —m)/(M —m).
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41. [HM21] Which of the following functions are convex in the set of all real num-
bers x'7 (a) |z|*, where a is a constant; (b) 3", «"/k!, where n > 0 is an integer;
(c) e<'”s (d) f(z)[x €I]+ o[z ¢ I], where f is convex in the interval I.
42. [HM21]

» 43. [M18] Use (12) and (20) to strengthen (20): If f is convex in I and if the random
variable X takes values in I, then f(E X) < E(f(E(X|Y))) < E(f(X)).

> 44. [M25] If f is convex on the real line and if E X = 0, prove that E f(aX) < E f(bX)
whenever 0 < a < b.

Prove Jensen’s inequality (20).

45. [M18] Derive the first moment principle (21) from Markov’s inequality (15).

46. [M15] Explain why E(X?|X > 0) > (E(X|X > 0))” in (23).

47. [M15] If X is random and Y = max(0, X), show that EY > EX and EY?< E X2
> 48. [M20] Suppose X1, ..., X, are independent random variables with E X; = 0 and

E X7 = o} for 1 < k < n. Chebyshev’s inequality tells us that Pr(|X1+---+X,| > a) <

(67 + -+ + 02)/a®; show that the second moment principle gives a somewhat better

one- 51ded estimate, Pr(X1+4---4+X, > a) < (¢14---402)/(a*+0i+---+02),ifa > 0.

49. [M20] If X is random and > 0, prove that Pr(X =0) < (EX?)/(EX)? — 1.

» 50. [M27] Let X = X1 + --- 4+ X, be the sum of binary random variables, with

E X; = p;. Let J be independent of the X’s, and uniformly distributed in {1,...,m}.
a) Prove that Pr(X >0)=3", E(X;/X | X;>0) - Pr(X; >0).
b) Therefore (24) holds. Hint: Use Jensen’s inequality with f(z) = 1/z.
c) What are Pr(X; =1) and Pr(J =5 | Xy=1)?

d) Let t; = E(X|J=j and X; =1). Prove that E X* = i pitj.

e) Jensen’s inequality now implies that the right side of (24) is > (E X)%/(E X?).

» 51. [M21] Show how to use the conditional expectation inequality (24) to obtain also
an upper bound on the value of a reliability polynomial, and apply your method to the
case illustrated in (25).

52. [M21] What lower bound does inequality (24) give for the reliability polynomial
of the symmetric function S>i(z1,...,zn), when p1 =--- =p, = p?
53. [M20] Use (24) to obtain a lower bound for the reliability polynomial of the non-
monotonic Boolean function f(z1,...,T6) = z122Z3 V x223T4V -+ V 526T1 V TeL1T2.
> 54. [M22] Suppose each edge of a random graph on the vertices {1,...,n} is present
with probability p, independent of every other edge. If w, v, w are distinct ver-
tices, let Xyyw be the binary random variable [{u,v,w} is a 3-clique]; thus Xypw =
[u—v] [u—w] [v—w], and E Xypw = p°. Also let X =31, ,cwen Xuvw be the
total number of 3-cliques. Use the (a) first and (b) second moment principle to derive
bounds on the probability that the graph contains at least one 3-clique.
55. [23] Evaluate the upper and lower bounds in the previous exercise numerically
in the case n = 10, and compare them to the true probability, when (a) p = 1/2;
(b) p=1/10.
56. [HM20] Evaluate the upper and lower bounds of exercise 54 asymptotically when
p=A/n and n — co.

» 57. [M21] Obtain a lower bound for the probability in exercise 54(b) by using the
conditional expectation inequality (24) instead of the second moment principle (22).
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58. [M22] Generalizing exercise 54, find bounds on the probability that a random
graph on n vertices has a k-clique, when each edge has probability p.

» 59. [HM25] (The four functions theorem.) The purpose of this exercise is to prove an
inequality that applies to four sequences {(an), (bn), {¢n), {dn) of nonnegative numbers:

oo 0o

ajby < cjjrdjer for 0 < j,k <oo implies ZZa]—bk < Zchdk. (*)
=0 k=0

j=0k=0 j

(The sums will be co if they don’t converge.) Although the inequality might appear at
first to be merely a curiosity, of interest only to a few lovers of esoteric formulas, we
shall see that it’s a fundamental result with many applications of great importance.
a) Prove the special case where a; =b; = ¢; =d; = 0 for j > 2, namely that
aobo < codo, aob1 < cido, aibo <cido, and aibi <cidi
implies (ao + a1)(bo + b1) < (co + c1)(do + d1).
Can equality hold in the first four relations but not in the last one? Can equality
hold in the last relation but not in the first four?

b) Use that result to prove (x) whena; =b; =¢; =d; =0 forall j > 2", given n > 0.
c) Conclude that (x) is true in general.

» 60. [M21] If F is a family of sets, and if o is a function that maps sets into real
numbers, let a(F) = > . a(S). Suppose F and G are finite families of sets for which
nonnegative set functions «, 3, v, and § have been defined with the property that

a(S)B(T) < v(SUT)(SNT)

a) Use exercise 59 to prove that a(F)B(G) < ~v(FUG)§(FNG).
b) In particular, |F||G| < |F UG||F NG| for all families F and G.

» 61. [M28] Consider random sets in which S occurs with probability u(S), where
u(S) >0 and p(S)p(T) <p(SUT)p(SNT) for all sets S and T (%%)

forall S e Fand T € G.

Assume also that U = {J,(5)0 S is a finite set.
a) Prove the FKG inequality (which is named for C. M. Fortuin, P. W. Kasteleyn,
and J. Ginibre): If f and g are real-valued set functions, then

£(S) < f(T) and g(S) < g(T) for all SC T implies E(fg) > E(f) E(g).

Here, as usual, E(f) stands for )¢ 1(S) f(S). The conclusion can also be written
‘covar(f,g) > 0’, using the notation of (9); we say that f and g are “positively
correlated” when this is true. (The awkward term “nonnegatively correlated”
would be more accurate, because f and g might actually be independent.) Hint:
Prove the result first in the special case that both f and g are nonnegative.
b) Furthermore,
£(S)> F(T) and ¢(S) > g(T) forall SCT implies E(fg) > E(f) E(g);
£(S) < F(T) and ¢(S) > g(T) forall SCT implies E(fg) < E(f) E(g).
c) It isn’t necessary to verify condition (#*) for all sets, if (**) is known to hold
for sufficiently many pairs of “neighboring” sets. Given p, let’s say that set S is

supported if u(S) # 0. Prove that (xx) holds for all S and T' whenever the following
three conditions are satisfied: (i) If S and T are supported, so are SUT and SNT.

>E
<E
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(it) If S and T are supported and S C T, the elements of 7'\ S can be labeled
ti, ..., tr such that each of the intermediate sets SU{t1,...,t;} is supported, for
1<j<k. (iii) Condition (##*) holds whenever S = RUs and T = RUt and s,t ¢ R.

d) The multivariate Bernoulli distribution B(pi,...,pm) on subsets of {1,...,m} is

us) = (I127°) (IT @ -207*),

j=1

given 0 < p1,...,pm < 1. (Thus each element j is included independently with
probability p;, as in exercise 25.) Show that this distribution satisfies (xx*).

e) Describe other simple distributions for which (*x) holds.

» 62. [M20] Suppose the m = (g) edges E of a random graph G on n vertices are
chosen with the Bernoulli distribution B(p1,...,pm). Let f(E) = [G is connected] and
g(E) =[G is 4-colorable]. Prove that f is negatively correlated with g.

63. [M17] Suppose Zg and Z; are random ternary variables with Pr(Zo = a and
Z1 =b) = pap for 0 < a,b < 2, where poo + po1 + -+ - + p22 = 1. What can you say
about those probabilities p, when E(Z1|Zo) = Zo?

> 64. [M22] (a) f E(Zn41|Zn) = Zy for all n >0, is (Z,) a martingale? (b) If (Z,) is
a martingale, is E(Z,41|Z,) = Z, for all n > 07

65. [M21] If (Z,) is any martingale, show that any subsequence (Z,,(,)) is also a
martingale, where the nonnegative integers (m(n)) satisfy m(0) < m(1) < m(2) < ---

» 66. [M22] Find all martingales Zo, Z1, ... such that each random variable Z,, assumes
only the values +n.

67. [M20] The Equitable Bank of El Dorado features a money machine such that, if
you insert k dollars, you receive 2k dollars back with probability exactly 1/2; otherwise
you get nothing. Thus you either gain $% or lose $%, and your expected profit is $0.
(Of course these transactions are all done electronically.)

a) Consider, however, the following scheme: Insert $1; if that loses, insert $2; if that

also loses, insert $4; then $8, etc. If you first succeed after inserting 2" dollars,
stop (and take the 2"** dollars). What’s your expected net profit at the end?

b) Continuing (a), what’s the expected total amount that you put into the machine?
c) If Z, is your net profit after n trials, show that (Z,) is a martingale.
68. [HM23] When J. H. Quick (a student) visited El Dorado, he decided to proceed

by making repeated bets of $1 each, and to stop when he first came out ahead. (He was
in no hurry, and was well aware of the perils of the high-stakes strategy in exercise 67.)

a
b

[ IN="Ns)

-

)
)

)
)
)
)

What martingale (Z,) corresponds to this more conservative strategy?
Let N be the number of bets that Quick made before stopping. What is the
probability that N = n?

What is the probability that N > n?

What is EN?

What is the probability that min(Zo, Z,...) = —m? (Possible “gambler’s ruin.”)
What is the expected number of indices n such that Z, = —m, given m > 07

69. [M20] Section 1.2.5 discusses two basic ways by which we can go from permuta-
tions of {1,...,n — 1} to permutations of {1,...,n}: “Method 1” inserts n among the
previous elements in all possible ways; “Method 2” puts a number k from 1 to n in the
final position, and adds 1 to each previous number that was > k.
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Show that, using either method, every permutation can be associated with a node Pélya’s urn model
. . . . ’ ) Pélya
of Fig. 1, using a rule that obeys the probability assumptions of Pélya’s urn model. Friotman’s wen
70. [M25] If Pélya’s urn model is generalized so that we start with ¢ balls of different multiplicatively fair
1 is th b le that li Fig. 17 De Moivre’s martingale
colors, is there a martingale that generalizes Fig. 17 coin tosses
71. .[M21] . (G. Pol;/a.) Whatl is the plrobablhty ?f going from node (r,b) to node (r',b") Filtiossg:gn;eartingale
in Fig. 1, given r, ', b, and b’ with v’ > r and b" > b7 Ace Now

72. [M21] Let X, be the red-ball indicator for Pélya’s urn, as discussed in the text.
What is E(Xp, Xpy ... Xy, ) when 0 < m1 < m2 < - < np?

73. [M24] Theratio Z, = r/(n+2) at node (r,n+2—r) of Fig. 1 is not the only mar-
tingale definable on Pélya’s urn. For example, r[n=r — 1] is another; so is r("j’l)/2".

Find the most general martingale (Z,) for this model: Given any sequence ao, a1,
..., show that there’s exactly one suitable function Z,, = f(r,n) such that f(1,k) = ax.

74. [M20] (Bernard Friedman’s urn.) Instead of contributing a ball of the same color,
as in Fig. 1, suppose we use the opposite color. Then the process changes to

Level 0
Level 1
Level 2

Level 3

and the probabilities of reaching each node become quite different. What are they?
75. [M25] Find an interesting martingale for Bernard Friedman’s urn.

76. [M20] If (Z,) and {Z,) are martingales, is (Z, + Z,,) a martingale?

77. [M21] Prove or disprove: If (Z,) is a martingale with respect to (X}, then (Z,)
is a martingale with respect to itself (that is, a martingale).

78. [M20] A sequence of random variables (V,) for which E(V,41 | Vo,..., V) =1
is called “multiplicatively fair.” Show that Z, = VoVi...V, is a martingale in such
a case. Conversely, does every martingale lead to a multiplicatively fair sequence?

79. [M20] (De Moivre’s martingale.) Let X1, X2, ... be a sequence of independent
coin tosses, with Pr([“heads” occurred on the nth toss]) = Pr(X, = 1) = p for each n.
Show that Z, = (q/p)**1 T +X»)=" defines a martingale, where ¢ = 1 — p.

80. [M20] Are the following statements true or false for every fair sequence (Y,)?
(a) E(YFY3) = 0. (b) E(YaY2) =0. (c) E(Y, Yy .- - Y, ) =0if n1 < n2 < -++ < nppy.
81. [M21] Suppose E(X,t1 | Xo,...,Xn) = X, + Xp—1 for n > 0, where X_; = 0.
Find sequences a, and b, of coefficients so that Z, = a, X,, + b, X,_1 is a martingale,
where Zo = Xo and Z1 = 2Xo — Xi. (We might call this a “Fibonacci martingale.”)
82. [M20] In the game of Ace Now, let X,, = [the nth card is an ace], with Xo = 0.

a) Show that Z, = (4 — X1 — -+ — X,.)/(52 — n) satisfies (28) for 0 < n < 52.

b) Consequently E Zy = 1/13, regardless of the stopping rule employed.

c) Hence all strategies are equally good (or bad); you win $0 on average.
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» 83. [HM22] Given asequence (X,) of independent and nonnegative random variables,
let S, = X1+ -+ Xp. If Ny(xo,...,Tn—1) is any stopping rule and if N is defined
by (31), prove that ESy = Ezjkvzl E X}. (In particular, if EX, = EX; foralln >0
we have “Wald’s equation,” which states that E Sy = (EN)(E X1).)

84. [HM21] Let f(x) be a convex function for a < z < b, and assume that (Z,) is a
martingale such that a < Z,, <b for all n > 0. (Possibly a = —co and/or b = +00.)
a) Prove that (f(Z,)) is a submartingale.
b) What can you say if the sequence (Z,) is assumed only to be a submartingale?

85. [M20] Suppose there are R, red balls and By, black balls at level n of Pélya’s urn
(Fig. 1). Prove that the sequence (R, /By) is a submartingale.

» 86. [M22] Prove (33) by inventing a suitable stopping rule N, 11(Zo, ..., Zy).

87. [M17] What does the maximal inequality (33) reveal about the chances that
Pélya’s urn will hold thrice as many red balls as black balls at some point?

> 88. [HM30] Let S = sup Z, be the least upper bound of Z, as n — co in Fig. 1.
a) Prove that S > 1/2 with probability In 2 =~ .693.
b) Similarly, show that Pr(S > 2/3) = In3 — 7/v/27 ~ .494.
c) Generalize to Pr(S > (¢t — 1)/t), for all ¢ > 2. Hint: See exercise 7.2.1.6-36.

89. [M16] Let (Xu,...,X,) be random variables that have the Bernoulli distribution
B(pi,...,pn). Use (37) to show that Pr(X1+-- -+ X, > p1+---+pn + ) < e 207/n,
90. [HM25] The Hoeffding-Azuma inequality (37) can be derived as follows:

a) Show first that Pr(Y1 +--- + Y, > ) < E(eM1H+Ya)ty jotz for all ¢ > 0.

b) If0 < p <1andq=1-—p, show that e’® < ef® 4 ye9® when —p < y < ¢ and
t > 0, where f(t) = —pt +1n(q + pe’) and g(t) = —pt + In(e’ — 1).
Prove that f(t) < t°/8. Hint: Use Taylor’s formula, Eq. 1.2.11.3—(5).
Consequently a <Y < b implies e¥¢ < e®—a)*t*/8 £ Y h(t), for some function h(t).
Let ¢ = (¢} 4 - +¢2)/2, where c;, = by, — ay. Prove that E(e(Yi++Yn)t) < ect?/4,
We obtain (37) by choosing the best value of ¢.

o &0

)
)
)
)

-

91. [M20] Prove that Doob’s general formula (39) always defines a martingale.

> 92. [M20] Let (@Q») be the Doob martingale that corresponds to Pélya’s urn (27)
when @ = X, for some fixed m > 0. Calculate Qo, Q1, Q2, etc.

93. [M20] Solve the text’s hashing problem under the more general model considered
in the bin-packing problem: Each variable X,, has probability p,; of being equal to k,
for 1 <n <tand 1<k <m. What formula do you get instead of (44)?

> 94. [M22] Where is the fact that the variables {X,..., X} are independent used in
the previous exercise?

95. [M20] True or false: “Pélya’s urn q.s. accumulates more than 100 red balls.”
96. [HM22] Let X be the number of heads seen in n flips of an unbiased coin. Decide

whether each of the following statements about X is a.s., g.s., or neither, as n — oo:
(i) |X —n/2| < /nlon; (i) | X —n/2| < Vnrlnn;
(ii) | X —n/2| < Vnlnlnn; (iv) | X —n/2] < /n.

» 97. [HM21] Suppose |n'*?]| items are hashed into n bins, where & is a positive

constant. Prove that every bin q.s. gets between %n‘s and 2n® of them.
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[M21] Many algorithms are governed by a loop of the form
X ¢ n; while X > 0, set X « X — F(X)

where F(X) is a random integer in the range [1..X]. We assume that each integer
F(X) is completely independent of any previously generated values, subject only to
the requirement that E F(j) > g;, where 0 < g1 < g2 < -+ < gn.

Prove that the loop sets X < X — F(X) at most 1/g1+1/g2+---+1/g, times, on

the average. (“If one step reduces by gn, then perhaps (1/g)th of a step reduces by 1.”)

99.

[HM30] Show that the result in the previous exercise holds even when the range

of F(X)is (—oo..X], given0 < g1 <--- < gn < gnt1 < -+ . (Thus X might increase.)

100.

[HM17] A certain randomized algorithm takes T steps, where Pr(T' = t) = p; for

1 <t < oo. Prove that (a) limp, 0o Emin(m,T) = ET; (b) ET < co implies ps = 0.

101.

[HM22] Suppose X = Xi + -+ + X,;, is the sum of independent geometrically

distributed random integers, with Pr(X; = n) = pr(1 — px)" " for n > 1. Prove that
Pr(X >rp) <re' " forallr > 1, where y = EX =3} 1/py.

102.

[M20] Cora collects coupons, using a random process. After already owning

k — 1 of them, her chance of success when trying for the kth is at least one chance
in s, independent of any previous successes or failures. Prove that she will a.s. own
m coupons before making (s1 + -+ + sp,) Inm trials. And she will g.s. need at most
sk Innlnlnn trials to obtain the kth coupon, for each k < m, if m = O(n'°%).

» 103.

a)

b)

f)
104.

[M30] This exercise is based on two functions of the ternary digits {0, 1, 2}:
fo(z) = max(0, z — 1); fi(z) =min(2,z + 1).

What is Pr(fx, (fx,(...(fx,(i))...)) = j), for each i,j € {0, 1,2}, assuming that
X1, Xo, ..., X,, are independent, uniformly random bits?

Here’s an algorithm that computes fx, (fx, (... (fx,(¢))...)) fori € {0,1,2}, and
stops when all three values have coalesced to a common value:

Set apaiaz < 012 and n < 0. Then while ap # a2, set n < n + 1,
totits + (Xn? 122: 001), and aoaiaz < ai,a¢, at,. Output ao.

(Notice that ao < a1 < a2 always holds.) What is the probability that this
algorithm outputs j7 What are the mean and variance of N, the final value of n?
A similar algorithm computes fx, (... (fx,(fx,(%)))...), if we change ‘a¢,a¢, at,’
t0 ‘tagta,ta,’. What’s the probability of output j in this algorithm?

Why on earth are the results of (b) and (c) so different?

The algorithm in (c) doesn’t really use a;. Therefore we might try to speed
up process (b) by cleverly evaluating the functions in the opposite direction.
Consider the following subroutine, called sub(7T'):

Set apas ¢ 02 and n <~ 0. Then while n < T set n <~ n+1, X < random
bit, and agaz + (Xn? fi(ao) fi(a2): fo(ao)fo(az)). If ap = a2 output ao,
otherwise output —1.

Then the algorithm of (b) would seem to be equivalent to
Set T < 1, a < —1; while a < 0 set T < 2T and a + sub(T"); output a.

Prove, however, that this fails. (Randomized algorithms can be quite delicate!)
Patch the algorithm of (e) and obtain a correct alternative to (b).

[M21] Solve exercise 103(b) and 103(c) when each X, is 1 with probability p.
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105. [M30] (Random walk on an n-cycle.) Given integers a and n, with 0 < a < n,
let N be minimum such that (a + (—=1)** + (=1)*2 +--- + (=1)*~) mod n = 0, where
X1, Xo, ... is a sequence of independent random bits. Find the generating function
9o = Y sy Pr(N = k)z*. What are the mean and variance of N?

106. [M25] Consider the algorithm of exercise 103(b) when the digits are d-ary instead
of ternary; thus fo(z) = max(0,z — 1) and fi(z) = min(d — 1,z + 1). Find the
generating function, mean, and variance of the number N of steps required before
ap = a1 =--- = aq—1 is first reached in this more general situation.

107. [M22] (Coupling.) If X is a random variable on the probability space Q' and
Y is another random variable on another probability space Q", we can study them
together by redefining them on a common probability space . All conclusions about
X or Y are valid with respect to €, provided that we have Pr(X = z) = Pr'(X = z)
and Pr(Y = y) = Pr""(Y = y) for all  and y.

Such “coupling” is obviously possible if we let Q be the set Q' x Q" of pairs

W' |we N and W’ € "}, and if we define Pr(w'w’) = Pr'(w’) Pr"(w") for each
pair of events. But coupling can also be achieved in many other ways.

For example, suppose Q' and Q" each contain only two events, {Q,K} and {d, #},
with Pr'(Q) = p, Pr'(K) = 1 — p, Pr"' (&%) = ¢, Pr"(#) = 1 — q. We could couple them
with a four-event space 2 = {Qée, Q#,Kéb, Kb}, having Pr(Qé) = pg, Pr(Q#) = p(1 —q),
Pr(ké) = (1 —p)q, Pr(XK#) = (1—p)(1 —q). But if p < g we could also get by with just
three events, letting Pr(Qéd) = p, Pr(Ké&) = ¢ — p, Pr(K#) = 1 — ¢q. A similar scheme
works when p > ¢, omitting Ké. And if p = ¢ we need only two events, Qd and K.

a) Show that if Q" and Q" each have just three events, with respective probabilities

{p1,p2,p3} and {q1,¢2,qs}, they can always be coupled in a five-event space (.

b) Also, four events suffice if {p1,p2,p3} = {5, 3, 3}, {q1, 92,03} = {5, 3, S }-

c) But some three-event distributions cannot be coupled with fewer than five.
108. [HM21] If X and Y are integer-valued random variables such that Pr'(X > n) <
Pr"” (Y > n) for all integers n, find a way to couple them so that X < Y always holds.

109. [M27] Suppose X and Y have values in a finite partially ordered set P, and that
Pr'(X = a for some a € A) < Pr" (Y > a for some a € A), for all A C P.

We will show that there’s a coupling in which X XY always holds.

a) Write out exactly what needs to be proved, in the simple case where P = {1, 2,3}

and the partial order has 1< 3, 2< 3. (Let pr, = Pr'(X=k) and g, = Pr"" (Y = k)
for k € P. When P = {1,...,n}, a coupling is an nxn matrix (p;;) of nonnegative
probabilities whose row sums are }; pi; = pi and column sums are »_, pi; = g;.)
Compare this to the result proved in the preceding exercise.
Prove that Pr'(X < b for some b € B) > Pr"(Y <X b for some b € B), for all BC P.
A coupling between n pairs of events can be viewed as a flow in a network that
has 2n + 2 vertices {s,z1,...,Zn,¥Y1,---,Yn,t}, where there are p; units of flow
from s to z;, p;; units of flow from z; to y;, and g; units of flow from y; to t. The
“max-flow min-cut theorem” [see Section 7.5.3] states that such a flow is possible
if and only if there are no subsets I,.J C {1,...,n} such that (i) every path from
s to t goes through some arc s —z; for i € I or some arc y; —t for j € J, and
(i) > ierpi + 25 ¢ ¢ < 1. Use that theorem to prove the desired result.

110. [M25] If X and Y take valuesin {1,...,n},let pr = Pr'(X=k), qx = Pr"" (Y = k),
and 7, = min(pg, qx) for 1 < k < n. The probability that X = Y in any coupling is
obviously at most r = >} _, 7.

~ T
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a) Show that there always is a coupling with Pr(X =Y) =r.
b) Can the result of the previous exercise be extended, so that we have not only
Pr(X <Y)=1but also Pr(X =Y) =1r?
111. [M20] A family of N permutations of the numbers {1,...,n} is called minwise
independent if, whenever 1 < j <k < n and {a1,...,ar} C{1,...,n}, exactly N/k of
the permutations 7 have min(a1m,...,ar7) = a;.
For example, the family F' of N = 60 permutations obtained by cyclic shifts of

123456, 126345, 152346, 152634, 164235, 154263, 165324, 164523, 156342, 165432

can be shown to be minwise independent permutations of {1,2,3,4,5,6}.
a) Verify the independence condition for F in the case k = 3, a1 = 1, a2 = 3, az = 4.
b) Suppose we choose a random 7 from a minwise independent family, and assign
the “sketch” S4 = mingeca am to every A C {1,...,n}. Prove that, if A and B
are arbitrary subsets, Pr(S4 = Sg) =|ANB|/|AUB].
c) Given three subsets A, B, C, what is Pr(Sa = Sp = Sc)?

112. [M25] The size of a family F' of minwise independent permutations must be a
multiple of k for each k < n, by definition. In this exercise we’ll see how to construct
such a family with the minimum possible size, namely N = lem(1,2,...,n).

The basic idea is that, if all elements of the permutations in F' that exceed m are
replaced by oo, the “truncated” family is still minwise independent in the sense that, if
minger am = 00, we can imagine that the minimum occurs at a random element of A.
(This can happen only if 7 takes all elements of A to co.)

a) Conversely, show that an m-truncated family can be lifted to an (m+1)-truncated
family if, for each subset B of size n —m, we insert m + 1 equally often into each

of B’s n — m positions, within the permutations whose co’s are in B.

b) Use this principle to construct minimum-size families F'.

113. [M25] Although minwise permutations are defined only in terms of the mini-
mum operation, a minwise independent family actually turns out to be also maxwise
independent — and even more is true!
a) Let E be the event that a;m < k, br = k, and ¢;m > k, for any disjoint sets
{a1,...,ai}, {b}, {c1,...,¢r} C{1,...,n}. Prove that, if 7 is chosen randomly
from a minwise independent set, Pr(E) is the same as the probability that E
occurs when 7 is chosen randomly from the set of all permutations. (For example,
Pr(bn<7,2r=7,17>7,87>7) = 6(n — 7)(n — 8)(n — 4)!/n!, whenever n > 8.)
b) Furthermore, if {a1,...,ar} C {1,...,n}, the probability that a; is the rth largest

element of {ai7,...,ax7} is 1/k, whenever 1 < j,r < k.
114. [M28] (The “combinatorial nullstellensatz.”) Let f(z1,...,zn) be a polynomial
in which the coefficient of xfl. .. mfl" is nonzero and each term has degree < di+- - -+d,.
Given subsets S1, ..., S, of the field of coeflicients, with |S;| > d; for 1 < j < n, choose
X1, ..., X, independently and uniformly, with each X; € S;. Prove that
[S1]+ -+ [Sn| =(di+---+dn+n)+1

Pr(f(Xy,...,X,) #0) >

[S1]-.-|Sh|
Hint: See exercise 4.6.1-16.

115. [M21] Prove that an m X n grid cannot be fully covered by p horizontal lines,
q vertical lines, r diagonal lines of slope +1, and r diagonal lines of slope —1, if
m=p+2|r/2] +1 and n = g+ 2[r/2] + 1. Hint: Apply exercise 114 to a suitable
polynomial f(z,y).
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116. [HM25] Use exercise 114 to prove that, if p is prime, any multigraph G on n
vertices with more than (p — 1)n edges contains a nonempty subgraph in which the
degree of every vertex is a multiple of p. (In particular, if each vertex of G has fewer
than 2p neighbors, G contains a p-regular subgraph. A loop from v to itself adds two
to v’s degree.) Hint: Let the polynomial contain a variable z. for each edge e of G.

117. [HM25] Let X have the binomial distribution B,(p), so that Pr(X = k) =
(2)p"(1 — p)" " for 0 < k < n. Prove that X mod m is approximately uniform:

1 2 o= 8p(1_p)j
Pr(Xmodm:r)——‘ < = E e 820 p)]Q"/m2, for 0 <r<m.
m m
i=1

118. [M20] Prove that the second moment principle implies the Paley—-Zygmund in-
equality
(EX —z)?

EX? ~°
119. [HM24] Let = be a fixed value in [0..1]. Prove that, if we independently and
uniformly choose U € [0..z], V € [z..1], W € [0..1], then the median (UVW) is
uniformly distributed in [min(U, V, W) .. max(U, V, W)].
120. [M20] Consider random binary search trees T, obtained by successively inserting
independent uniform deviates Ui, Us, ... into an initially empty tree. Let T}, be the
number of external nodes on level k, and define T}, (2) = 322, Tnr2"/(n+1). Prove that
Zy = Tn(2)/gn+1(2) is a martingale, where gn(2) = (2z2+n—2)(2z2+n—3)...(22)/n!
is the generating function for the cost of the nth insertion (exercise 6.2.2-6).
121. [M25] Let X and Y be random variables with the distributions Pr(X =t) = z(t)
and Pr(Y =t) = y(¢). The ratio p(t) = y(t)/z(t), which may be infinity, is called the
probability density of Y with respect to X. We define the relative entropy of X with
respect to Y, also called the Kullback—Leibler divergence of Y from X, by the formulas

Diylla) = B(p(X) 15 p(X)) = Bl p(¥) = 3 y(0) 15 43,
t

with 01g0 and 01g(0/0) understood to mean 0. It can be viewed intuitively as the
number of bits of information that are lost when X is used to approximate Y.

Pr(X >z) > if0<z<EX.

a) Suppose X is a random six-sided die with the uniform distribution, but Y is
a “loaded” die in which Pr(Y=[]) = 1 and Pr(Y=[]) = 2, instead of .
Compute D(y||z) and D(z||y).
) Prove that D(y||z) > 0. When is it zero?
¢) f p=Pr(X €T) and ¢ = Pr(Y € T), show that E(lgp(Y)|Y € T) > Ig(q/p).
) Suppose z(t) = 1/m for all ¢ in an m-element set S, and y(t) # 0 only when ¢t € S.
Express D(y||z) in terms of the entropy Hy = Elg(1/Y") (see Eq. 6.2.2-(18)).
e) Let Z(u,v) = Pr(X = wandY = v) when X and Y have any joint distribution,
and let W (u,v) be that same probability under the assumption that X and Y are
independent. The joint entropy Hx y is defined to be Hz, and the mutual infor-
mation Ixy is defined to be D(z||w). Prove that Hw = Hx + Hy and Ixy =
Hw — Hz. (Consequently Hx,y < Hx + Hy, and Ix,y measures the difference.)
122. [HM24] Continuing exercise 121, compute D(y||z) and D(z||y) when
a) «(t) = 1/2!" and y(t) = 314 for t =0, 1, 2, ...;
b) z(t) = e "P(np)'/t! and y(t) = (})p'(1 —p)"~* for t > 0 and 0 < p < 1. (Give
asymptotic answers with absolute error O(1/n), for fixed p as n — c0.)

January 19, 2017

multigraph

regular

loop

binomial distribution
second moment principle
Paley

Zygmund

median

uniformly distributed
binary search trees
uniform deviates
martingale
generating function
Density, relative
Entropy, relative
Kullback

Leibler

die

uniform distribution
“loaded” die

entropy

joint distribution
joint entropy

mutual information
geometric distribution
Poisson distribution
binomial distribution



MATHEMATICAL PRELIMINARIES REDUX 25

» 123. [M20] Let X and Y be as in exercise 121. The random variable Z = A? Y: X a priori

either has the distribution z(t) or y(t), but we don’t know whether A is true or false. If information gained

. . . . . Importance sampling
we believe that the hypothesis Z =Y holds with the a priori probability Pr(A) = py, internal zeros
we assume that z,(t) = Pri(Z = t) = pre(t) + (1 — pr)y(t). But after seeing a log-convex
new value of Z, say Z = Zp, we will believe the hypothesis with the a posteriori igi";‘ﬁ?&a"e
probability py+1 = Pr(A| Z;). Show that D(y||z) is the expected “information gained,” right shift
lg(pr+1/(1 — pr+1)) — 1g(pr/(1 — pr)), averaged with respect to the distribution of Y. binomial convolutions

) . . convolution of sequences

124. [HM22] (Importance sampling.) In the setting of exercise 121, we have E f(Y) = DARWIN
E(p(X) f(X)) for any function f; thus p(t) measures the “importance” of the X-value ¢ von Mengden

with respect to the Y-value t. Many situations arise when it’s easy to generate random
variables with an approximate distribution z(t), but difficult to generate them with
the exact distribution y(¢). In such cases we can estimate the average value E(f) =
E f(Y) by calculating E,(f) = (p(X1)f(X1) +- -+ p(Xn) f(Xn))/n, where the X; are
independent random variables, each distributed as x(t).

Let n = ¢*2PWN®) Prove that if ¢ > 1, this estimate E, is relatively accurate:

E(f) — B(DI < Il (1/c+2VAL),  where A, = Pr(p(Y) > ?220112),
(Here ||f|| denotes (E f(Y)?)*/2.) On the other hand if ¢ < 1 the estimate is poor:
Pr(E,(1) >a) < +(1—-A.)/a. for0<a<l,
Here ‘1’ denotes the constant function f(y) =1 (hence E(1) =1).

» 125. [M28] Let (an) = ao, a1, a2, ... be a sequence of nonnegative numbers with no
“internal zeros” (no indices ¢ < j < k such that a; > 0, a;j =0, ar > 0). We call it log-
conver if a2 < an_1an+1 for all n > 1, and log-concave if a2 > an_1a,+1 for all n. > 1.

a) What sequences are both log-convex and log-concave?
b) If {a,) is log-convex or log-concave, so is its “left shift” (an+1) = a1, a2, as, ...

What can be said about the “right shift” (an—1) = ¢, ao, a1, ..., given c?

Show that a log-concave sequence has a,an > am—16,+1 whenever 1 < m < n.

If {a,) and (b,) are log-convex, show that {(a, + b,) is also log-convex.

bn) are log-convex, show that (Y, (})arbn_t) is also log-convex.

b.) are log-concave, is (>, arbn—i) also log-concave?

bn) are log-concave, is (Zk (Z)akbn_k> also log-concave?

If {a,) and
If {a,) and
If (a,) and

o~~~ o~

Every man must judge for himself between conflicting vague probabilities.
— CHARLES DARWIN, letter to N. A. von Mengden (5 June 1879)
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ANSWERS TO EXERCISES

It isn’t that they can't see the solution.
It is that they can't see the problem.

— G. K. CHESTERTON, The Scandal of Father Brown (1935)

MATHEMATICAL PRELIMINARIES REDUX

1. (a) Abeats Bin 5+0+5+5+0+5 cases out of 36; B beats C' in 4+2+4+4+2+4;
C beats Ain2+2+2+6+2+6.
(b) The unique solution, without going to more than six spots per face, is

A=""g B == 2...|..|, C= "2:..|..|.

. 0 ? 0 * 0
o |o o®0e%[e% oclecfee

(c) A={Fm_2x1,F,_1 x4}, B={F, x 3}, C ={Fn_-1 x2,Frn_2 x 5} makes
Pr(C>A) = Fp—3Fpi1/F2; and we have Fyy—2Fypt1 = Frye1Fy — (—1)™. [Similarly,
with n faces and A = {|n/¢?] x 1, [n/$] x 4}, etc. the probabilities are 1/¢ —O(1/n).
See R. P. Savage, Jr., AMM 101 (1994), 429-436.]

2. Let Pr(A>B) = A, Pr(B>C) = B, Pr(C > A) = C. We can assume that no z
appears on more than one die; if it did, we could replace it by  +€ein A and z —e in C
(for small enough €) without decreasing A, B, or C. So we can list the face elements in
nondecreasing order and replace each one by the name of its die; for example, the pre-
vious answer (b) yields CBBBAAAAACCCCCBBBA. Clearly AB, BC, and CA are
never consecutive in an optimal arrangement of this kind: B A is always better than AB.

Suppose the sequence is C1 B A% . C°% B% A% where ¢; > 0 for 1 < i < k
and b;,a; > 0 for 1 < i < k. Let a; = a;/(a1+---+ag), Bi = bi/(b1 + -+ bi),
vi=cif(c1+---+ck); then A =11+ a2 (fi+B2)+---, B=Biv1+B20v1+7v2)+- -,
C = v2a1 + y3(a1 + az) + ---. We will show that min(A,B,C) < 1/¢ when the a’s,
B’s, and v’s are nonnegative real numbers; then it is < 1/¢ when they are rational.

The key idea is that we can assume k < 2 and az = 0. Otherwise the following
transformation leads to a shorter array without decreasing A, B, or C:

Y2 = M2, YL =1+ —ss Ba = MBa, BL = Bi+Ba—fB2, a1 = ai/X, ab = a1 +as—al.
Indeed, A' = A, C' =C, and B' — B = (1 — X\)(B1 — A\B32)72, and we can choose X thus:

Case 1: $1 > B2. Choose A = a1/(a1 + a2), making ab = 0.

Case 2: 31 < f32 and 71 /v2 < 81/B2. Choose A = 1 + 71 /72, making v; = 0.

Case 8: 31 < f32 and 71 /v2 > $1/B2. Choose A = 1 + 81/B2, making 8] = 0.
Finally, then, A = 1, B =1 — 172, C = ~2; they can’t all be greater than 1/¢.

[Similarly, with n dice, the asymptotic optimum probability p, satisfies p, =
ol =1-a""a{M =... =1 -aPal = al®. One can show that f,(1 — pn) =0,
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where fni1(z) = fu(x)—xfu_1(x), fo(x) =1, fi(x) = 1—=z. Then f,(z?>) is expressible
as the Chebyshev polynomial "' Uy 11(5); and we have p, = 1—1/(4 cos® 7/(n+2)).
See Z. Usiskin, Annals of Mathematical Statistics 35 (1964), 857-862; S. Trybula,
Zastosowania Matematyki 8 (1965), 143-156.]

3. Brute force (namely a program) finds eight solutions, of which the simplest is

A="Nem BEO=M
all with respective probabilities ;—;, %, §—7 [If [ is also allowed, the unique solution
p o LT Py i
’ B3| 0 |33 a $o3]8o3 808

has the property that every roll has exactly one die below the average and two above,
with each of A, B, C equally likely to be below; hence all three probabilities are 2/3.
See J. Moraleda and D. G. Stork, College Mathematics Journal 43 (2012), 152-159.]

4. (a) The permutation (1234)(56) takes A - B - C — D — A. So B versus C
is like A versus B, etc. Also Pr(A4 beats C) = Pr(C beats A) = Pr(B beats D) =
Pr(D beats B) = Z2; Pr(A and C tie) = Pr(B and D tie) = 113,

(b) Assume by symmetry the players are A, B, C. Then the bingoers are (A4, B, C,
AB, AC, BC, ABC)) with respective probabilities (168, 216, 168, 48, 72, 36,12)/720.

(c) It’s (A, AB, AC, ABC, ABC D) with probabilities (120, 24, 48, 12, 0)/720.

5. (a) If Ay = 1001 with probability .99, otherwise A; = 0, but B = 1000 always,
then Piooo = .99'%%° =~ .000043. (This example gives the smallest possible Piooo,
because Pr((A1 — B1) + -+ + (An — Bn) > 0) > Pr([41 > Bi1]...[A, > B,n]) = PI')

(b) Let E =qo + g2+ g4 + --- = 0.67915 be the probability that B = 0. Then
Pr(A > B) = Y02 qok (B + 3520 a2j+1) & AT402; Pr(A < B) = 302 qae 1 (1 — E +
>0 a2) ~ .30807; and Pr(A = B) = Pr(A = B =0) = E(1 — E) ~ .21790 is also the
probability that AB > 0.

(¢) During the first ny rounds, the probability that either Alice or Bob has scored
more than my is at most ny(qrs1 + grre +--+) = O(27%); and the probability that
neither has ever scored my, is (1 — qi)™ < exp(—qinx) = exp(—2¥/D). Also my, >
ngmy—1 when k > 1. Thus Alice “quite surely” wins when k is even, but loses when k
is odd, as k — co. [The American Statistician 43 (1989), 277-278.]

6. The probability that X; = 1is clearly p; = 1/(n—1); hence X; = 0 with probabil-
ity po = (n—2)/(n—1). And the probability that X; = X; = 1 when i < j is p}. Thus
(see exercise 20), (X;, X;) will equal (0, 1), (1,0), or (0,0) with the correct probabilities
poP1, P1po, popo. But X; = X; = X = 1 with probability 0 when ¢ < 7 < k.

For 3-wise independencelet Pr(X; ... X, =21...2,) = azl+...+mn/(n—2)3, where
ao =2(";7), a1 = (";7), as = 1, otherwise a; = 0.

7. Let fm(n) = 37, (’;) (=1 (n +1 — m)™ 7, and define probabilities via a; =

fr—j(n—j) as in answer 6. (In particular, we have fo(n) =1, fi(n) =0, f2(n) = (*3"),
fa(n) =2("57), fa(n) =3(";%) + (*;%)*.) This definition is valid if we can prove that
fm(n) > 0 for n > m, because of the identity 3 (?) fm—j(n—j)=(Mm+1-—m)™.

To prove that inequality, Schulte-Geers notes (see CMath (5.19)) that f,(n) =
Yoo (m;”) (n— m)mfk =>r, (”7”1,;1““) (—l)k(n — m)mfk; these terms pair up

nicely to yield 7' k(”_’g;f""k)(n —m)™ ¥k even] + (" ')[m even].
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8. If 0 < k < n, the probability that k of the variables have any particular setting
is 1 /2’“, because the remaining variables have even parity as often as odd parity. So
there’s (n — 1)-wise independence, but not n-wise.

9. Give probability 1/2 to 0...0 and 1...1; all other vectors have probability 0.

10. If n > p we have X,11 = X1, so there’s no independence. Otherwise, if m < n < p,
there’s m-wise independence because any m vectors (1,4,...,5™ ') are linearly inde-
pendent modulo p (they’re columns of Vandermonde’s matrix, exercise 1.2.3-37); but
the X’s are dependent (m + 1)-wise, because a polynomial of degree m cannot have
m + 1 different roots. If m > n and n < p there is complete independence.

Instead of working mod p, we could use any finite field in this construction.

11. We can assume that n = 1, because (X1 +---+ X, )/n and (Xp41+ -+ Xaon)/n
are independent random variables with the same discrete distribution. Then Pr(| X1 +
Xo —2a] < 2[X1 —af) > Pr(|X1 —a|+ X2 —a| £2|X1 —a]) = Pr(|X2 —a] <
|X1—al) = (1+Pr(X; = X»))/2 > 1/2. [This exercise was suggested by T. M. Cover.]
12. Let w = Pr(Aand B), * = Pr(Aand B), y = Pr(Aand B), z = Pr(Aand B). All

five statements are equivalent to wz > zy, or to |1;’ :| > 0, or to “A and B are strictly
positively correlated” (see exercise 61). [This exercise was suggested by E. Georgiadis.]

13. False in many cases. For example, take Pr(Aand BandC) = Pr(Aand Band C) =
0, Pr(Aand Band C) = 2/7, and all other probabilities 1/7.

14. Induction on n. [Philosophical Transactions 53 (1763), 370-418, proof of Prop. 6.]

15. If Pr(C) > 0, this is the chain rule, conditional on C. But if Pr(C) = 0, it’s false
by our conventions, unless A and B are independent.

16. If and only if Pr(AN BN C) =0 # Pr(B) or Pr(ANC) =0.
17. 4/51, because four of the cards other than Qa are aces.

18. Since (M — X)(X —m) > 0, we have (MEX) — (EX?) + (mEX) —mM > 0.
[See C. Davis and R. Bhatia, AMM 107 (2000), 353-356, for generalizations.]

19. (a) The binary values of Pr(X, = 1) = E(X,) for n =0, 1, 2, ..., are respec-
tively (.0101010101010101 ...)s, (.0011001100110011 ...)s, (.0000111100001111 ... ),
...; thus they’re the complemented reflections of the “magic masks” 7.1.3—(47). The
answer is therefore (22" —1)/(22""" = 1) = 1/(22" + 1).

(b) Pr(XoX1...Xn—1 = ToT1...Tn—1) = 2(Fn—1.-F1%0)2/(22"—1) can be “read off”
from the magic masks by ANDing and complementing. [See E. Lukacs, Characteristic
functions (1960), 119, for related theory.]

(c) The infinite sum S is well defined because Pr(S = co) = 0. Its expectation
ES =3 ,1/(22"+ 1) = 0.59606 corresponds to the case z = 1/2 in answer 7.1.3-
41(c). By independence, var S = 2% var X,, = > 0% 227/(22" + 1) ~ 0.44148.

(d) The parity number E R = (.0110100110010110 ... ) has the decimal value

0.41245 40336 40107 59778 33613 68258 45528 30895—,

and can be shown to equal 3+ — 1P where P = [];2,(1 — 1/22") [R. W. Gosper and
R. Schroeppel, MIT AI Laboratory Memo 239 (29 February 1972), Hack 122], which is
transcendental [K. Mahler, Mathematische Annalen 101 (1929), 342-366; 103 (1930),
532]. (Furthermore it turns out that 1/P —1/2 =372 ,1/ Hf;é(ﬂj —1).) Since R is
binary, var(R) = (E R)(1 — E R) ~ 0.242336.
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(e) Zero (because 7 is irrational, hence po + p1 + - - - = 0o). However, if we ask the
analogous question for Euler’s constant « instead of 7, nobody knows the answer.

(f) EY, = 2E X,; in fact, Pr(YoY1Ys... = zoz1z2...), for any infinite string
ToT1%2 ..., is equal to 2Pr(XoX1Xs... = zoz1x2...)modl, because we shift the
binary representation one place to the left (and drop any carry). Thus in particular,
EY,.Y, =2EX,, X, = % EY,, EY, when m # n; Y,, and Y,, are negatively correlated
because covar(Yy,,Y,) = —% EY, . EY,,.

(g) Clearly ET = 2ES. Also ET? = 2E S?, because EY,,Y;, = 2E X,,, X,, for all

m and n. So var(T) = 2(var(S) + (ES)?) — (2ES)? = 2var(S) — 2(ES)” ~ 0.17237.
20. Let p; = EX;. We must prove, for example, that E(X1(1 — X2)(1 — X3)X4) =
p1(1 — pz)(l — p3)p4 when k > 4. But this is E(X1X4 — X1 Xo Xy — XaX3X4 +
X1X2X3X4) = p1ps — p1p2pa — p1p3pa + p1papspa.
21. From the previous exercise we know that they can’t both be binary. Let X be
binary and Y ternary, taking the values (0,0), (0,1), (0,2), (1,0), (1,1), (1,2) with
probabilities respectively proportional to (a,b,3a +b+3d,d,1,1). Then EXY = 3/D,
EX =2/D, and EY = 3/2, where D = 4a +2b + 4d + 2.

22. By (8) we have Pr(A; U---UA,) =E[A1U---UA,] = Emax([A1],...,[4.]) <
E({41]+ -+ + [An]) = E[A1] & - + E[4,] = Pr(A1) + - + Pr(4,).

23. The hinted probability is Pr(Xs =0 and X1 +---+ Xs—1 = s —r), so it equals
(*ZHp* (1 —p)". To get Bu,n(p), sum it for r =n —m and n —m < s < n. [For an

S—T

algebraic rather than probabilistic/combinatorial proof, see CMath, exercise 8.17.]
24. (a) The derivative of By n(z) =37 ()" (1 — )" " is

(12t $ (o)

=0 =0

[See Karl Pearson, Biometrika 16 (1924), 202-203.]

(b) The hint, which says that foa/(a+b+l)$“(1 —x)bdr < fal/(a+b+1) (1 — z)’dx
when 0 < a <b, will prove that 1 — By, n(m/n) < By, n(m/n). It suffices to show that
foa/(a+b) z(1—z)de < fal/(aer) 2%(1—2)°dz, because we have f(;l/(a+b+1) < f(;l/(a+b) <
f;/(a+b) < fal/(a+b+1). Let © = (a — €)/(a +b), and observe that (a — €)*(b + €)® is less

than or equal to (a + €)*(b — €)® for 0 < € < a, because the quantity

a—e\* a(ln(l—e/a)—In(l4+€/a)) ( ( 62 64 ))
(a+e) ¢ xp ¢ +3a2 +5a4+

increases when a increases.
(c) Let ti, = (})m”*(n—m)"~*. When m > n/2 we can show that 1— By »(m/n) =
Yoksm te/N" < Bmn(m/n) =330 tr/n", because tyia < tmii-q for 1 <d <n—m.

For if r4y = tm+d/tm+1-d, we have r1 = m/(m + 1) < 1; also

Tdt1 _ (n—m +d)(n —m — d)ym?
Td (m+1+d)(m+1—d)(n—m)2

<1,
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because ((m+1)>—d?)(n—m)? — (n—m)?—d*>)m? = 2m+1)(n—m)>+ (2m—n)nd>.
[Peter Neumann proved in Wissenschaftliche Zeitschrift der Technischen Univer-
sitdt Dresden 15 (1966), 223-226, that m is the median. The argument in part (c) is
due to Nick Lord, in The Mathematical Gazette 94 (2010), 331-332.]
25. (a) ((}) — ((kil)) is Y. pras(q:/(n — k) — pt/(k + 1)), summed over all partitions
of {1,...,n} into disjoint sets T UJU{t}, where |[I| =k, |J| =n—k—1, pr = [[,c; pi,
97 =ljes 9 And ge/(n—k) —=pi/(E+1) 20 <= p; < (k+1)/(n+1).
(b) Given p1, ..., pn—1, the quantity ((})) is maximized when p, = p, by (a). The
same argument applies symmetrically to all indices j.
26. The inequality is equivalent to ri,k > Tnk—1Tn,k+1, Which was stated without
proof on pages 242—-245 of Newton’s Arithmetica Universalis (1707), then finally proved
by Sylvester many years later [Proc. London Math. Soc. 1 (1865), 1-16]. We have
nry ke = kpnTn—1,k—1+ (n—k)qnrn_1k; hence nz(ri,k —Tnk—1Tnk+1) = (PnTr—1k—1—
@nrn-1p)? + (B2 = Dp2A+ (k—1)(n —1 - k)pagaB + ((n — k)* — 1)¢2C, where A =
Th_1he1 = Tne1k—2Tn—1k, B = Tpno1kc1Tn—1,k — Pn—1k—2Tn—1k+1, and C =75 _;  —
Tn—1,k—1Tn—1k+1 are nonnegative, by induction on n.

27. 0o () =i () (1 = pr—mak), by the same argument as before.

28. () (1) = (7D A+ () B+ ((2)C and Eg(X) = 5722 ("7, where
A=(1—-pn-1)1 —pn), C =pn_1pn, B=1—A—-C, and h;, = Ag(k) + Bg(k + 1) +
Cg(k + 2). If the p;’s aren’t all equal, we may assume that p,—1 < p < pn. Setting
Ph_1 = pn—1+ € and p, = p, — €, where ¢ = min(p, — p,p — pn—1), changes A, B,
Cto A=A+, B =B—-25 C =C+46, where § = (p,, — p)(p — pn—1); hence
hi, changes to hj, = hy + 6(g(k) — 2g(k + 1) + g(k + 2)). Convex functions satisfy
g(k) —2g9(k + 1) + g(k +2) > 0, by (19) with z = k and y = k + 2; hence we can
permute the p’s and repeat this transformation until p; =p for 1 < j < n.

(b) Suppose E g(X) is maximum, and that r of the p’s are 0 and s of them are 1.
Let a satisfy (n —r — s)a + s = np and assume that 0 < pp,—1 < a <pp, < 1. Asin
part (a) we can write E g(X) = aA + 8B + vC for some coeflicients «, 3, 7.

If «—28+~ > 0, the transformation in (a) (but with a in place of p) would increase
Eg(X). And if @ — 28 4+ v < 0, we could increase it with a similar transformation,
using 6 = —min(pp—1,1 — pn). Therefore & — 28 + v = 0; and we can repeat the
transformation of (a) until every p; is 0, 1, or a.

(c) Since 37" (7)) = 0 when s > m, we may assume that s < m, hence r+s < n.
For this function g(k) = [0<k<m] we have a — 28 + v = ((".7) — ((*~%)). This

difference cannot be positive if the choice of {p1,...,pn} is optinrlnum; in pn;;tlicular we
cannot have s = m. If r > 0 we can make p,_1 = 0 and p, = a, so that ((";Lz)) =
("pmy e A — )t and (7)) = (7,02 A - )t But
then the ratio ((";2))/((:;7_21)) =(n—r—m)a/((m—s)(1—a)) exceeds 1; hence r = 0.

Similarly if s > 0 we can set (pn—1,pn) = (a, 1), getting the ratio ((”;2))/((::;21)) =
(n—1—m)a/((m —s+1)(1 —a)) > 1. In this case (*?)) = (»~2)) if and only if

np = m + 1; we can transform without changing E g(X), until s = 0 and each p; = p.

[Reference: Annals of Mathematical Statistics 27 (1956), 713-721. The coefficients
((Z)) also have many other important properties; see exercise 7.2.1.5-63 and the survey
by J. Pitman in J. Combinatorial Theory A77 (1997), 279-303.]

29. The result is obvious when m = 0 or n; and there’s a direct proof when m = n—1:
By 1.(p) = 1—p" > (1 —p)n/((1 — p)n + p) because p — np™ + (n — 1)p" ™' =
p(l—=p)A+p+---+p" 1 —p"'n) > 0. The result is also clear when p =0 or 1.
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Hp'—( +1)/n we have Rmn(p) = ((1 = p)(m +1)/((1 — p)m +1))"" ™ =
(m—m—1)/ m))"™™. Soif m > 0 and p = m/(n—1), we can apply exercise 28(c)
with p1 =--- =pp_1 =p and p, = 1:

Bm,n(P) > Z?:o (( )) Zk =0 (n l) pr 1(1 - )n_k = Bm—l,n—l(ﬁ)-

When 1 <m < n—1,let Qmn(p) = Bmn(p) — Rm,n(p). The derivative
Qo (p) = (n—m) (1) (1 = )" (A = Fp)/((1 - pym +1)"~"

where A= (m+1)"""/(") > 1 and F(p) = p™((1 — p)m +1)""™*! begins positive
at p = 0, eventually becomes negative but then is positive again at p = 1. (Notice that
F(0) =0, and F(p) increases dramatically until p = (m + 1)/(n + 1); then it decreases
to F(1) = 1.) The facts that Qumn(™) > 0 = Qmn(0) = Qm.n(1) now complete the
proof, because @, ,(p) changes sign only once in [0.. 2], [Annals of Mathematical
Statistics 36 (1965), 1272-1278.]

30. (a) Pr(Xy =0) =n/(n+1); hence p=n"/(n+1)" > 1/e ~ 0.368.

(b) (Solution by J. H. Elton.) Let pgm = Pr(X, = m). Assume that these
probabilities are fixed for 1 < k < n, and let £, = ppm. Then zo = r2+2x3+3xs+- - -
we want to minimize p =Y, (An + (m — 1) Ao)zn in nonnegative variables z1, 2,

., where A,;, = Pr(X1+---+X,,—1 < n—m), subject to the condition Z;’szl mry, = 1.
Since all coefficients of p are nonnegative, the minimum is achieved when all z,, for
m > 1 are zero except for one value m = my, which minimizes (A, + (m — 1) Ao)/m.
And m, < n+1, because A,, = 0 whenever m > n. Similarly m1, ..., m,_1 also exist.

(c) (Solution by E. Schulte-Geers.) Letting mi =--- =my, =t < n+ 1, we want
to minimize B|, .| »(1/t). The inequality of Samuels in exercise 29 implies that

(m+1)(1—-p)n
(n—m)p

1
f(m,n,p) +1

because we can set = ((1 — p)m + 1)/((1 — p)(m + 1)) in the arithmetic-geometric
mean inequality z"~™ < ((n — m)z + m)"/n". Now 1/t < (|n/t] +1)/(n + 1) and
f(ln/t],n,1/t) > n; hence B, ) »(1/t) > n"/(n 4 1)".

[Peter Winkler called this the “gumball machine problem” in CACM 52,8 (August
2009), 104-105. J. H. Elton has verified that the joint distributions in (a) are optimum
when n < 20; see arXiv:0908.3528 [math.PR] (2009), 7 pages. Do those distributions
in fact minimize p for all n? Uriel Feige has conjectured more generally that we have

m+1

B n(p) > (1— ) for p < , where f(m,n,p) = ,

Pr(X; +---+ X, < n+1/(e—1)) > 1/e whenever X1, ..., X, are independent
nonnegative random variables with E X, < 1; see SICOMP 35 (2006), 964-984.]
31. This result is immediate because Pr(f([A1],...,[4r])) = E f([A1],...,[Ar]). But

a more detailed, lower-level proof will be helpful with respect to exercise 32.

Suppose, for example, that n = 4. The reliability polynomial is the sum of the
reliability polynomials for the minterms of f; so it suffices to show that the result is
true for functions like x1 A T2 A T3 A x4 = z1(1 — x2)(1 — z3)xs. And it’s clear that
PI'(A1 0220230144) = PI‘(A10220A4)—PI‘(A1 0220A30A4) = M14—T124—T134+7T1234.
(See exercise 7.1.1-12; also recall the inclusion-exclusion principle.)

32. The 2" minterm probabilities in the previous answer must all be nonnegative, and
they must sum to 1. We’ve already stipulated that myp = 1, so the sum-to-1 condition is

automatically satisfied. (The condition stated in the exercise when I C J is necessary
but not sufficient; for example, w12 must be > 7 + 7 — 1.)
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33. The three events (X,Y) = (1,0), (0,1), (1,1) occur with probabilities p, ¢, r,
respectively. The value of E(X|Y') is 1, r/(q¢+r), r/(g + r) in those cases. Hence the
answer is pz + (g + r)2z7/(a+r). (This example demonstrates why univariate generating
functions are not used in the study of conditional random variables such as E(X |Y).
But we do have the simple formula E(X |Y'=k) = (["] 2G(1,2))/([z*] G(1, 2)).)

34. The right-hand side is

ZE X|Y)Pr(w ZPr ) > X (W) Pr(w)[Y (') =Y (w)]/ Pr(Y =Y (w))
= Z Pr(w) Z X (W) Pr(w)[Y(w) =Y (w)]/Pr(Y =Y (w))
= Z X(w") Pr(w") Z Pr(w)[Y (w) =Y (w")]/ Pr(Y =Y ().

35. Part (b) is false. If, for instance, X and Y are independent random bits and
Z =X, we have E(X|Y) =1 and E(3|2) = 1 # X = E(X|Z). The correct formula
instead of (b) is

E(E(XY,Z)|Z) = E(X|Z). (%)

This is (12) in the probability spaces conditioned by Z, and it is the crucial identity
that underlies exercise 91. Part (a) is true because it is the case Y = Z of (x).

36. (a) f(X); (b) E(f(Y)g(X)) generalizing (12). Proof: E(f(Y)E(¢(X)|Y)) =
2 fWE@X)|Y=y) Pr(Y=y) =3, , f(y)g(z)Pr(X=2,Y =y) = E(f(V)g(X)).
37. If we’re given the values of X1, ..., X}_1, the value of X}, is equally likely to be
any of the n +1 — k values in {1,...,n} \ {X1,..., Xr—1}. Hence its average value is
14+ +n—X;—-- = Xp_1)/(n+1—k). We conclude that E(X}, | X1,..., X_1) =
(n(n+1)/2 — X1 — -+ — Xj_1)/(n + 1 — k). [Incidentally, the sequence Zo, Z1, ...,
defined by Z; = (n+ ) X1 +(n+j—2)Xo+ -+ (n—5)X;41 — (j + 1)n(n+1)/2 for
0<j<mnand Z; = Z,_1 for j > n, is therefore a martingale.]

38. Let tm,» be the number of restricted growth strings of length m + n that begin
with 01...(m—1). (This is the number of set partitions of {1,..., m+n} in which each
of {1,...,m} appears in a different block.) The generating function > - ,tmnz"/n!
turns out to be exp(e® — 1+ mz); hence tmn =, wi(})m" " k.

Suppose M = max(Xi,...,Xk—1) + 1. Then Pr(Xy = j) = tmpn—r/tMnti—k
for 0 < j < M, and tpm41,n—k/tmnt1—k for j = M. Hence E(X; | Xo,...,Xp_1) =
((g)tM,n—k + Mty n—k) [tMnt1—k-

39. (a) Since E(K | N=n) = pn we have E(K|N) = pN.

(b) Hence EK = E(E(K|N)) = EpN = pu.

(c) Let pux = Pr(N=mn,K =k) = (e""u"/n!) x (})p"(1 = (e "uPp*/K!) x
f(n — k), where f(n) = (1 —p)"u"/nl. Then E(N |K=k) = Zn npnk/zn Dnk. Since
nf(n—k)=kf(n—k)+ (n—k)f(n—k) and nf(n) = (1 — p)uf(n — 1), the answer
is k+ (1 — p)u; hence E(N | K) = K 4+ (1 — p)p. [G. Grimmett and D. Stirzaker,
Probability and Random Processes (Oxford: 1982), §3.7.]

40. If p = Pr(X > m), clearly EX < (1 — p)m + pM. [We also get this result from
(15), by taking S={z |z <m}, f(z) =M —z,s=M —m.]
41. (a) Convex when a > 1 or a = 0; otherwise neither convex nor concave. (However,

z® is concave when 0 < a < 1 and convex when a < 0, if we consider only positive

values of z.) (b) Convex when n is even or n = 1; otherwise neither convex nor concave.
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(This function is [ t"~'e*~'dt/(n—1)!, according to 1.2.11.3—(5); so f"(z)/z > 0 when
n > 3 is odd.) (c) Convex. (In fact f(|z|) is convex whenever f(z) has a power series
with nonnegative coefficients, convergent for all z.) (d) Convex, provided of course that
we allow f to be infinite in the definition (19).

42. We can show by induction on n that f(piz1+---+pnn) < p1f(z1)+ - -+pnf(Tn),
when p1, ..., pn >0 and p1 + -+ pn, = 1, as in exercise 6.2.2-36. The general result
follows by taking limits as n — co. [The quantity piz1+ - -+ pry is called a “convex
combination” of {z1,...,z,}; similarly, EX is a convex combination of X values.

Jensen actually began his study by assuming only the case p =¢ = % of (19).]

43. f(EX) = f(E(E(X|Y))) < E(f(E(X|Y))) < E(Ef(X)|Y) = Ef(X). [S. M.
Ross, Probability Models for Computer Science (2002), Lemma 3.2.1.]

44. The function f(zy) is convex in y for any fixed x. Therefore g(y) = E f(Xy) is
convex in y: It’s a convex combination of convex functions. Also g(y) > f(EXy) =
f(0) = g(0) by (20). Hence 0 < a < b implies g(0) < g(a) < g(b) by convexity of g.
[S. Boyd and L. Vandenberghe, Convex Optimization (2004), exercise 3.10.]

45. Pr(X > 0) =Pr(|X| > 1); set m =1 in (16).

46. EX? > (E X)2 in any probability distribution, by Jensen’s inequality, because
squaring is convex. We can also prove it directly, since E X> — (E X)?> = E(X — E X).

47. We always have Y > X and Y2 < X?. (Consequently (22) yields Pr(X > 0) =
Pr(Y >0) > (EY)¥(EY?) > (EX)%(E X?) when EX > 0.)

48. Pr(a—X1—---— X, > 0) > a*/(a®’+0i+---+0.), by exercise 47. [This inequality
was also known to Chebyshev; see J. Math. Pures et Appl. (2) 19 (1874), 157-160. In
the special case n =1 it is equivalent to “Cantelli’s inequality,”

Pr(X > EX 4a) < var(X)/(var(X) +d?),

for a > 0;

see Atti del Congresso Internazionale dei Matematici 6 (Bologna: 1928), 47-59, §6-87.]
49. Pr(X =0)=1-Pr(X > 0) < (EX?’—(EX)))/EX? < (EX’—(EX)?)/(EX)? =
(EX?)/(EX)*—1. [Some authors call this inequality the “second moment principle,”
but it is strictly weaker than (22).]
50. (a) Let Y; = X;/X if X; > 0, otherwise ¥j = 0. Then Yj +--- 4 Y, = [X >0].
Hence Pr(X > 0) =31 EYj; and EY; = E(X;/X | X; >0) - Pr(X; >0). [This iden-
tity, which requires only that X; > 0, is elementary yet nonlinear, so it apparently lay
undiscovered for many years. See D. Aldous, Discrete Math. 76 (1989), 168.]

(b) Since X; € {0,1}, we have Pr(X; > 0) = EX; = p;; and E(X;/X | X;>0) =
E(X;/X|X;=1) = E(1/X|X;=1) > 1/E(X | X;=1).

(c) Pr(Xy =1) = 370, Pr(J =jand X; =1) = 37, pj/m = EX/m. Hence
Pr(J=j|X,;=1)=Pr(J=j and X; =1)/Pr(X, =1) = (p;/m)/(EX/m) = p; /EX.

(d) Since J is independent we have t; = E(X|J =j and X; =1) = E(X | X; =1).

(¢) The right side is (EX) 0", (5, /EX)/t; > (EX)/ S0, (0, /EX)t;.
51. If g(q1,...,qm) =1 — f(p1,...,pm) is the dual of f, where ¢; = 1 — p;, a lower
bound on g gives an upper bound on f. For example, when f is 212223V x22324V 45,
f 1S T1T4 + T2Ta + TaZTsa + T2T5 + T3Ts. So the inequality (24) gives g(qi,...,q5) >
q194/(1+q2+q3+ 9295 +q3q5) +q2q4 /(g1 + 1 + g3+ q5 +q3q5) +q3q4/ (@1 + g2+ 1 + q2q5 +
q5) +q295/(q1q4 + q4 + g3q4 + 1 + ¢3) + q395/(q194 + 294 + q4 + g2 + 1). In particular,
g(.1,...,.1) > 0.039 and f(.9,...,.9) < 0.961.

52. ()p/ i () ("71)p’.
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53. f(p1,...,ps) = pip2(1—p3)/(1+paps(1—ps))+- - -+pep1(L1—p2)/(1+pspa(1—ps)).
Monotonicity is not required when applying this method, nor need the implicants be
prime. The result is exact when the implicants are disjoint.

54. (a) Pr(X > 0) <EX = (})p®, because E Xy = p° for all u < v < w.

(b) Pr(X > 0) > (E X)?/(E X?), where the numerator is the square of (a) and the
denominator can be shown to be (g)pS + 12(2)1)5 + 30(2)1)6 + 20(2)1)6. For example,
the expansion of X? contains 12 terms of the form XyywXype With u < v < w < W',
and each of those terms has expected value p°.

55. A BDD for the corresponding Boolean function of ('y) = 45 variables has about
1.4 million nodes, and allows us to evaluate the true probability (1 — p)**G(p/(1 — p))
exactly, where G(z) is the corresponding generating function (see exercise 7.1.4-25).
The results are: (a) 30/37 ~ 811 < 35165158461687/2%° ~ .999 < 15; (b) 10/109 ~
.092 < 4180246784470862526910349589019919032987399/(4 % 1043) =~ .105 < .12.

56. The upper bound is g = A%6; the lower bound divides this by 1 4 . [The exact
asymptotic value can be obtained using the principle of inclusion and exclusion and its
“bracketing” property, as in Eq. 7.2.1.4-(48); the result is 1 — e™". See P. Erdds and
A. Rényi, Magyar Tudomdnyos Akadémia Mat. Kut. Int. Kézl. 5 (1960), 17-61, §3.]
57. To compute E(X | Xypw = 1) we sum Pr(X, /v | Xuvw = 1) over all (g) choices
of ' <v' <w'. If {u',v',w'} N{u,v,w} has t elements, this probability is p3—tt-1)/2;

and there are (‘Z’) (’3’:?) such cases. Consequently we get

Pr(X > 0) 2 (D6 /((5 0"+ 307" + 30700 + (50

[In this problem the lower bound turns out to be the same using either inequality; but
the derivation here was easier.]

58. Pr(X > 0) < (Z)pk(kfl)/z. The lower bound, using the conditional expectation

Iz) (T;:Iz>pk(k—l)/2—t(t—l)/2.

59. (a) The hypotheses imply that aoai1bobi < cocidodi. The key observation is that

inequality as in the previous answer, divides this by Zf:o (

c1do((co+c1)(do+di)—(ao+a1)(bo+b1)) =
CldO(COdO—aobO +cidy —a1b1)+(61d0 —aobl) (Cldo—a1b0)+cocldod1 —aoaibobi.

Thus the result holds when cido # 0. If ¢c1 = 0 we have aobo + aob1 + a1bo + a1b1 =
aobo < codo < co(do + di). And a similar argument applies to the case dp = 0.

All four hypotheses hold with equality when ap = bo = do = 0 and the other
variables are 1, yet the conclusion is that 1 < 2. Conversely, when b; = ¢; = 2 and the
other variables are 1, we have a1bg < c1do but conclude only that 6 < 6.

(b) Let A; = S {azj41]0<j<2" '} for I =0and ! =1, and define B;, C;, D,
similarly from bajy7, ¢2j41, d2j4+i. The hypotheses for jmod2 = [ and kmod2 = m
prove that A;B;, < CjjmDigm, by induction on n. Hence, by part (a), we have the
desired inequality (Ao + A1)(Bo + B1) < (Co + C1)(Do + Dy1). [This result is due
to R. Ahlswede and D. E. Daykin, Zeitschrift fiir Wahrscheinlichkeitstheorie und ver-
wandte Gebiete 43 (1978), 183-185, who stated it in the language of the next exercise.]

(c) Now let A, = ap+ -+ azn_1, and define By, Cp, D, similarly. If A Boo >
Cs Do, we'll have A, B, > Cs Do for some n. But Coo Do > Cr D5, contra (b).

60. (a) We can consider each set to be a subset of the nonnegative integers. Let @(S) =
ao(S)[S e F], B(S) = BS)IS €], 7(5) = v(9)[SeFUG], §(S) = §(S)[SeFng];
then a(p) = a(F), B(p) = B(9), 7(p) = ¥(FUG), and 6(p) = 6(F NG), where g is the

January 19, 2017

prime implicants

BDD

Boolean function
generating function
inclusion and exclusion
bracketing

enveloping series

Erdés

Rényi

conditional expectation inequality
Ahlswede

Daykin

Y



MPR ANSWERS TO EXERCISES 35

family of all possible subsets. Since any set S of nonnegative integers can be encoded
in the usual way as the binary number s = ) .eszj, the desired result follows from the
four functions theorem if we let as = @(S), bs = B(S), cs = J(5), ds = d(5).
(b) Let a(S) = B(S) = v(S) = 6(S) =1 for all sets S.
61. (a) In the hinted case we can let a(S) = f(S)u(S), B(S) = g(S)u(S), v(S) =
f(S)g(S)u(S), 6(S) = pn(S); the four functions theorem yields the result. The general
case follows because we have E(fg) — E(f)E(g) = E(f§) — E(f) E(§), where f(S)=
f(S) — f(0) and §(S) = g(S) — g(0). [See Commun. Math. Physics 22 (1971), 89-103.]

(b) Changing f(S) to 6f(S) and g(S) to ¢g(S) changes E(fg) — E(f)E(g) to
0o(E(fg) — E(f) E(g)), for all real numbers # and ¢.

(c) If S and T are supported, then R = SNT and U = SUT are supported.
Furthermore we can write S = RU {s1,...,sx} and T = R U {t1,...,t;} where the
sets S; = RU{s1,...,si} and T; = RU {t1,...,t;} are supported, as are their unions
Ui, =S; UTj, for 0 <i < kand 0 <j <l By (iii) we know that pu(Uit1,;)/p(Ui;) <
w(Uit1,j+1)/10(Uij+1) when 0 < i < k and 0 < j < I. Multiplying these inequalities
for 0 <14 <k, we obtain pu(Uk;)/u(Uo;) < p(Uk,j4+1)/p(Uoj+1). Hence pu(S)/pu(R) =
1(Uk,0)/1(Uo,0) < p(Us1)/pn(Uo,r) = p(U)/p(T).

(d) In fact, equality holds, because [j €S|+ [j€T]) = [j€eSUT]+ [jeSNT].
[Note: Random variables with this distribution are often confusingly called “Poisson tri-
als,” a term that conflicts with the (quite different) Poisson distribution of exercise 39.]

(e) Choose c in the following examples so that ), p(S) = 1. In each case the
supported sets are subsets of U = {1,...,m}. (i) Let u(S) = crira...rg|, where
0<ri < - <rp. (i) Let u(S) =cp; when S ={1,...,5} and 1 < j < m, otherwise
u(S) =0. (If p1 = --- = pm in this case, the FKG inequality reduces to Chebyshev’s
monotonic inequality of exercise 1.2.3-31.) (iii) Let

w(S) = e (SNU)p2(SNU2) ... ue (SN Uyg),

where each p; is a distribution on the subsets of U; C U that satisfies (*x). The
subuniverses U1, ..., Uy needn’t be disjoint. (iv) Let u(S) = ce /) where f is
a submodular set function on the supported subsets of U: f(SUT)+ f(SNT) <
f(S) + f(T) whenever f(S) and f(T) are defined. (See Section 7.6.)

62. A Boolean function is essentially a set function whose values are 0 or 1. In
general, under the Bernoulli distribution or any other distribution that satisfies the
condition of exercise 61, the FKG inequality implies that any monotone increasing
Boolean function is positively correlated with any other monotone increasing Boolean
function, but negatively correlated with any monotone decreasing Boolean function.
In this case, f is monotone increasing but g is monotone decreasing: Adding an edge
doesn’t disconnect a graph; deleting an edge doesn’t invalidate a 4-coloring.

(Notice that when f is a Boolean function, E f is the probability that f is true
under the given distribution. The fact that covar(f, g) < 0 in such a case is equivalent
to saying that the conditional probability Pr(f | g) is < Pr(f).)

63. If w is the event (Zo = a,Z1 = b), we have Zo(w) = a and E(Z: | Zo)(w) =
(Pa1 + 2pa2)/(Pao + Pa1 + Pa2). Hence por = poz = p2o0 = p21 = 0, and p1o = p12; these
conditions are necessary and sufficient for E(Z, | Zy) = Zo.

64. (a) No. Consider the probability space consisting of just three events (Zo, Z1, Z2) =
(0,0,-2), (1,0,2), (1,2,2), each with probability 1/3. Call those events a, b, c. Then
E(Z1| Zo)(a) = 0 = Zo(a); E(Z1 | Zo)(b,c) = 5(0+2) = Zo(b,c); E(Z2| Z1)(a,b) =
l(—2 + 2) = Zl(a,b); E(Zg|Z1)(C) =2= Z1(C). But E(Zg|Zo, Zl)(a) = -2 7& Z1(a).

2
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(b) Yes. We have Zzn+1 (Zn.l,-l — zn) PI‘(Z() = Z20,.- .,Zn+1 = Zn+1) = 0 for all
fixed (zo,...,2n). Sum these to get Zzn“ (znt1 — 20) Pr(Zn = 2n, Zyn41 = 2n41) = 0.

65. Observe first that E(Zn41 | Zo, ..., Zk) = E(E(Zny1 | Zo, ..., Z0) | Zo, ..., Zk) =
E(Z. | Zv,...,Zy) whenever k < n. Thus E(Z,,(n41) | Zo,- .., Zim(n)) = Zm(n) for all

n > 0. Hence E(Z,,(0+1) | Zim(0)) - - - » Zm(n)) = Zm(n), @ in the previous exercise.
66. We need to specify the joint distribution of {Zo, ..., Z, }, and it’s not difficult to see
that there is only one solution. Let p(c1,...,0n) = Pr(Z1 = 01,...,Z, = opn) when

o1, ..., 0, are each 1. The martingale law p(o1...0,1) (n+1)—p(o1...0,1)(n+1) =
onp(01...0n)n =0n(plor...001)+p(o1...0,1))n gives p(o1...0n+1)/p(01...00) =
(1 + 2n[onon+1>0])/(2n + 2). Hence we find that Pr(Z1 = z1,...,Zn = zn) =
( Z;ll(l +2k[zkzk+1 > 0]))/(2"n!). When n = 3, for example, the eight possible cases

21z223 = 123, 123, ..., 123 occur with probabilities (15,3,1,5,5,1,3,15)/48.

67. (a) You “always” (with probability 1) make 2" — (1 +2 4 --- +2") =1 dollar.

(b) Your total payments are X = Xo + X1 + --- dollars, where X,, = 2" with
probability 27", otherwise X,, =0. SOEX, =1, and EX =EXo+EX; + -+ = c0.

(c) Let (T») be a sequence of uniformly random bits; and define the fair sequence
Y, = (—l)T" 2"Ty ... Tp—1, or Y, = 0 if there is no nth bet. Then Z, =Yy +--- + Y5,

[The famous adventurer Casanova lost a fortune in 1754 using this strategy, which
he called “the martingale” in his autobiography Histoire de ma vie. A similar bet-
ting scheme had been proposed by Nicolas Bernoulli (see P. R. de Montmort, Essay
d’Analyse sur les Jeux de Hazard, second edition (1713), page 402); and the perplexities
of (a) and (b) were studied by his cousin Daniel Bernoulli, whose important paper in
Commentarii Academiz Scientiarum Imperialis Petropolitanse 5 (1731), 175-192, has
caused this scenario to become known as the St. Petersburg paradox.]

68. (a) Now Z, = Yi + --- 4 Yy, where ¥, = (=1)™ [N >n]. Again Pr(Zy =1) = 1.
(b) The generating function g(z) equals z(1 + g(2)?)/2, since he must win $2
if the first bet loses. Hence g(z) = (1 — v/1 — 22)/z; and the desired probability is
[2"] 9(2) = C(n—1)/2[n0dd]/2", where C}, is the Catalan number (Zkk)/(k +1).
(©) Pr(N > m) = [2"] (1 = 2g(2))/(1 - 2) = ["] (L + 2)/VT =27 = (2Lr/2)) j2ln/2),
(d) EN =g'(1) = co. (It’s also Yo7, Pr(N > n), where Pr(N > n) ~ 1/y/mn.)
(e) Let pm = Pr(Z, > —m) for all n > 0. Clearly po = 1/2 and p,, = (1 +
DPm—1Pm)/2 for m > 0; this recurrence has the solution p,, = (m + 1)/(m + 2). So the
answer is 1/((m + 1)(m + 2)); it’s another probability distribution with infinite mean.
(f) The generating function ¢, (z) for the number of times —m is hit satisfies
g0(2) = 2/(2—2), g (2) = (1-+gm-1(2)gm (2))/2 for m > 0. S0 g (2) = i (2)/hm11(2)
for m > 0, where hy,(2) = 2m — (2m — 1)z, and g, (1) = 2. [A distribution with finite
mean! See W. Feller, An Intro. to Probability Theory 2, second edition (1971), XIL.2.]
69. Each permutation of n elements corresponds to a configuration of n + 1 balls in
the urn. For Method 1, the number of corresponding “red balls” is the position of
element 1; for Method 2, it is the value in position 1. For example, we’d put 3124
into node (2, 3) with respect to Method 1 but into (3, 2) with respect to Method 2. (In
fact, Methods 1 and 2 construct permutations that are inverses of each other.)

70. Start with the permutation 12 ... (¢ — 1) at the root, and use Method 1 of the
previous exercise to generate all n!/(c—1)! permutations in which these elements retain
that order. A permutation with j in position P; for 1 < j < ¢ stands for P; — P; 1
balls of color j, where Py = 0 and P, = n + 1; for example, if ¢ = 3, the permutation
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3142 would correspond to node (2,2,1). The resulting tuples (Ai,...,A4:)/(n + 1)
then form a martingale for n = ¢, ¢+ 1, ..., uniformly distributed (for each n) among
all (Cfl) compositions of n + 1 into ¢ positive parts.

[We can also use this setup to deal with Pélya’s two-color model when there are
r red balls and b black balls at the beginning: Imagine r + b colors, then identify the
first r of them with red. This model was first studied by D. Blackwell and D. Kendall,
J. Applied Probability 1 (1964), 284-296.]

71. If m =r' —r and n = b’ — b we must move m times to the right and n times to the
left; there are (m:”) such paths. Every path occurs with the same probability, because
the numerators of the fractions are r-(r+1)-...-(r' —1)-b-(b+1)-...-(b'=1) = r"b" in
some order, and the denominators are (r+b)-(r+b+1)-...-(r'+% —1) = (r+b) mtn

The answer, ("™ ")r™b"/(r +b) mFn reduces to 1/(r' + b — 1) when r =b = 1.

72. Since all paths have the same probability, this expected value is the same as
E(X1X2...Xy), which is obviously 1/(m+1). (Thus the X’s are very highly correlated:
This expected value would be 1/2™ if they were independent. Notice that the proba-
bility of an event such as (X =1, X5 =0, X6 =1) is E(X2(1 — X5)X6) =1/3 —1/4.)
[The far-reaching ramifications of such exchangeable random variables are surveyed
in O. Kallenberg’s book Probabilistic Symmetries and Invariance Principles (2005).]

73. f(r,n) zr(”jl) >k (T:) (—=1)*qnt1—rtr, where gx = ay,/(k+1), by induction on r.
74. Node (r,n+2—r) on level n is reached with probability (™ )/n!, proportional to
an Eulerian number (see Section 5.1.3). (Indeed, we can associate the permutations of
{1,...,n+1} that have exactly r runs with this node, using Method 1 as in exercise 69.)
Reference: Communications on Pure and Applied Mathematics 2 (1949), 59-70.

75. Asbefore, let R,, = Xo+- - -+ X,, be the number of red balls at level n. Now we have
E(Xn+1]Xo,...,Xn) =1—R,/(n+2). Hence E(Rp41|Rn) = (n+1)R,/(n+2) +1,
and the definition Z,, = (n + 1)R,, — (n+ 2)(n + 1)/2 is a natural choice.
76. No. For example, let Zo = X, Zy =Y, and Z; = Z] = X +Y, where X and YV
are independent with EX = EY = 0. Then E(Z1|Zo) = Zo and E(Z} | Zs) = Zp, but
E(Z, + Z1 | Zo + Z4) = 2(Zy + Zy). (On the other hand, if (Z,) and (Z,,) are both
martingales with respect to some common sequence (X, ), then (Z, + Z,,) is also.)
T7. B(Zns1 | Zo,...,Zn) = E(E(Zns1 | Zo,...,Zn, X0, .., Xn) | Zo,...,Zn), which
equals E(E(Zy+1 | Xo,...,Xxn) | Zo,- .., Zys) because Z, is a function of Xo, ..., Xy;
and that equals E(Z, | Zo,...,Zn) = Z,. (Furthermore (Z,) is a martingale with
respect to, say, a constant sequence. But not with respect to every sequence.)

A similar proof shows that any sequence (Y, ) that is fair with respect to (Xp,)
is also fair with respect to itself.
78. E(Zns1|Vo,..., Vo) = E(ZVis1 | Vo, ..., Vi) = Zn.

The converse holds with Vo = Zo and V,, = Z,/Zn—1 for n > 0, provided that
Zn—1 = 0 implies Z, = 0, and that we define V,, =1 when that happens.
79. Z, = VoVi...V,, where V5 = 1 and each V, for n > 0 is independently equal to
q/p (with probability p) or to p/q (with probability g). Since E(V,) = g¢+p =1, (V,,) is
multiplicatively fair. [See A. de Moivre, The Doctrine of Chances (1718), 102-154.]
80. (a) True; in fact E(fn(Yo...Y,n-1)Ys) = 0 for any function f,.

(b) False: For example, let Y5 = £1 if Y3 > 0, otherwise Y5 = 0. (Hence
permutations of a fair sequence needn’t be fair. The statement is, however, true if
the Y’s are independent with mean zero.)
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(c) False if n1 = 0 and m = 1 (or if m = 0); otherwise true. (Sequences that
satisfy E((Yn, —EYn,)... (Ya,, —EY3,.)) = E(Y,, —EY,,)...E(Y,,. —EY,, ) are
called totally uncorrelated. Such sequences, with EY;, = 0 for all n, are not always fair;
but fair sequences are always totally uncorrelated.)

81. Assuming that Xo, ..., X, can be deduced from Zy, ..., Z,, we have a, X, +
bnXn-1 = Zn = E(Znt1 | Zoy...,Zn) = E(ant1 X041 + b1 Xn | Xo,..., Xn) =
an+1(Xn +Xp—1)+bp+1Xy for n > 1. Hence an+1 = by, bnt1 = an —ant1 = bn—1—by;
and we have a,, = F_,,_1, b, = F_,_2 by induction, verifying the assumption.

[See J. B. MacQueen, Annals of Probability 1 (1973), 263-271.]

82. (a) Z, = A,/C,, where A, = 4 — X; — .- — X,, is the number of aces and
C, is the number of cards remaining after you’ve seen n cards. Hence EZ,;1; =
(A, /CR)(An—1)/(Cr—1)+(1—A,/Cr) An /(Cr—1) = A, /C,. (In every generalization
of Pélya’s urn for which the nth step adds k, balls of the chosen color, the ratio
red/(red + black) is always a martingale, even when k, is negative, as long as enough
balls of the chosen color remain. This exercise represents the case k, = —1.)

(b) This is the optional stopping principle in a bounded-time martingale.

(¢c) Zy = An/Cy is the probability that an ace will be next. [“Ace Now” is a
variant of R. Connelly’s game “Say Red”; see Pallbearers Review 9 (1974), 702.]

83. Z, = ZZ:1(XTL — E X,) is a martingale, for which we can study the bounded
stopping rules min(m, V) for any m. But Svante Janson suggests a direct computation,
beginning with the formula S, = Y °2, X,[N >n] where N might be co: We have
E(X,[N >n]) = (E X,)(E[N >n]), because [N >n] is a function of {Xo,...,Xn-1},
hence independent of X,. And since X, > 0, we have ESy =3 > | E(X,[N >n]) =
X (EXR)EN>n] = 32  E(EX,)[N>n]) = E> "2 (EX,)[N >n], which is
Ezgzl E X,.. (The equation might be ‘co = c0’.)

[Wald’s original papers, in Annals of Mathematical Statistics 15 (1944), 283-296,
16 (1945), 287-293, solved a somewhat different problem and proved more.]
84. (a) We have f(Zn) = f(E(Zn+1 | Zo,...,Zn)) S E(f(Zn+1) | Zo,...,Zn) by
Jensen’s inequality. And the latter is E(f(Zn+1) | f(Zo), ..., f(Zn)) as in answer 77.
[Incidentally, D. Gilat has shown that every nonnegative submartingale is {|Z,|} for
some martingale (Z,); see Annals of Probability 5 (1977), 475-481.]

(b) Again we get a submartingale, provided that we also have f(z) < f(y) for
a <z <y<b. [J. L. Doob, Stochastic Processes (1953), 295-296.]
85. Since (Bn/(Rn + Br)) = (1 — Rn/(Rn + By)) is a martingale by (27), and since
f(z) = 1/z is convex for positive z, ((Rn + Bn)/Bn) = (Rn/Bn +1) is a submartingale
by exercise 84. (A direct proof could also be given.)
86. The rule Nny1(Zo,...,Zn) = [max(Zo,...,Z») <z and n+ 1 < m] is bounded.
If max(Zo, ..., Zm-1) < x then we have Zy < z, where N is defined by (31); similarly,
if max(Zy,...,Zm—1) > x then Zy > z. Hence Pr(max(Zo,...,Z,) > z) = (EZn)/z
by Markov’s inequality; and E Zy < E Z,, in a submartingale.
87. This is the probability that Z, becomes 3/4, which also is Pr(max(Zo, ..., Z,) >
3/4). But E Z,, = 1/2 for all n, hence (33) tells us that it is at most (1/2)/(3/4) = 2/3.

(The exact value can be calculated as in the following exercise. It turns out to be
ZI;.O:O WQ(MC-‘,-Z&) = %H3/4 — %H1/2 + % = iﬂ' — %ln2 ~ 439)
88. (a) We have S > 1/2 if and only if there comes a time when there are more red
balls than black balls. Since that happens if and only if the process passes through one
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of the nodes (2,1), (3,2), (4,3), ..., the desired probability is p1 + p2 + - - -, where pj,
is the probability that node (k + 1, k) is hit before any of (j + 1, 5) for j < k.

All paths from the root to (k+ 1, k) are equally likely, and the paths that meet our
restrictions are equivalent to the paths in 7.2.1.6—(28). Thus we can use Eq. 7.2.1.6—(23)
to show that p, =1/(2k —1) —1/(2k); and 1 —1/2+1/3 —-1/4+ --- =1n2.

(b, c) If pi is the probability of hitting node ((t — 1)k + 1, k) before any previous
((t —1)j +1,5), a similar calculation using the t-ary ballot numbers CISZ) yields pr =
(t—1)(1/(tk — 1) — 1/(tk)). Then > 72 pr =1 — (1 —1/t)H,_1/+ (see Appendix A).

Notes: We have Pr(S =1/2) =1 —1n2, since S is always > 1/2. But we cannot
claim that Pr(S > 2/3) is the sum of cases that pass through (2, 1), (4,2), (6, 3), etc.,
because the supremum might be 2/3 even though the value 2/3 is never reached. Those
cases occur with probability /v/27; hence Pr(S = 2/3) > 2r/v/27 —In3 =~ .111. A de-
termination of the exact value of Pr(S = 2/3) is beyond the scope of this book, because
we've avoided the complications of measure theory by defining probability only in dis-
crete spaces; we can’t consider a limiting quantity such as S to be a random variable, by
our definitions! But we can assign a probability to the event that max(Zo, Z1,...,Z,) >
z, for any given n and z, and we can reason about the limits of such probabilities.

With the help of deeper methods, E. Schulte-Geers and W. Stadje have proved
that the supremum is reached within n steps, a.s. Hence Pr(S = 2/3) = 2r/+/27 —In 3;
indeed, Pr(S is rational) = 1, since only rationals are reached; and Pr(S = (t —1)/t) =
(2—=3/t) Hy_y;—(1—2/t)H,_y,,—(t—2)/(t—1). [J. Applied Prob. 52 (2015), 180-190.]
89. Set Y, = Xy, — pn, Gn = —pn, b = 1 — p,. (Incidentally, exercise 1.2.10-22 gives
an upper bound for this quantity that has quite a different form.)

90. (a) Apply Markov’s inequality to Pr(e(¥1++¥n)t > gt

(b) e¥t < e P (q—y)+el(y+p) = e/ 4 ye9® because the function e¥* is convex.

(c) We have f'(t) = —p +pe'/(q + pe') and f"(t) = pge’/(q + pe')*; hence f(0) =
f'(0) = 0. And " (t) < 1/4, because the geometric mean of ¢ and pe’, (pge’)'/?, is less
than or equal to the arithmetic mean, (g + pe’)/2.

(d) Set c=b—a, p=—ajc,q=bjc, Y =Y/e¢, t = ct, h(t) = /.

(e) In E((e€it”/4 + Yihi(t)). .. (ent*/4 + Yy, hn(t))) the terms involving hy(t) all
drop out, because (Y;) is fair. So we're left with the constant term, ect?/4,

(f) Let t = 2z/c, to make ct’/4 — xt = —z°/c.
91. E(Zn41|Xo,...,Xn) =E(E(Q]|Xo, ..., Xn, Xn+t1)| Xo,...,Xn), and this is equal
to E(Q|Xo,...,Xn) by formula () in answer 35. Apply exercise 77.
92. Qo = EX,, =1/2. If n < m we have Q, = E(X, | Xo,...,X,), which is the
same as E(X, 41| Xo, ..., X,) (see exercise 72); and thisis (1+X; +---+X,)/(n+2),
which is the same as Z, in (27). If n > m, however, we have Q, = Xp,.

93. Everything goes through exactly as before, except that we must replace the quan-
tity (m — 1)!/m'~" by the generalized expected value, which is 37, [T _, (1 — pus).

94. If the X’s are dependent, the Doob martingale still is well defined; but when
we write its fair sequence as an average of A(z1,...,z:) there is no longer a nice
formula such as (40). In any formula for A that has the form Y p(Q(...2n...) —
Q(...xz.. )), Pr(X, = xn, Xn41 = Tnsi,. .. )/(Pr(Xn = 2,) Pr(Xpnt1 = Tng1,. .. ))
must equal ) pz, so it must be independent of x,,. Thus (41) can’t be used.

95. False; the probability of only one red ball at level nis 1/(n+1) = Q(n™'). But there
are a.s. more than 100 red balls, because that happens with probability (n—99)/(n+1).
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96. Exercise 1.2.10-21, with en equal to the bound on |X — n/2|, tells us that (i) is
g.s. and that (i), (ii), (iii) are a.s. To prove that (iv) isn’t a.s., we can use Stirling’s
approximation to show that (n/;’ik)/Z" is ©(n~'?) when k = \/n; consequently
Pr(|X| < v/n) = ©(1). A similar calculation shows that (ii) isn’t q.s.

97. We need to show only that a single bin q.s. receives that many. The probability

generating function for the number of items H that appear in any particular bin is
G(z)=((n—1+2)/n)", where N = [n'"°]. If r = 1n° we have

1\"" 1 1 [2nr] 1 \2nr-1 11
<r < (= —)=2"(1-— <2"(1—-— <27 "
Pr(H_r)_(Z) G(?) ( 2n) - ( 2n) - ©
by 1.2.10-(24). And if r = 2n° we have
B B 1\Llnr/2] B 1\nr/2 B /2
Pr(HZr)SZTG(Z):2T(1+;) gzr(1+;) <2Te?,
by 1.2.10-(25). Both are exponentially small. [See Knuth, Motwani, and Pittel,

Random Structures & Algorithms 1 (1990), 1-14, Lemma 1.]

98. Let E, = ER, where R is the number of reduction steps; and suppose F(n) = k
with probability px, where > 7 _;px =1 and > ;_; kpx = g > gn. (The values of p1,
.+, Pn, and g might be different, in general, every time we compute F'(n).)
Let 2% = S2%_ 1/g;. Clearly Eo = 0. And if n > 0, we have by induction

j=a
n—1+ZPkEn k<1+ZPkE"k—1+Zpk -2 kt1)
n k n
—21+1—Zpk2n k+1<21+1—2pk—<2
k=1 k=1 "

[See R. M. Karp, E. Upfal, and A. Wigderson, J. Comp. and Syst. Sci. 36 (1988), 252.]

99. The same proof would work, provided that induction could be justified, if we were
to do the sums from k = —oo to n and define X% = Z] Zo411/9; when a > b. (For
example, that definition gives —X7 13 =1/gn+1 + 1/gn+2 < 2/gn.)

And in fact it does become a proof, by induction on m, that we have E,, , < X7
for all m,n > 0, where E,,, = Emin(m,R). Indeed, we have Eo, = En+1,0 = 0;
and Emyin =1+ > 7__ PtEmn_r when n > 0. [This problem is exercise 1.6 in
Randomized Algorithms by Motwani and Raghavan (1995). Svante Janson observes
that the random variable Z,, = ¥:™ + min(m, R) is a supermartingale, where X,, is
the value of X after m iterations, as a consequence of this proof.]
100. (a) Y i, kpr <Emin(m,T) =p1+2p2+---+mpm+mpmi1+---+mpe < ET.

(b) Emin(m,T) > mpoo for all m. (We assume that co-p = (p > 0?7 co: 0).

101. (Solution by Svante Janson.) If 0 < t < min(pi,...,pm) = p, we have Eet* =
[T Ee™ =TI pe/(e” " =1+ pi) < [T, pi/(px —t), because e”* — 1 > —t. By
1.2.10-(25), therefore, and setting ¢ = 8/u, Pr(X > rp) < e " [I7 pr/(pr — t) =
exp(—rf — Y1 In(1 — t/pr)) < exp(—rd — >\ (t/p) In(1l — 0)/8) = exp(—rf —
In(1 —6)). Choose § = (r —1)/r to get the desired bound re'!™". (The bound is nearly
sharp when m = 1 and p is small, since Pr(X > r/p) = (1 —p)["/P1=  me7")
102. Applying exercise 101 with g < s1 + -+ + s, and r = Inn gives probability
O(n llogn) that (s1 + --- 4 sm)r trials aren’t enough. And if 7 = f(n)lnn, where
f(n) is any increasing function that is unbounded as n — oo, the probability that sir
trials don’t obtain coupon k is superpolynomially small. So is the probability that any
one of a polynomial number of such failures will occur.
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103. (a) The recurrence poij = [ =j], ps1yis = Yoo Prit ([fo (k) = §1+Lf1 (k) = 1) /2
leads to generating functions gi; = Y oeq Pnij2" that satisfy gio = [i =0]+(gio+gi1)7/2,
gi1 = [t =1] 4+ (gio + gi2)2/2, gi2 = [t =2] + (gs1 + gi2)2z/2. From the solution gio =
A+B+C, g =A-2B,gis=A+B—-C,A=1%/(1-2), B= 1(1-3[i=1])/(1+2/2),
and C = £([i=0] - [i=2])/(1 — 2/2), we conclude that the probability is + + O(27");
in fact it is always either |2"/3]/2™ or [2"/3]/2". The former occurs if and only if
it # jand n is even, or i + j = 2 and n is odd.

(b) Letting goi2 = 5(goo1r + g112), goon = 5([j=0] + go11), etc., yields the
generating function go12 = ([j#1] + [j =1]2)2%/(4 — 2*). Hence each j occurs with
probability 1/3, and the generating function for N is 2%/(2—z); mean = 3, variance = 2.

(c) Now goor = 5([j =0] + g112), etc.; the output is never 1; 0 and 2 are equally
likely; and NV has the same distribution as before.

(d) Functional composition isn’t commutative, so the stopping criterion is differ-
ent: In the second case, 111 cannot occur unless the previous step had 000 or 222. The
crucial difference is that, without stopping, process (b) becomes fized at coalescence;
process (c) continues to change agaiaz as n increases (although all three remain equal).

(e) If T is even, sub(T) returns (—1,0,1,2) with probability (2, (27 — 1)/3,
(2T — 4)/3, (27— 1)/3)/27. Thus the supposed alternative to (b) will output 0 with
probability 1 + & + 255 4 ... = 137 9k+1(92" _1y/92"" 5 0.427, not 1/3.

(f) Change sub(T") to use consistent bits X7, X7_1, ..., X1 instead of generating
new random bits X each time; then the method of (b) is faithfully simulated. (The
necessary consistency can be achieved by carefully resetting the seed of a suitable
random number generator at appropriate times.)

[The technique of (f) is called “coupling from the past” in a monotone Monte Carlo
simulation. It can be used to generate uniformly random objects of many important
kinds, and it runs substantially faster than method (b) when there are thousands or
millions of possible states instead of just three. See J. G. Propp and D. B. Wilson,
Random Structures & Algorithms 9 (1996), 223-252.]

104. Let ¢ = 1 —p. The probability of output (0,1,2) in (b) is (¢, 2pg, p*); in (c) it is
(p*+pg*,0, > +qp?). In both cases N has generating function (1—pq(2—z))z%(1—pgz?),
mean 3/(1 — pg) — 1, variance (5 — 2pq)pg/(1 — pq)*.

105. Suppose n = 2m is even. Experiments for small m suggest that there are
polynomials ¢ such that g, = 2%m—a/tm for 0 < a < m; and indeed, the polyno-
mials defined by to = t1 = 1, tp41 = 2t — 2%t,_1 fill the bill, because they make
gm = 2gm—1. The generating function T(w) = 3>°°°_ t,w™ = (1—w)/(1— 2w +w?z?)
now shows, after differentiation by z, that we have t,,(1) = —m(m — 1) and #,,,(1) =
(m® — 5m + 3)m(m — 1)/3; hence ¢, (1) + t,,,(1) — t,(1)* = 2(m* — m*). The mean
and variance, given a, are therefore a — (m—a)(m —a—1)+m(m —1) = a(n —a) and
2m—a)’ = (m—a)!'—m’+m* = 3(n” - 2a(n — a) — 2)a(n — a), respectively.

When n = 2m — 1 we can write go = 2%Um—a/um for 0 < a < m, with um41 =
2Um — 22Um—1. In this case we want up = 1 and u1 = z, so that gm = gm—1. From
Uw) =32 _qunw™ = (1+(2—2)w)/(1—2w+w?2”) we deduce ul,, (1) = —m(m—2)
and (1) = m(m — 1)(m* — 7m + 7)/3. It follows that, also in this case, the mean
number of steps in the walk is a(n—a) and the variance is 1 (n’—2a(n—a)—2)a(n—a).

[The polynomials ¢, and u,, in this analysis are disguised relatives of the classical
Chebyshev polynomials defined by T, (cos 8) = cosmé, Up,(cosf) = sin(m + 1)8/sin 6.
Let us also write Vi, (cosf) = cos(m — 3)6/cos 6. Then Vi, (z) = (2 — 1/z)Tm(z) +
(1/z — 1)Up (z); and we have tp, = 2" T (1/2), um = 2™ Vin(1/2).]
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106. Before coalescing, the array aoa: ...aq—1 always has the form a"(a+1) ... (b—1)b°
for some 0 <a<b<d,r>0,and s >0, where r + s+ b —a =d+ 1. Initially a = 0,
b=d—1,r =s = 1. The behavior of the algorithm while r+s = ¢ is like a random walk
on the t-cycle, as in the previous exercise, starting at a = 1. Let G be the generating
function for that problem, which has mean ¢ — 1 and variance 2(%). Then this problem
has the generating function G2Gs...Gq; so its mean is Y _,(k — 1) = (%), and the
variance is ZZ:Z 2(’;) = Z(djl).
107. (a) If the probabilities can be renumbered so that p1 < q1 and p2 < go, the
five events of Q can have probabilities p1, p2, ¢1 — p1, g2 — p2, and g3, because p3 =
(g1 — p1) + (g2 — p2) + g3. But if that doesn’t work, we can suppose that p1 < q1 <
q2 < q3 < p2 < p3. Then p1, ¢1 — p1, p1 +p2 — q1, p3 — q3, and g3 are nonnegative.
(b) Give s events the probabilities 5, %, 3, .
(c) For example, let p1 = §, p2=p3 =5, @1 =2 = @3 = 3.
108. Let pr = Pr'(X = k) and qr = Pr'""(Y = k). The set |, {> pc,.Pk>Dopecn Tk}
divides the unit interval [0..1) into countably many subintervals, which we take as the
set  of atomic events w. Let X(w) = n if and only if w C [Y, ., Pk - Dopc, Pk); @
similar definition works for Y (w). And X (w) < Y (w) for all w. a

109. (a) We're given that p1 + ps < q1 + ¢q3, p2 + p3 < ¢2 + ¢3, and p3s < g3. (Also
that 0 < 0 and p1 + p2 + p3 < q1 + g2 + g3; but those inequalities always hold.) We
must find a coupling with pi12 = p21 = p31 = ps2 =0, because 1 £2,2 41,341, and
3 £ 2. In the previous problem we were given that p2 + ps < g2 + ¢3 and p3 < g3, and
we had to find a coupling with pa1 = p31 = p32 = 0.

(b) Let A" = {z | z > a for some a € A} and B* = {z | # < b for some b € B}.
We're given that Pr' (X € AT) < Pr’/(Y € A") for all A. Let A= {1,...,n}\ B*, so that
Pr'(X € BY) =1 —Pr/(X € A). The result follows because A = A".

(c) Remove all arcs z; — z; from the network when ¢ A j. Then a blocking
pair (I, J) has the property that ¢ < j impliesi € Tor j € J. Let A={z |z <a
for some a ¢ J} and B = {1,...,n} \ A. Then A C I, B C J, and B = B*. Hence
Zie[ pi + Zjej g 2 ZieA pi + ZjeB g = Zi€A g + ZjeB q; = 1.

[See K. Nawrotzki, Mathematische Nachrichten 24 (1962), 193-200; V. Strassen,
Annals of Mathematical Statistics 36 (1965), 423-439.]

110. (a) The result is trivial if r = 1. Otherwise consider the probability distributions
Pk = (px =)/ (1 —r) and g, = (g, —r4)/(1 —7); use the coupling pi; = (1 —r)piq; +
ri[i=j]. [See W. Doeblin, Revue mathématique de I’'Union Interbalkanique 2 (1938),
77-105; R. L. Dobrushin, Teoriya Veroyatnostel i ee Primeneniia 15 (1970), 469-497.]

(b) Yes, because the (p',q’) distribution satisfies the hypotheses of that exercise.

111. (a) Here are the 60 triples 17 37 47, with the minima in bold type:

134 163 123 126 142 142 153 145 163 154 245 234 534 563 623 526 632 652 534 643
356 645 246 234 435 463 524 423 642 532 461 351 361 641 251 231 341 531 321 421
512 412 415 315 316 615 216 216 415 316 623 526 652 452 564 354 465 364 256 265

(b) Both S4 and Sp lie in AU B. Each element of AU B is equally likely to have
the minimum value ar; exactly |ANB)| of those elements have that value as their sketch.

(c)|JAnBNC|/|AUBUC|.

Notes: The ratio |ANB|/|AUB]| is a useful measure of similarity called the Jac-
card index, because Paul Jaccard used it to compare different Swiss sites according to
the sets of plant species seen at each place [Bulletin de la Société Vaudoise des Sciences
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Naturelles 37 (1901), 249]. It is commonly used today to rank the similarity between
web pages, based on a certain set of words in each page.

Minwise independence was introduced by Andrei Broder for that application in
1997, using n = 2°* and a method of identifying roughly 1000 words A on a typical web
page. By calculating, say, independent sketches S1(A), ..., Si00(A) for each page, the
number of j such that S;(A) = S;(B) gives a highly reliable and quickly computable
estimate of the Jaccard index. A perfectly minwise independent family is impossible
in practice when n is huge, but the associated theory has suggested approximate
“minhash” algorithms that work well. See A. Z. Broder, M. Charikar, A. M. Frieze,
and M. Mitzenmacher, J. Computer and System Sciences 60 (2000), 630-659.

112. (a) Such a rule breaks ties properly, provided that the number of 7 with co’s in B
is a multiple of n — m. Each B can have its own rule.

(b) In fact we can produce families whose permutations are all obtained from
N/n = d “seeds” by cyclic shifts, as in exercise 111. Begin with m = 1 and a table
of N = lem(1,2,...,n) partial permutations whose entries m;; for 1 < ¢ < N and
1 < j < n are entirely blank, except that m;; = 1 for each pair ij with (j —1)d < i < jd
and 1 < j <n. When n = 4, for instance, the initial tableau

1I_II_II_I 1I_II_II_I 1I_II_II_I I_I]-I_II_I I_I]-I_II_I I_I]-I_II_I I_II_I]-I_I I_II_I]-I_I I_II_I]-I_I I_II_II_I]- I_II_II_I]- I_II_II_I]-

represents N = 12 truncated permutations with m = 1. We’ll insert some 2s next.

Let A be a subset of size n — m that is all blank, in some 7. Each A oc-
curs equally often (as in uniform probing, Section 6.4); so the number of such 7 is
N/(,",,)- Fortunately this is a multiple of n — m, because exercise 1.2.6-48 tells us
that N/((n—m)(,", ) = N> (=1 (7)/(n—m+ k).

Take n—m such 7 and insert m+1 into different positions within them. Then find
another such A, if possible, and repeat the process until no blank subsets of size n —m
remain. Then set m <— m + 1, and continue in the same way until m = n.

It’s not hard to see that the insertions can be done so that m;, g+, ..., T(n—1)d+;
are maintained as cyclic shifts of each other. When n = 4 the 2s are essentially forced:

1200 1020 1ow2 0124 o102 21 w12 201y W21y 2001 L2012l
But then there are two ways to fill the two cases with A = {3, 4}:

123, 1u2y 1302 (123 102 213 3412 2,1, 4213 2341 4201 3021
12,3 142y 1302 312, o102 213, o312 2,1, 4213 2,31 4241 321

Adopting the first of these leads to two ways to fill A = {2,4}:

123, 132, 13,2 (123 132 21,3 3u12 2,13 4213 2341 32,1 321
123, 1423 13,2 (123 31,2 21,3 3412 231, 4213 2341 4231 3,21

Here A is a cyclic shift of itself, but consistent placement is always possible.
[See Yoshinori Takei, Toshiya Itoh, and Takahiro Shinozaki, IEICE Transactions
on Fundamentals E83-A (2000), 646-655, 747-755.]

113. (a) The probability is zero if I > k or r > n— k. Otherwise the result follows if we
can prove it in the “complete” case when | = k — 1 and r = n — k, because we can sum
the probabilities of complete cases over all ways to specify which of the unconstrained
elements are < k and which are > k.

To prove the complete case, we may assume that a; =i, b=Fk, and¢c; =k +J
for 1 <i<l=k—-1and1l < j<r=mn-—k. The probability can be computed
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via the principle of inclusion and exclusion, because we know Pr(minges ar = k) =
1/(n —k +t) = Pp whenever A = {k,...,n} U B and B consists of ¢ elements less
than k. For example, if k = 4 the probability that 47 = 4 and {1« 27, 3w} = {1,2,3}
is P@ — P{]_} —P{g} —P{g} +P{]_,2} +P{]_,3} +P{2,3} —P{1,2,3}; each of those probabilities
is correct for truly random .

(b) This event is the disjoint union of complete events of type (a). [See A. Z.
Broder and M. Mitzenmacher, Random Structures & Algorithms 18 (2001), 18-30.]

Notes: The function ¢(n) = In(lem(1,2,...,n)) = 3 ., [pprime]lnp was
introduced by P. L. Chebyshev [see J. de mathématiques pures et appliquées 17 (1852),
366-390], who proved that it is ©(n). Refinements by C.-J. de la Vallée Poussin
[Annales de la Société Scientifique de Bruxelles 20 (1896), 183-256] showed that in fact
P(n) = n + O(ne”“1°8™) for some positive constant C. Thus lem(1,2,...,n) grows
roughly as €™, and we cannot hope to generate a list of minwise independent permuta-
tions when n is large; the length of such a list is 232,792,560 already for 19 < n < 22.

114. First assume that |S;| = d; + 1 for all j, and let g;(x) = Hsesj (x —s). We
djtl by PG gj(z;), without changing the value of f(z1,...,zn) when

can replace z; J
x; € Sj. Doing this repeatedly until every term of f has degree < d; in each variable z;
will produce a polynomial that has at least one nonroot in S7 X --- x S,, according to
exercise 4.6.1-16. [See N. Alon, Combinatorics, Probab. and Comput. 8 (1999), 7-29.]
Now in general, if there were at most |Si| + -+ + |Sn| — (d1 + -+ + dn + n)
nonroots, we could find subsets S; C S with |S}| = d; + 1 such that S differs from z;
in |Sj| — d; — 1 of the nonroots and S} X --- x S}, avoids them all —a contradiction.
(This inequality also implies stronger lower bounds when the sets S; are large.
If, for example, di = --- =d, = d and if each |S;| > s, where s =d + 1+ [d/(n — 1)],
we can decrease each |S;| to s and increase the right-hand side. For further asymptotic
improvements see Béla Bollobds, Extremal Graph Theory (1978), §6.2 and §6.3.)

115. Representing the vertex in row z and column y by (z,y), if all points could be
covered we’d have f(z,y) = [[’_, (x—a;) [T}_, (y —b;) IT;—, (x+y +cj)(x —y+d;) = 0,
for all 1 <z < m and 1 < y < n and for some choices of a;, b;, ¢j, d;. But f has

degree p 4+ ¢ + 2r = m +n — 2, and the coefficient of z™~'y" ™! is i(u;n) £0.

116. Let g, = Y {ze | v € e} for each vertex v, including z. twice if e is a loop from
v to itself. Apply the nullstellensatz with f = [], (1 — ¢4 ') — [[.(1 — z.) and with
each S; = {0,1}, using mod p arithmetic. This polynomial has degree m, the number
of edges and variables, because the first product has degree (p — 1)n < m; and the
coefficient of [], zc is (—1)™ # 0. Hence there is a solution  that makes f(z) nonzero.
The subgraph consisting of all edges with z. = 1 in this solution is nonempty and
satisfies the desired condition, because g,(z) modp = 0 for all v.

(This proof works also if we consider that a loop contributes just 1 to the degree.
See N. Alon, S. Friedland, and G. Kalai, J. Combinatorial Theory B37 (1984), 79-91.)

117. If w = e*™/™ we have Ew’* = Y} (1)pF(1 — p)" Fw’* = (wip+ 1 —p)".
Also |w'p+1=p|* =p* + (1 = p)* +p(1 = p)(@’ +w™7) =1~ 4p(1 - p)sin®(mj/m).
Now sinzt > 2t for 0 < t < 1/2. Hence, if 0 < j < m/2 we have |wip+1 —p|® <
1 —16p(1 — p)j*/m?* < exp(—16p(1 — p)j*/m?); if m/2 < j < m we have sin(7j/m) =
sin(mw(m — j)/m). Thus Z]m:_ll|ijX| <2 Z;n:_ll exp(—8p(1 — p)j*n/m?).

The result follows, since Pr(X modm =r) = = Zngl wTEwX. [S. Janson
and D. E. Knuth, Random Structures & Algorithms 10 (1997), 130-131.]
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118. Indeed, (22) with Y = X — z yields more (when we also apply exercise 47):

(EX —z)? (EX —z)?
PriX 2a) 2Pr(X > o) 2 g 7 = §X2 —20EX —2)
(EX —x)? S (EX —x)?
EX2—zEX ~ EX2—2a2"

(The attribution of this result to Paley and Zygmund is somewhat dubious. They did,
however, write an important series of papers [Proc. Cambridge Philosophical Society 26
(1930), 337-357, 458-474; 28 (1932), 190-205] in which a related inequality appeared
in the proof of Lemma 19.)

119. Let f(z,t) =Pr(U<V <Wand V < (1 —-t)U +tW), g(z,t) =Pr(U<W KV
and W < (1 -t)U +tV), h(z,t) =Pr(W <U <V and U < (1 — )W + V). We want
to prove that f(z,t) + g(z, t) + h(z,t) = t. Notice that, if U =1-U, V =1-V,
W=1-W, WehavePr(WgUSVandUZ(1—t)W+tV) Pr(V <U <W and
U< tV+(1—t)W). Hence £ —h(z,t) = f(1—x,1—t), and we may assume that ¢t < z.

Clearly g(z,t) = [5 % f: 1d_”x t(v —u) = L. And t < z implies that

Fat) = [ ain 2 [0 (1= (0= (1= Hw)/t) = £(1 — 2)%/(6(1 — t)a);
hat) = [} 22 () 2 52 50— w) = £ - o).

Instead of this elaborate calculation, Tamds Terpai has found a much simpler
proof: Let A = min(U,V,W), M = (UVW), and Z = max(U,V,W). Then the
conditional distribution of M, given A and Z, is a mixture of three distributions:
Either A = U, Z =V, and M is uniform in [A..Z]; or A=U, Z =W, and M is
uniform in [z..Z]; or A=W, Z =V, and M is uniform in [A..z]. (These three cases
occur with respective probabilities (Z — A, Z —z,x — A)/(2Z — 2A), but we don’t need
to know that detail.) The overall distribution of M, being an average of conditional
uniform distributions over all A < x and Z > z, is therefore uniform.

[See S. Volkov, Random Struct. & Algorithms 43 (2013), 115-130, Theorem 5.]

120. See J. Jabbour-Hattab, Random Structures & Algorithms 19 (2001), 112-127.

121. (a) D(y||z) = t1g & + 2 1g % =~ .0097; D(z||y) = £1g 2 + %1g 5 ~.0098.

(b) We have E(p(X)lgp(X)) > (Ep(X))IgE p(X) by Jensen’s inequality (20);
and E p(X) =), y(t) = 1, so the logarithm evaluates to 0.

The question about zero is the hard part of this exercise. We need to observe that
the function f(z) = zlgz is strictly convex, in the sense that equality holds in (19) only
when z = y. Thus we have (EZ)IgEZ = E(Zlg Z) for a positive random variable Z
only when Z is constant. Consequently D(y||z) = 0 if and only if z(t) = y(t) for all ¢.

(c) Let Z(t) = z(t)/p and g(t) = y(t)/q be the distributions of X and Y within 7.
Then 0 < D(g2) = >, §(1) 18(9(1)/2(1)) = E(g p(Y) |Y € T) +1g(p/q)-

(d) D(y||z) = (Elgm)— Hy =1lgm— Hy. (Hence, by (b), the maximum entropy
of any such random variable Y is lg m, attainable only with the uniform distribution.)

(e) Ixy =—Hz =3, , 2(u,v)(gz(u) +1gy(v)) = —Hz + 3, (u)lg(1/z(v)) +
>, y(w)lg(1/y(v)), because Y, z(u,v) = z(u) and Y z(u,v) = y(v). (One can also
write Ixy = Hy — Hy|X, where Hy‘X = Zt $(t)Hy‘t )

122, (a) D(yllz) = $2o(3/47+1) 1g(3/2°+) = Ig 2 ~ 0.75%; D(a|ly) = Ig & ~ 0.415.
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(b) Let ¢ =1 — p and t = pn + uy/n. Then we have
—u™/(2pa) U U u? u?y 1 1
R CR TR PATO)!
y(t) 2Tpgn p( 2¢ 2p 6p* 6¢°//n n

w1 U u?\ 1 1
lnp(t):—z—q —Elnq—k (2_(] —@)%-FO(;)

By restricting |u| < n® and trading tails (see 7.2.1.5—(20)), we obtain

1 1
- 5lga) duvi+0()

2
*u2/(2pq) u

V4 27rpqn / 2q In2

1 1
= 21n2(l 1—p _p) +O(E)'

In this case D(z||y) is trivially oo, because z(n + 1) > 0 but y(n+ 1) = 0.
123. Since prt1 = pry(t)/zx(t) we have p(t) = (1 — pr)pr+1/(pr (L — pr+1)). [This

relation was the original motivation that led S. Kullback and R. A. Leibler to define
D(y||z), in Annals of Mathematical Statistics 22 (1951), 79-86.]

124. Let m = ¢*2PWI1® anq g( )= f()[p ( ) m]; thus g(t) = f(t) except with prob-
ability Ac. We have |E(f) = En(f)| = (E(f)—E(9))+|E(9) = En(9)|+ (En(f) = En(9))-
The Cauchy—-Schwarz inequality (exerc1se 1 2.3~ 30) implies that the first and last are
bounded by ||f|| VA¢, because f(t) — g(t) = f(t)[p(t) >m].

Now var (p(X)g(X)) < E(p(X)%9(X)?) < mE(p(X)f(X)?) = mE(f(¥)?) =
ml|fI|*. Hence (E(g) — Eu(g))” = var Ex(g) = var (p(X)g(X))/n < ||fII*/c”.

Consider now the case ¢ < 1. From Markov’s inequality we have Pr(p(X) > m) <
(Ep(X))/m = 1/m. Also E(p(X)[p(X) <m]) =E[p(Y)<m] =1— A.. Consequently
P(En(1) 2 o) S Prlma e p(X) > m) + Py pO[(0) Si] 2 ) <
n/m+E(Z_, p(Xi)[p(Xk) <m])/(na) = ¢* + (1 - Ac)/a.

[S. Chatterjee and P. Diaconis, arXiv:1511.01437 [math.PR] (2015), 31 pages.]

D(y||z) =

125. (a) From a2 = an_1an41 we deduce that a, = cz™ for some ¢ > 0 and z > 0.

(b) It remains log-convex <= ca1 > ad; it remains log-concave <= ca; < ag.
(The latter condition always holds in the important case ¢ = 0.)

(¢) If am—1an+1 > 0 we have am/am—1 > am+1/am > -+ > any1/an, because
there are no internal zeros. (And the analogous result holds for log-convexity.)

(d ) Ifzz >y and XZ >Y? and 2,y,2,X,Y,Z > 0, we have (z + X)(z + Z) —
(y+Y)2 > (z+X)(yYz+YYX) = (y+Y)? = (¢/X)(Y — Xy/z)? > 0. [L. L. Liu and
Y. Wang, . Advances in Applied Mathematics 39 (2007), 455.]

(e) Let ¢, =3, (Z)akbn_k. Clearly ¢? < cocz. And ¢, = >k ("gl)an_l_kbk_,_l +
>k ("gl)akﬂbn,l,k, so we can apply (c) and induction on n to the shifted sequences.
[H. Davenport and G. Pélya, Canadian Journal of Mathematics 1 (1949), 2-3.]

(f) Yes: Let ar =br =0 when k <0, and ¢, =), arbn—r. Then we have

CEL — Cn—1Cnt1 = Z (a;

ik — aj—10k+1)(bn—jbn—t — bry1-jbn_1-%),
0<j<k

which is a special case of the Binet—Cauchy identity (exercise 1.2.3—-46) with m = 2.
(g) Yes, but a more intricate proof seems to be needed. We have ¢, = too,
Cn+1 = to1 + ti0, and cny2 = to2 + 2t11 + t20, where t;; = Zk( )ak+lbn k+j; hence
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€241 — CnCnt2 = (ta1 — tooto2) + (t30 — toot20) + 2(to1ti0 — toot11). We will show that
each of these parenthesized terms is nonnegative.

Let b; = (;L)b] Then the sequence (b}) is log-concave; and ¢;0 is the (n + ¢)th
term of the sequence Y, axb),_,, which is log-concave by (f). Therefore t7; > tootz0.
A similar argument shows that ¢3; > tooto2. Finally, Binet-Cauchy gives the identity

n n
tortio — tootnn = Z( ) ( )(ap+1aq — apag+1)(bn—pbn—g+1 — bn—pt1bn—g)
p<q p 4

from the matrix product T = AXB, where A;; = aiyj, Xij = (?)[z + j=n], Bij = biy;.
[D. W. Walkup, Journal of Applied Probability 13 (1976), 79-80.]
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GOLDSMITH

He writes indexes to perfection.

— OLIVER GOLDSMITH, Citizen of the World (1762)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

v (Euler’s constant), 29.
v(z) (sideways sum), 13.
m (circle ratio), 14.

¢ (golden ratio), 12, 26.

A priori versus a posteriori probabilities, 25.

a.s.: Almost surely, 11-12, 20, 21, 39, 40.

Ace Now, 8, 19.

Ahlswede, Rudolph, 34.

Aldous, David John, 33.

Almost sure events, 11.

Alon, Noga (yox mm), 44.

Analysis of algorithms, 9, 21, 22.

Arithmetic-geometric mean inequality,
31, 39.

Asymptotic methods, 11, 12, 16.

Atomic events, 1.

Azuma, Kazuoki (F3FE—Hl), 9, 20.

B(p1,...,Pm), see Multivariate Bernoulli
distribution.

B, (p), see Binomial distribution.

By n(p), see Cumulative binomial
distribution.

Backward versus forward, 21.

Ballot numbers, 39.

Bayes, Thomas, 14.

BDD (binary decision diagram), 5, 34.

Bell, Eric Temple, numbers wy, 15.

Bernoulli, Daniel, 36.

Bernoulli, Jacques (= Jakob = James),
distribution, multivariate, 14, 18, 20.

Bernoulli, Nicolas (= Nikolaus), 36.

Beta distribution, 14.

Bhatia, Rajendra (YToi=% 9TfedT), 28.

Bienaymé, Irénée Jules, inequality, 4.

Bin-packing problem, 11, 20.

Binary notation, 14.

Binary random variables, 2, 3, 5, 13-15, 20.

Binary search trees, 24.

Binet, Jacques Philippe Marie, 46—47.

Bingo, 12-13.

Binomial convolutions, 25.

Binomial distribution, 14, 24, 32.

cumulative, 14-15, 31.

Bit vectors, 3, 9, 13—-14.

Bits of information, 24.

Blackwell, David Harold, 37.
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Bollobas, Béla, 44.
Boolean functions, 5, 15, 33, 35.
dual of, 33.
monotone, 5, 35.
symmetric, 16.
Boolean random variables, see Binary
random variables.
Boolean vectors, see Bit vectors.
Boyd, Stephen Poythress, 33.
Bracket notation, 2.
Bracketing property, 34.
Broder, Andrei Zary, 43, 44.
Brown, John O’Connor, 26.

Cantelli, Francesco Paolo, inequality, 33.
Casanova de Seingalt, Giacomo
Girolamo, 36.
Catalan, Eugene Charles, numbers, 36.
Cauchy, Augustin Louis, 46-47.
Chain rule for conditional probability,
14, 28.
Charikar, Moses Samson (FT€ HHET
), 43.
Chatterjee, Souray (THIF® SIGWY), 46.
Chebyshev (= Tschebyscheff), Pafnutii
Lvovich (Ye6simess, [TadryTii
JIpBoBuub = Yebbrmes, [Tabryrmit
JIsBOBHY), 33, 44.
inequality, 4, 9, 16.
monotonic inequality, 35.
polynomials, 27, 41.
Chesterton, Gilbert Keith, 26.
Chicks, 15.
Circle ratio (), 14.
Cliques, 16-17.
CMath: Concrete Mathematics, a book
by R. L. Graham, D. E. Knuth, and
O. Patashnik, 27, 29.
Coalescing random walk, 21.
Coin tosses, 11-12, 19, 20.
Column sums, 22.
Combinatorial nullstellensatz, 23.
Commutative law, 41.
Compositions, 37.
Concave functions, 4, 32.
Conditional distribution, 3, 45.
Conditional expectation, 2-3, 15-19.
inequality, 5, 16, 34.



Conditional probability, 1, 13-14, 35, 45.

Connelly, Robert, Jr., 38.

Convex combinations, 33.

Convex functions, 4, 8, 16, 20, 33, 38, 39.
strictly, 45.

Convolution of sequences, 25.

Correlated random variables, 17-18, 28, 37.

Correlation inequalities, 17.

Coupling, 22.
from the past, 41.

Covariance, 2, 14, 17, 28, 35.

Cover, Thomas Merrill, 13, 28.

Covering all points, 23.

Cumulative binomial distribution, 14-15, 31.

Cycle graph (Ch), 22, 41.

Darwin, Charles Robert, 25.

Davenport, Harold, 46.

Davis, Chandler, 28.

Daykin, David Edward, 34.

de La Vallée Poussin, Charles Jean
Gustave Nicolas, 44.

de Moivre, Abraham, 37.

martingale, 19.

de Montmort, Pierre Rémond, 36.

Density, relative, 24.

Degree of a multivariate polynomial, 23.

Diaconis, Persi Warren, iv, 46.

Diagonal lines, 23.

Dice, 12, 24.

Digges, Leonard, vi.

Discrete probabilities, 1.

Doblin, Wolfgang (= Doeblin, Vincent), 42.

Dobrushin, Roland L’vovich (To6pymus,
Ponarg JIbBoBud), 42.

Doob, Joseph Leo, 6, 9, 38.

martingales, 9-10, 20, 37, 39.
Dual of a Boolean function, 33.

Eggenberger, Florian, 6.

Elton, John Hancock, 31.

Entropy, 24.

relative, 24.

Enveloping series, 34.

Erdés, Pal (= Paul), 34.

Etesami, Omid (selaicl wl), iv.

Euler, Leonhard (Eitneps, Jleomapabs =
Oitnep, Jleonapn), constant vy, 29.

FEulerian numbers, 37.

Events, 1-3.

Exchangeable random variables, 37.

Expected value, 2-5, 14-16, see also
Conditional expectation.

Fair sequences, 7, 10, 19, 38.

with respect to a sequence, 7, 37.
Families of sets, 17.
Feige, Uriel (M9 SNMN), 31.

January 19, 2017

INDEX AND GLOSSARY 49

Feller, Willibald (= Vilim = Willy =
William), 36.
Fibonacci, Leonardo, of Pisa (= Leonardo
filio Bonacii Pisano), dice, 12.
martingale, 19.
numbers, 12, 38.
First moment principle, 4, 16.
FKG inequality, 5, 17, 35.
Flow in a network, 22.
Fortuin, Cornelis Marius, 17.
Forward versus backward, 21.
Four functions theorem, 17, 34.
Friedland, Shmuel (19799 SNnv), 44.
Friedman, Bernard, urn, 19.
Frieze, Alan Michael, 43.

Games, 4, 8, 13.

Garey, Michael Randolph, 11.

Generating functions, 15, 22, 24, 32,
33, 36, 40, 41.

Generation of random objects, 41.

Geometric distribution, 21, 24.

Geometric mean and arithmetic mean,
31, 39.

Georgiadis, Evangelos (Tewpytddne,
Evéyyelog), 28.

Gilat, David, 38.

Ginibre, Jean, 17.

Golden ratio (¢), 12, 26.

Goldsmith, Oliver, 48.

Gosper, Ralph William, Jr., 28.

Graham, Ronald Lewis (E37{f), 48.

Grid, 23.

Grimmett, Geoffrey Richard, 32.

Gumball machine problem, 31.

HAKMEM, 28.

Harmonic numbers, fractional, 38.

Hashing, 9-10, 20.

Hoeffding, Wassily, 9, 15.
inequality, 9-10, 20.

Importance sampling, 25.

Inclusion and exclusion, 31, 34, 44.

Incomplete beta function, 14.

Independent events, 2.

Independent random variables, 1, 7, 9,
10, 13-15, 20, 37.

k-wise, 1, 13.

Infinite mean, 36, 38.

Information, bits of, 24.

Information gained, 25.

Integer multilinear representation, see
Reliability polynomials.

Internal zeros, 25, 46.

Inverses, 36.

Ttoh, Toshiya ({FELFIH), 43.
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Jabbour-Hattab, Jean (olbha jsa olui), 45.

Jaccard, Paul, 42.
index, 42—-43.

James White, Phyllis Dorothy, 11.

Janson, Carl Svante, iv, 38, 40, 44.

Jensen, Johan Ludvig William Valdemar, 33.
inequality, 4, 16, 33, 38, 45.

Johnson, David Stifler, 11.

Joint distribution, 13, 24, 35.

Joint entropy, 24.

k-cliques, 17.
k-wise independence, 1, 13.
Kalai, Gil (0¥op D7), 44.
Kallenberg, Olav Herbert, 37.
Karp, Richard Manning, 40.
Kasteleyn, Pieter Willem, 17.
Kendall, David George, 37.
Knuth, Donald Ervin (E#&4Y), i, iii,
iv, 37, 40, 44, 48.
Kolmogorov, Andrei Nikolaevich
(Komnmoropos, Aunpeit Hukosaesu4), 9.
inequality, 9.
Kullback, Solomon, 46.
divergence, D(y||z), 24-25.

La Vallée Poussin, Charles Jean Gustave
Nicolas de, 44.

Lake Wobegon dice, 12.

Large deviations, see Tail inequalities.

Larrie, Cora Mae, 21.

Least common multiple, 23.

Left shift, 25.

Leibler, Richard Arthur, 46.

divergence, D(y||z), 24-25.

Lipschitz, Rudolph Otto Sigismund,
condition, 10.

Liu, Lily Li (XIFN), 46.

Loaded dice, 24.

Log-concave sequences, 14, 25.

Log-convex sequences, 25.

Loop, running time of, 21.

Loops from a vertex to itself, 24.

Lord, Nicholas John, 30.

Lukécs, Eugene (= Jend), 28.

MacQueen, James Buford, 38.
Magic masks, 28.
Mahler, Kurt, 28.
Markov (= Markoff), Andrei Andreevich
(MapkoB, Aunpeit AunpeeBud),
the elder, 4.
inequality, 4, 5, 16, 38, 39, 46.
Martingale differences, see Fair sequences.
Martingales, 6-11, 18-20, 24, 32.
with respect to a sequence, 7, 19, 37.
Max-flow min-cut theorem, 22, 42.
Maximal inequality, 89, 20.

January 19, 2017

McDiarmid, Colin John Hunter, 10.

Median value of a random variable, 14, 24.

Mengden, Nicolai Alexandrovitch von
(Menrzens, Hukomait AjekcannpoBuds
doun), 25.

Method of bounded differences, 10.

Minhash algorithms, 43.

Minterms, 31.

Minwise independent permutations, 23.

Mitzenmacher, Michael David, 43, 44.

Moivre, Abraham de, 19, 37.

Monotone Boolean functions, 5, 35.

Monotone Monte Carlo method, 41.

Montmort, Pierre Rémond de, 36.

Monus operation, 21-22.

Moraleda Olivén, Jorge Alfonso, 27.

Morse, Harold Calvin Marston, constant, 28.

Motwani, Rajeev ( ), 40.

MPR: Mathematical Preliminaries Redux, v.

Multigraphs, 24.

Multiplicatively fair sequences, 19.

Multivariate Bernoulli distribution,
14, 18, 20.

Multivariate total positivity, see FKG
inequality.

Mutual information, 24.

NanoBingo, 12-13.

Nawrotzki, Kurt, 42.

Negative binomial distribution,
cumulative, 14.

Negatively correlated random variables,
18, 29.

Neumann, Peter, 30.

Neville-Neil, George Vernon, III, 51.

Newton, Isaac, 30.

Nonnegative submartingales, 9, 38.

Nonnegatively correlated random
variables, 17.

Nontransitive dice, 12.

NP-complete problems, 11.

Nullstellensatz, combinatorial, 23.

One-sided estimates, 16.
Optional stopping principle, 8, 38.
Order ideals, 42.

o (power set, the family of all subsets), 34.

Pairwise independent random variables,
1, 13.

Paley, Raymond Edward Alan Christopher,
24, 45.

Paradoxes, 12, 13, 36.

Parity number, 28.

Parity of a binary integer, 13.

Partial ordering, 22.

Patashnik, Oren, 48.

Pearson, Karl (= Carl), 29.

Pi (n), 14.

Pitman, James William, 30.



Pittel, Boris Gershon (ITurresns, Bopuc
Pepmonosma), 40.
Playing cards, 1, 8, 14, 19.
Poisson, Siméon Denis, distribution,
15, 24, 35.
trials, 35.
Pélya, Gyorgy (= George), 6, 19, 46.
urn model, iv, 6-7, 19-20, 38.
Polynomials, 23; see also Chebyshev
polynomials, Reliability polynomials.
Positively correlated random variables,
17, 28.
Power series, 33.
Prime implicants of a Boolean function,
5, 34.
Probability estimates, 3-5, 8-9, 16.
Probability generating functions, 15, 40.
Probability spaces, 1-2.
Propp, James Gary, 41.

q.s.: Quite surely, 12, 20, 21.
Quick, Jonathan Horatio, 18.
Quite sure events, 12, 27.

Raghavan, Prabhakar (Qgumsi
grsauer), 40.

Random bits, 2, 3, 5, 9, 13-15, 36.

Random graphs, 16, 18.

Random number generators, 41.

Random permutations, 15.

Random variables, 1-21.

Random walk, 18.

coalescing, 21.
on r-cycle, 22, 42.

Randomized algorithms, 21.

Recurrence relations, 36, 41.

Regular graphs and multigraphs, 24.

Reliability polynomials, 5, 15, 16.

Rémond de Montmort, Pierre, 36.

Rényi, Alfréd, 34.

Restricted growth strings, 15.

Right shift, 25.

Ross, Sheldon Mark, iv, 5, 33.

Row sums, 22.

Runs of a permutation, 37.

S>m (a symmetric threshold function), 16.
Samuels, Stephen Mitchell, 15, 31.

Saturating addition and subtraction, 21-22.

Savage, Richard Preston, Jr., 26.

Say Red, 38.

Schroeppel, Richard Crabtree, 28.

Schulte-Geers, Ernst Franz Fred, iv,
13, 31, 39.

Schwarz, Karl Hermann Amandus,
inequality, 46.

Second moment principle, 4, 16, 24, 33.

Set partitions, 30, 32.
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Sets, represented as integers, 35.
Shifted sequences, 25, 46.
Shinozaki, Takahiro ({GIEF&Z), 43.
Shuffles, 1.

Sideways sum (vz), 13.

Sketches, 23.

St. Petersburg paradox, 36.
Stadje, Gert Wolfgang, 39.
Stirzaker, David Robert, 32.
Stopping rules, 7, 8, 19-20.
Stork, David Goeffrey, 27.
Strassen, Volker, 42.

Stross, Charles David George, iii.
Subadditive law, 11.
Submartingales, 8-9, 20.
Submodular set functions, 35.
Subsequence of a martingale, 18.
Summation by parts, 38.
Supermartingales, 8, 40.
Superpolynomially small, 12, 40.
Supported sets, 17.

Sylvester, James Joseph, 30.
Symmetric Boolean functions, 16.

t-ary ballot numbers, 39.

Tail inequalities, 4, 8-11, 15, 20, 21.
Takei, Yoshinori (FFH-H%E), 43.
Taylor, Brook, formula, 20.
Terpai, Tamads, 45.

Thue, Axel, constant, 28.

Totally uncorrelated sequences, 38.
Trading tails, 46.

Transcendental numbers, 28.
Triangles (3-cliques), 16.

Trybula, Stanistaw, 27.

Uncorrelated sequences, 38.

Uniform distribution, 1, 13, 16, 22-24,
36, 37, 41, 45.

Uniform probing, 43.

Union inequality, 14.

Upfal, Eli (992x ON), 40.

Urn models, 6-7, 18-20, 38.

Usiskin, Zalman Philip, 27.

Vallée Poussin, Charles Jean Gustave
Nicolas de la, 44.

Vandenberghe, Lieven Lodewijk André, 33.

Vandermonde, Alexandre Théophile,
matrix, 28.

Variance, 2, 4, 9, 14, 35, 46.

Vicious, Kode (pen name of George Vernon
Neville-Neil IIT), vi.

Volkov, Stanislav Evgenyevich (Boskos,
Cranucsias Esrenvesny), 45.

von Mengden, Nicolai Alexandrovitch
(dborb Menrnens, Hukomait
Agekcarnposudsb), 25.



52 INDEX AND GLOSSARY

Wald, Abraham (= Abraham), 38. Wigderson, Avi (P77 "aN), 40.
equation, 20. Wilson, David Bruce, 41.
Walkup, David William, 47. Winkler, Peter Mann, 31.

Wang, Yi (E%%), 46.
Web pages, 43.
whp (with high probability), see a.s. Zygmund, Antoni, 24, 45.

January 19, 2017



