
eCC Programming

C.1 INTRODUCTION

The overall goal of this book is to give a picture of how computers work on
many levels, from the transistors bywhich they are constructed all theway up
to the software they run. The first five chapters of this bookwork up through
the lower levels of abstraction, from transistors to gates to logic design.
Chapters 6 through 8 jump up to architecture andwork back down tomicro-
architecture to connect the hardware with the software. This Appendix on C
programming fits logically between Chapters 5 and 6, covering C program-
ming as the highest level of abstraction in the text. It motivates the architec-
ture material and links this book to programming experience that may
already be familiar to the reader. This material is placed in the Appendix
so that readers may easily cover or skip it depending on previous experience.

Programmers use many different languages to tell a computer what to
do. Fundamentally, computers process instructions in machine language
consisting of 1’s and 0’s, as is explored in Chapter 6. But programming
in machine language is tedious and slow, leading programmers to use more
abstract languages to get their meaning across more efficiently. Table eC.1
lists some examples of languages at various levels of abstraction.

One of the most popular programming languages ever developed is
called C. It was created by a group including Dennis Ritchie and Brian
Kernighan at Bell Laboratories between 1969 and 1973 to rewrite the
UNIX operating system from its original assembly language. By many
measures, C (including a family of closely related languages such as C++,
C#, and Objective C) is the most widely used language in existence. Its
popularity stems from a number of factors including its:

▶ Availability on a tremendous variety of platforms, from supercomputers
down to embedded microcontrollers

▶ Relative ease of use, with a huge user base

C.1 Introduction

C.2 Welcome to C

C.3 Compilation

C.4 Variables

C.5 Operators

C.6 Function Calls

C.7 Control-Flow Statements

C.8 More Data Types

C.9 Standard Libraries

C.10 Compiler and Command Line
Options

C.11 Common Mistakes

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

Digital Design and Computer Architecture, Second Edition. DOI: 10.1016/B978-0-12-394424-5.00017-3
© 2013 Elsevier, Inc. All rights reserved.

541.e1

http://dx.doi.org/10.1016/B978-0-12-394424-5.00017-3

▶ Moderate level of abstraction providing higher productivity than
assembly language, yet giving the programmer a good understanding
of how the code will be executed

▶ Suitability for generating high performance programs

▶ Ability to interact directly with the hardware

This chapter is devoted to C programming for a variety of reasons. Most
importantly, C allows the programmer to directly access addresses in
memory, illustrating the connection between hardware and software
emphasized in this book. C is a practical language that all engineers
and computer scientists should know. Its uses in many aspects of implemen-
tation and design – e.g., software development, embedded systems program-
ming, and simulation – make proficiency in C a vital and marketable skill.

The following sections describe the overall syntax of a C program, dis-
cussing each part of the program including the header, function and variable
declarations, data types, and commonly used functions provided in libraries.
Chapter 9 (available as a web supplement, see Preface) describes a hands-on
application by using C to program an ARM-based Raspberry Pi computer.

SUMMARY
▶ High-level programming: High-level programming is useful at many

levels of design, from writing analysis or simulation software to
programming microcontrollers that interact with hardware.

▶ Low-level access: C code is powerful because, in addition to high-
level constructs, it provides access to low-level hardware and memory.

Table eC.1 Languages at roughly decreasing levels of abstraction

Language Description

Matlab Designed to facilitate heavy use of math functions

Perl Designed for scripting

Python Designed to emphasize code readability

Java Designed to run securely on any computer

C Designed for flexibility and overall system access,
including device drivers

Assembly Language Human-readable machine language

Machine Language Binary representation of a program

Dennis Ritchie, 1941–2011

Brian Kernighan, 1942–

C was formally introduced in
1978 by Brian Kernighan and
Dennis Ritchie’s classic book,
The C Programming Language.
In 1989, the American National
Standards Institute (ANSI)
expanded and standardized the
language, which became known
as ANSI C, Standard C, or C89.
Shortly thereafter, in 1990, this
standard was adopted by the
International Organization for
Standardization (ISO) and the
International Electrotechnical
Commission (IEC). ISO/IEC
updated the standard in 1999
to what is called C99, which
we will be discussing in this text.

541.e2 APPENDIX C

C.2 WELCOME TO C

A C program is a text file that describes operations for the computer
to perform. The text file is compiled, converted into a machine-readable
format, and run or executed on a computer. C Code Example eC.1 is a
simple C program that prints the phrase “Hello world!” to the console,
the computer screen. C programs are generally contained in one or more
text files that end in “.c”. Good programming style requires a file name
that indicates the contents of the program – for example, this file could
be called hello.c.

C . 2 . 1 C Program Dissection

In general, a C program is organized into one or more functions. Every
program must include the main function, which is where the program
starts executing. Most programs use other functions defined elsewhere
in the C code and/or in a library. The overall sections of the hello.c
program are the header, the main function, and the body.

Header: #include <stdio.h>
The header includes the library functions needed by the program. In this case,
the program uses the printf function, which is part of the standard I/O
library, stdio.h. See Section C.9 for further details on C’s built-in libraries.

Main function: int main(void)
All C programs must include exactly one main function. Execution of the
program occurs by running the code inside main, called the body of main.
Function syntax is described in Section C.6. The body of a function con-
tains a sequence of statements. Each statement ends with a semicolon. int
denotes that the main function outputs, or returns, an integer result that
indicates whether the program ran successfully.

C is the language used to
program such ubiquitous
systems as Linux, Windows,
and iOS. C is a powerful
language because of its direct
access to hardware. As
compared with other high
level languages, for example
Perl and Matlab, C does not
have as much built-in support
for specialized operations
such as file manipulation,
pattern matching, matrix
manipulation, and graphical
user interfaces. It also lacks
features to protect the
programmer from common
mistakes, such as writing data
past the end of an array. Its
power combined with its lack
of protection has assisted
hackers who exploit poorly
written software to break
into computer systems.

While this chapter provides a
fundamental understanding of
C programming, entire texts
are written that describe C in
depth. One of our favorites is
the classic text The C
Programming Language by
Brian Kernighan and Dennis
Ritchie, the developers of C.
This text gives a concise
description of the nuts and
bolts of C. Another good text
is A Book on C by Al Kelley
and Ira Pohl.

C Code Example eC.1 SIMPLE C PROGRAM

// Write "Hello world!" to the console

#include <stdio.h>

int main(void){

printf("Hello world!\n");

}

Console Output

Hello world!

C.2 Welcome to C 541.e3

Body: printf("Hello world!\n");
The body of this main function contains one statement, a call to the
printf function, which prints the phrase “Hello world!” followed by a
newline character indicated by the special sequence "\n". Further details
about I/O functions are described in Section C.9.1.

All programs follow the general format of the simple hello.c pro-
gram. Of course, very complex programs may contain millions of lines
of code and span hundreds of files.

C . 2 . 2 Running a C Program

C programs can be run on many different machines. This portability is
another advantage of C. The program is first compiled on the desiredmachine
using theC compiler. Slightly different versions of the C compiler exist, includ-
ing cc (C compiler), or gcc (GNU C compiler). Here we show how to compile
and run a C program using gcc, which is freely available for download. It runs
directly on Linux machines and is accessible under the Cygwin environment
on Windows machines. It is also available for many embedded systems such
as the ARM-based Raspberry Pi. The general process described below of C
file creation, compilation, and execution is the same for any C program.

1. Create the text file, for example hello.c.

2. In a terminal window, change to the directory that contains the file
hello.c and type gcc hello.c at the command prompt.

3. The compiler creates an executable file. By default, the executable is
called a.out (or a.exe on Windows machines).

4. At the command prompt, type ./a.out (or ./a.exe on Windows)
and press return.

5. “Hello world!” will appear on the screen.

SUMMARY
▶ filename.c: C program files are typically named with a .c extension.

▶ main: Each C program must have exactly one main function.

▶ #include: Most C programs use functions provided by built-in
libraries. These functions are used by writing #include <library.h>
at the top of the C file.

▶ gcc filename.c: C files are converted into an executable using a
compiler such as the GNU compiler (gcc) or the C compiler (cc).

▶ Execution: After compilation, C programs are executed by typing
./a.out (or ./a.exe) at the command line prompt.

541.e4 APPENDIX C

C.3 COMPILATION

A compiler is a piece of software that reads a program in a high-level
language and converts it into a file of machine code called an executable.
Entire textbooks are written on compilers, but we describe them here briefly.
The overall operation of the compiler is to (1) preprocess the file by including
referenced libraries and expanding macro definitions, (2) ignore all unneces-
sary information such as comments, (3) translate the high-level code into
simple instructions native to the processor that are represented in binary,
called machine language, and (4) compile all the instructions into a single
binary executable that can be read and executed by the computer. Each
machine language is specific to a given processor, so a program must be
compiled specifically for the system on which it will run. For example, the
ARM machine language is covered in Chapter 6 in detail.

C . 3 . 1 Comments

Programmers use comments to describe code at a high-level and clarify
code function. Anyone who has read uncommented code can attest to
their importance. C programs use two types of comments: Single-line
comments begin with // and terminate at the end of the line; multiple-line
comments begin with /* and end with */. While comments are critical to
the organization and clarity of a program, they are ignored by the
compiler.

// This is an example of a one-line comment.

/* This is an example
of a multi-line comment. */

A comment at the top of each C file is useful to describe the file’s author,
creation and modification dates, and purpose. The comment below could
be included at the top of the hello.c file.

// hello.c
// 1 Jan 2015 Sarah_Harris@hmc.edu, David_Harris@hmc.edu
//
// This program prints "Hello world!" to the screen

C . 3 . 2 #define

Constants are named using the #define directive and then used by name
throughout the program. These globally defined constants are also called
macros. For example, suppose you write a program that allows at most
5 user guesses, you can use #define to identify that number.

#define MAXGUESSES 5

C.3 Compilation 541.e5

The # indicates that this line in the program will be handled by the pre-
processor. Before compilation, the preprocessor replaces each occurrence
of the identifier MAXGUESSES in the program with 5. By convention,
#define lines are located at the top of the file and identifiers are written
in all capital letters. By defining constants in one location and then using
the identifier in the program, the program remains consistent, and the
value is easily modified – it need only be changed at the #define line
instead of at each line in the code where the value is needed.

C Code Example eC.2 shows how to use the #define directive to
convert inches to centimeters. The variables inch and cm are declared to
be float to indicate they represent single-precision floating point num-
bers. If the conversion factor (INCH2CM) were used throughout a large
program, having it declared using #define obviates errors due to typos
(for example, typing 2.53 instead of 2.54) and makes it easy to find and
change (for example, if more significant digits were required).

C . 3 . 3 #include

Modularity encourages us to split programs across separate files and func-
tions. Commonly used functions can be grouped together for easy reuse.
Variable declarations, defined values, and function definitions located in a
header file can be used by another file by adding the #include preprocesser
directive. Standard libraries that provide commonly used functions are
accessed in this way. For example, the following line is required to use the
functions defined in the standard input/output (I/O) library, such as printf.

#include <stdio.h>

The “.h” postfix of the include file indicates it is a header file. While
#include directives can be placed anywhere in the file before the included

C Code Example eC.2 USING #define TO DECLARE CONSTANTS

// Convert inches to centimeters

#include <stdio.h>

#define INCH2CM 2.54

int main(void) {

float inch = 5.5; // 5.5 inches

float cm;

cm = inch * INCH2CM;

printf("%f inches = %f cm\n", inch, cm);

}

Console Output

5.500000 inches = 13.970000 cm

Globally defined constants
eradicate magic numbers from
a program. A magic number is
a constant that shows up in a
program without a name. The
presence of magic numbers in a
program often introduces tricky
bugs – for example, when the
number is changed in one
location but not another.

Number constants in C default
to decimal but can also be
hexadecimal (prefix "0x") or
octal (prefix "0"). Binary
constants are not defined in
C99 but are supported by
some compilers (prefix "0b").
For example, the following
assignments are equivalent:

char x = 37;
char x = 0x25;
char x = 045;

541.e6 APPENDIX C

functions, variables, or identifiers are needed, they are conventionally
located at the top of a C file.

Programmer-created header files can also be included by using quota-
tion marks (" ") around the file name instead of brackets (< >). For exam-
ple, a user-created header file called myfunctions.h would be included
using the following line.

#include "myfunctions.h"

At compile time, files specified in brackets are searched for in system
directories. Files specified in quotes are searched for in the same local
directory where the C file is found. If the user-created header file is
located in a different directory, the path of the file relative to the current
directory must be included.

SUMMARY
▶ Comments: C provides single-line comments (//) and multi-line com-

ments (/* */).

▶ #define NAME val: the #define directive allows an identifier (NAME)
to be used throughout the program. Before compilation, all instances
of NAME are replaced with val.

▶ #include: #include allows common functions to be used in a program.
For built-in libraries, include the following line at the top of the code:
#include <library.h> To include a user-defined header file, the name
must be in quotes, listing the path relative to the current directory as
needed: i.e., #include "other/myFuncs.h".

C.4 VARIABLES

Variables in C programs have a type, name, value, and memory location.
A variable declaration states the type and name of the variable. For exam-
ple, the following declaration states that the variable is of type char
(which is a 1-byte type), and that the variable name is x. The compiler
decides where to place this 1-byte variable in memory.

char x;

C views memory as a group of consecutive bytes, where each byte of mem-
ory is assigned a unique number indicating its location or address, as
shown in Figure eC.1. A variable occupies one or more bytes of memory,
and the address of multiple-byte variables is indicated by the lowest num-
bered byte. The type of a variable indicates whether to interpret the byte(s)
as an integer, floating point number, or other type. The rest of this section
describes C’s primitive data types, the declaration of global and local vari-
ables, and the initialization of variables.

Variable names are case
sensitive and can be of your
choosing. However, the name
may not be any of C’s reserved
words (i.e., int, while, etc.),
may not start with a number
(i.e., int 1x; is not a valid
declaration), and may not
include special characters such
as \, *, ?, or -. Underscores
(_) are allowed.

C.4 Variables 541.e7

C . 4 . 1 Primitive Data Types

C has a number of primitive, or built-in, data types available. They can be
broadly characterized as integers, floating-point variables, and characters.
An integer represents a two’s complement or unsigned number within a
finite range. A floating-point variable uses IEEE floating point representa-
tion to describe real numbers with a finite range and precision. A charac-
ter can be viewed as either an ASCII value or an 8-bit integer.1 Table eC.2
lists the size and range of each primitive type. Integers may be 16, 32,
or 64 bits. They use two’s complement unless qualified as unsigned.

Table eC.2 Primitive data types and sizes

Type Size (bits) Minimum Maximum

char 8 −2−7 = −128 27 − 1 = 127

unsigned char 8 0 28 − 1 = 255

short 16 −215 = −32,768 215 − 1 = 32,767

unsigned short 16 0 216 − 1 = 65,535

long 32 −231 = −2,147,483,648 231 − 1 = 2,147,483,647

unsigned long 32 0 232 − 1 = 4,294,967,295

long long 64 −263 263 − 1

unsigned long 64 0 264 − 1

int machine-dependent

unsigned int machine-dependent

float 32 ±2−126 ±2127

double 64 ±2−1023 ±21022

Memory

Address
(Byte #)

Data
1 byte

1
0

3
2

.
4

.

.

Figure eC.1 C’s view of memory

1 Technically, the C99 standard defines a character as “a bit representation that fits in a
byte,” without requiring a byte to be 8 bits. However, current systems define a byte as 8 bits.

541.e8 APPENDIX C

The scope of a variable is the
context in which it can be
used. For example, for a local
variable, its scope is the
function in which it is
declared. It is out of scope
everywhere else.

The machine-dependent
nature of the int data type is
a blessing and a curse. On the
bright side, it matches the
native word size of the
processor so it can be fetched
and manipulated efficiently.
On the down side, programs
using ints may behave
differently on different
computers. For example, a
banking program might store
the number of cents in your
bank account as an int.
When compiled on a 64-bit
PC, it will have plenty of range
for even the wealthiest
entrepreneur. But if it is ported
to a 16-bit microcontroller, it
will overflow for accounts
exceeding $327.67, resulting in
unhappy and poverty-stricken
customers.

The size of the int type is machine dependent and is generally the native
word size of the machine. For example, on a 32-bit ARM processor, the
size of an int or unsigned int is 32 bits. Floating point numbers may
be 32- or 64-bit single or double precision. Characters are 8 bits.

C Code Example eC.3 shows the declaration of variables of different
types. As shown in Figure eC.2, x requires one byte of data, y requires
two, and z requires four. The program decides where these bytes are stored
in memory, but each type always requires the same amount of data. For
illustration, the addresses of x, y, and z in this example are 1, 2, and 4.
Variable names are case-sensitive, so, for example, the variable x and the
variable X are two different variables. (But it would be very confusing to
use both in the same program!)

C . 4 . 2 Global and Local Variables

Global and local variables differ in where they are declared and where
they are visible. A global variable is declared outside of all functions, typi-
cally at the top of a program, and can be accessed by all functions. Global
variables should be used sparingly because they violate the principle of
modularity, making large programs more difficult to read. However, a
variable accessed by many functions can be made global.

A local variable is declared inside a function and can only be used by
that function. Therefore, two functions can have local variables with
the same names without interfering with each other. Local variables are
declared at the beginning of a function. They cease to exist when the func-
tion ends and are recreated when the function is called again. They do not
retain their value from one invocation of a function to the next.

C Code Example eC.3 EXAMPLE DATA TYPES

// Examples of several data types and their binary representations

unsigned char x = 42; // x = 00101010

short y = −10; // y = 11111111 11110110

unsigned long z = 0; // z = 00000000 00000000 00000000 00000000

Memory

Address
(Byte #)

Data
1 byte

1
0

3
2

4

Variable Name

x = 42

z = 0

y = -10

5
6

00101010
11110110
11111111
00000000
00000000
00000000
00000000

.

..

7

Figure eC.2 Variable storage in
memory for C Code Example eC.3

C.4 Variables 541.e9

C Code Examples eC.4 and eC.5 compare programs using global ver-
sus local variables. In C Code Example eC.4, the global variable max can
be accessed by any function. Using a local variable, as shown in C Code
Example eC.5, is the preferred style because it preserves the well-defined
interface of modularity.

C Code Example eC.4 GLOBAL VARIABLES

// Use a global variable to find and print the maximum of 3 numbers

int max; // global variable holding the maximum value

void findMax(int a, int b, int c) {

max = a;

if (b > max) {

if (c > b) max = c;

else max = b;

} else if (c > max) max = c;

}

void printMax(void) {

printf("The maximum number is: %d\n", max);

}

int main(void) {

findMax(4, 3, 7);

printMax();

}

C Code Example eC.5 LOCAL VARIABLES

// Use local variables to find and print the maximum of 3 numbers

int getMax(int a, int b, int c) {

int result = a; // local variable holding the maximum value

if (b > result) {

if (c > b) result = c;

else result = b;

} else if (c > result) result = c;

return result;

}

void printMax(int m) {

printf("The maximum number is: %d\n", m);

}

int main(void) {

int max;

max = getMax(4, 3, 7);

printMax(max);

}

541.e10 APPENDIX C

C . 4 . 3 Initializing Variables

A variable needs to be initialized – assigned a value – before it is read.
When a variable is declared, the correct number of bytes is reserved for
that variable in memory. However, the memory at those locations retains
whatever value it had last time it was used, essentially a random value.
Global and local variables can be initialized either when they are declared
or within the body of the program. C Code Example eC.3 shows variables
initialized at the same time they are declared. C Code Example eC.4 shows
how variables are initialized before their use, but after declaration; the glo-
bal variable max is initialized by the getMax function before it is read by
the printMax function. Reading from uninitialized variables is a common
programming error, and can be tricky to debug.

SUMMARY
▶ Variables: Each variable is defined by its data type, name, and memory

location. A variable is declared as datatype name.

▶ Data types: A data type describes the size (number of bytes) and
representation (interpretation of the bytes) of a variable. Table eC.2
lists C’s built-in data types.

▶ Memory: C views memory as a list of bytes. Memory stores variables
and associates each variable with an address (byte number).

▶ Global variables: Global variables are declared outside of all func-
tions and can be accessed anywhere in the program.

▶ Local variables: Local variables are declared within a function and
can be accessed only within that function.

▶ Variable initialization: Each variable must be initialized before it is
read. Initialization can happen either at declaration or afterward.

C.5 OPERATORS

The most common type of statement in a C program is an expression,
such as

y = a + 3;

An expression involves operators (such as + or *) acting on one or more
operands, such as variables or constants. C supports the operators shown
in Table eC.3, listed by category and in order of decreasing precedence.
For example, multiplicative operators take precedence over additive

C.5 Operators 541.e11

Table eC.3 Operators listed by decreasing precedence

Category Operator Description Example

Unary ++ post-increment a++; // a = a+1

− − post-decrement x--; // x = x−1

& memory address of a variable x = &y; // x = the memory
// address of y

~ bitwise NOT z = ~a;

! Boolean NOT !x

− negation y = -a;

++ pre-increment ++a; // a = a+1

− − pre-decrement --x; // x = x−1

(type) casts a variable to (type) x = (int)c; // cast c to an
// int and assign it to x

sizeof() size of a variable or type in bytes long int y;
x = sizeof(y); // x = 4

Multiplicative * multiplication y = x * 12;

/ division z = 9 / 3; // z = 3

% modulo z = 5 % 2; // z = 1

Additive + addition y = a + 2;

− subtraction y = a - 2;

Bitwise Shift << bitshift left z = 5 << 2; // z = 0b00010100

>> bitshift right x = 9 >> 3; // x = 0b00000001

Relational == equals y == 2

!= not equals x != 7

< less than y < 12

> greater than val > max

<= less than or equal z <= 2

>= greater than or equal y >= 10

(continued)

541.e12 APPENDIX C

operators. Within the same category, operators are evaluated in the order
that they appear in the program.

Unary operators, also called monadic operators, have a single operand.
Ternary operators have three operands, and all others have two. The
ternary operator (from the Latin ternarius meaning consisting of three)
chooses the second or third operand depending on whether the first
value is TRUE (nonzero) or FALSE (zero), respectively. C Code Example
eC.6 shows how to compute y = max(a,b) using the ternary operator,
along with an equivalent but more verbose if/else statement.

Table eC.3 Operators listed by decreasing precedence—Cont’d

Category Operator Description Example

Bitwise & bitwise AND y = a & 15;

^ bitwise XOR y = 2 ^ 3;

| bitwise OR y = a | b;

Logical && Boolean AND x && y

|| Boolean OR x || y

Ternary ? : ternary operator y = x ? a : b; // if x is TRUE,
// y=a, else y=b

Assignment = assignment x = 22;

+= addition and assignment y += 3; // y = y + 3

−= subtraction and assignment z −= 10; // z = z – 10

*= multiplication and assignment x *= 4; // x = x * 4

/= division and assignment y /= 10; // y = y / 10

%= modulo and assignment x %= 4; // x = x % 4

>>= bitwise right-shift and assignment x >>= 5; // x = x>>5

<<= bitwise left-shift and assignment x <<= 2; // x = x<<2

&= bitwise AND and assignment y &= 15; // y = y & 15

|= bitwise OR and assignment x |= y; // x = x | y

^= bitwise XOR and assignment x ^= y; // x = x ^ y

C.5 Operators 541.e13

Simple assignment uses the = operator. C code also allows for com-
pound assignment, that is, assignment after a simple operation such as
addition (+=) or multiplication (*=). In compound assignments, the vari-
able on the left side is both operated on and assigned the result. C Code
Example eC.7 shows these and other C operations. Binary values in the
comments are indicated with the prefix “0b”.

The Truth, the Whole Truth,
and Nothing But the Truth
C considers a variable to
be TRUE if it is nonzero and
FALSE if it is zero. Logical and
ternary operators, as well as
control-flow statements such
as if and while, depend on
the truth of a variable.
Relational and logical
operators produce a result
that is 1 when TRUE or 0
when FALSE.

C Code Example eC.6 (a) TERNARY OPERATOR, AND (b) EQUIVALENT
if/else STATEMENT

(a) y = (a > b) ? a : b; // parentheses not necessary, but makes it clearer

(b) if (a > b) y = a;

else y = b;

C Code Example eC.7 OPERATOR EXAMPLES

Expression Result Notes

44 / 14 3 Integer division truncates

44 % 14 2 44 mod 14

0x2C && 0xE //0b101100 && 0b1110 1 Logical AND

0x2C || 0xE //0b101100 || 0b1110 1 Logical OR

0x2C & 0xE //0b101100 & 0b1110 0xC (0b001100) Bitwise AND

0x2C | 0xE //0b101100 | 0b1110 0x2E (0b101110) Bitwise OR

0x2C ^ 0xE //0b101100 ^ 0b1110 0x22 (0b100010) Bitwise XOR

0xE << 2 //0b1110 << 2 0x38 (0b111000) Left shift by 2

0x2C >> 3 //0b101100 >> 3 0x5 (0b101) Right shift by 3

x = 14;
x += 2;

x=16

y = 0x2C; // y = 0b101100
y &= 0xF; // y &= 0b1111

y=0xC (0b001100)

x = 14; y = 44;
y = y + x++;

x=15, y=58 Increment x after using it

x = 14; y = 44;
y = y + ++x;

x=15, y=59 Increment x before using it

541.e14 APPENDIX C

C.6 FUNCTION CALLS

Modularity is key to good programming. A large program is divided into
smaller parts called functions that, similar to hardware modules, have
well-defined inputs, outputs, and behavior. C Code Example eC.8 shows
the sum3 function. The function declaration begins with the return type,
int, followed by the name, sum3, and the inputs enclosed within parentheses
(int a, int b, int c). Curly braces {} enclose the body of the function,
whichmay contain zero or more statements. The return statement indicates
the value that the function should return to its caller; this can be viewed as
the output of the function. A function can only return a single value.

After the following call to sum3, y holds the value 42.

int y = sum3(10, 15, 17);

Although a function may have inputs and outputs, neither is required.
C Code Example eC.9 shows a function with no inputs or outputs. The
keyword void before the function name indicates that nothing is
returned. void between the parentheses indicates that the function has
no input arguments.

A function must be declared in the code before it is called. This may
be done by placing the called function earlier in the file. For this reason,
main is often placed at the end of the C file after all the functions it
calls. Alternatively, a function prototype can be placed in the program
before the function is defined. The function prototype is the first line of

C Code Example eC.8 sum3 FUNCTION

// Return the sum of the three input variables

int sum3(int a, int b, int c) {

int result = a + b + c;

return result;

}

C Code Example eC.9 FUNCTION printPrompt WITH NO INPUTS OR
OUTPUTS

// Print a prompt to the console

void printPrompt(void)

{

printf("Please enter a number from 1-3:\n");

}

Nothing between the
parentheses also indicates no
input arguments. So, in this case
we could have written:

void printPrompt()

C.6 Function Calls 541.e15

the function, declaring the return type, function name, and function
inputs. For example, the function prototypes for the functions in C Code
Examples eC.8 and eC.9 are:

int sum3(int a, int b, int c);
void printPrompt(void);

C Code Example eC.10 shows how function prototypes are used. Even
though the functions themselves are after main, the function prototypes
at the top of the file allow them to be used in main.

The main function is always declared to return an int, which conveys to
the operating system the reason for program termination. A zero indicates
normal completion, while a nonzero value signals an error condition. If
main reaches the end without encountering a return statement, it will
automatically return 0. Most operating systems do not automatically
inform the user of the value returned by the program.

C.7 CONTROL-FLOW STATEMENTS

C provides control-flow statements for conditionals and loops. Condi-
tionals execute a statement only if a condition is met. A loop repeatedly
executes a statement as long as a condition is met.

C Code Example eC.10 FUNCTION PROTOTYPES

#include <stdio.h>

// function prototypes

int sum3(int a, int b, int c);

void printPrompt(void);

int main(void)

{

int y = sum3(10, 15, 20);

printf("sum3 result: %d\n", y);

printPrompt();

}

int sum3(int a, int b, int c) {

int result = a+b+c;

return result;

}

void printPrompt(void) {

printf("Please enter a number from 1-3:\n");

}

Console Output

sum3 result: 45

Please enter a number from 1-3:

As with variable names,
function names are case
sensitive, cannot be any of
C’s reserved words, may not
contain special characters
(except underscore _), and
cannot start with a number.
Typically function names
include a verb to indicate
what they do.

Be consistent in how you
capitalize your function and
variable names so you don’t
have to constantly look up
the correct capitalization.
Two common styles are to
camelCase, in which the initial
letter of each word after the
first is capitalized like the
humps of a camel (e.g.,
printPrompt), or to use
underscores between words
(e.g., print_prompt). We have
unscientifically observed that
reaching for the underscore
key exacerbates carpal tunnel
syndrome (my pinky finger
twinges just thinking about
the underscore!) and hence
prefer camelCase. But the
most important thing is to
be consistent in style within
your organization.

With careful ordering of
functions, prototypes may be
unnecessary. However, they
are unavoidable in certain
cases, such as when function
f1 calls f2 and f2 calls f1. It is
good style to place prototypes
for all of a program’s
functions near the beginning
of the C file or in a header file.

541.e16 APPENDIX C

Curly braces, {}, are used
to group one or more
statements into a compound
statement or block.

C . 7 . 1 Conditional Statements

if, if/else, and switch/case statements are conditional statements
commonly used in high-level languages including C.

if Statements
An if statement executes the statement immediately following it when the
expression in parentheses is TRUE (i.e., nonzero). The general format is:

if (expression)
statement

C Code Example eC.11 shows how to use an if statement in C. When the
variable aintBroke is equal to 1, the variable dontFix is set to 1. A block
of multiple statements can be executed by placing curly braces {} around
the statements, as shown in C Code Example eC.12.

if/else Statements
if/else statements execute one of two statements depending on a condi-
tion, as shown below. When the expression in the if statement is
TRUE, statement1 is executed. Otherwise, statement2 is executed.

if (expression)
statement1

else
statement2

C Code Example eC.6(b) gives an example if/else statement in C.
The code sets y equal to a if a is greater than b; otherwise y = b.

C Code Example eC.12 if STATEMENT WITH A BLOCK OF CODE

// If amt >= $2, prompt user and dispense candy

if (amt >= 2) {

printf("Select candy.\n");

dispenseCandy = 1;

}

C Code Example eC.11 if STATEMENT

int dontFix = 0;

if (aintBroke == 1)

dontFix = 1;

C.7 Control-Flow Statements 541.e17

switch/case Statements
switch/case statements execute one of several statements depending on
the conditions, as shown in the general format below.

switch (variable) {
case (expression1): statement1 break;
case (expression2): statement2 break;
case (expression3): statement3 break;
default: statement4

}

For example, if variable is equal to expression2, execution con-
tinues at statement2 until the keyword break is reached, at which point
it exits the switch/case statement. If no conditions are met, the default
executes.

If the keyword break is omitted, execution begins at the point where
the condition is TRUE and then falls through to execute the remaining
cases below it. This is usually not what you want and is a common error
among beginning C programmers.

C Code Example eC.13 shows a switch/case statement that, depend-
ing on the variable option, determines the amount of money amt to be dis-
bursed. A switch/case statement is equivalent to a series of nested if/
else statements, as shown by the equivalent code in C Code Example eC.14.

C Code Example eC.14 NESTED if/else STATEMENT

// Assign amt depending on the value of option

if (option == 1) amt = 100;

else if (option == 2) amt = 50;

else if (option == 3) amt = 20;

else if (option == 4) amt = 10;

else printf("Error: unknown option.\n");

C Code Example eC.13 switch/case STATEMENT

// Assign amt depending on the value of option

switch (option) {

case 1: amt = 100; break;

case 2: amt = 50; break;

case 3: amt = 20; break;

case 4: amt = 10; break;

default: printf("Error: unknown option.\n");

}

541.e18 APPENDIX C

C . 7 . 2 Loops

while, do/while, and for loops are common loop constructs used in
many high-level languages including C. These loops repeatedly execute
a statement as long as a condition is satisfied.

while Loops
while loops repeatedly execute a statement until a condition is not met, as
shown in the general format below.

while (condition)
statement

The while loop in C Code Example eC.15 computes the factorial of 9 =
9 × 8 × 7 × … × 1. Note that the condition is checked before executing the
statement. In this example, the statement is a compound statement or block,
so curly braces are required.

do/while Loops
do/while loops are like while loops but the condition is checked only
after the statement is executed once. The general format is shown below.
The condition is followed by a semi-colon.

do
statement

while (condition);

The do/while loop in C Code Example eC.16 queries a user to guess a num-
ber. The program checks the condition (if the user’s number is equal to the
correct number) only after the body of the do/while loop executes once. This
construct is useful when, as in this case, somethingmust be done (for example,
the guess retrieved from the user) before the condition is checked.

C Code Example eC.15 while LOOP

// Compute 9! (the factorial of 9)

int i = 1, fact = 1;

// multiply the numbers from 1 to 9

while (i < 10) { // while loops check the condition first

fact *= i;

i++;

}

C Code Example eC.16 do/while LOOP

// Query user to guess a number and check it against the correct number.

#define MAXGUESSES 3

#define CORRECTNUM 7

int guess, numGuesses = 0;

C.7 Control-Flow Statements 541.e19

for Loops
for loops, like while and do/while loops, repeatedly execute a statement
until a condition is not satisfied. However, for loops add support for a
loop variable, which typically keeps track of the number of loop executions.
The general format of the for loop is

for (initialization; condition; loop operation)
statement

The initialization code executes only once, before the for loop
begins. The condition is tested at the beginning of each iteration of the
loop. If the condition is not TRUE, the loop exits. The loop operation
executes at the end of each iteration. C Code Example eC.17 shows the
factorial of 9 computed using a for loop.

Whereas the while and do/while loops in C Code Examples eC.15 and
eC.16 include code for incrementing and checking the loop variable i and
numGuesses, respectively, the for loop incorporates those statements into
its format. A for loop could be expressed equivalently, but less
conveniently, as

initialization;
while (condition) {

statement
loop operation;

}

do {

printf("Guess a number between 0 and 9. You have %d more guesses.\n",

(MAXGUESSES-numGuesses));

scanf("%d", &guess); // read user input

numGuesses++;

} while ((numGuesses < MAXGUESSES) & (guess != CORRECTNUM));

// do loop checks the condition after the first iteration

if (guess == CORRECTNUM)

printf("You guessed the correct number!\n");

C Code Example eC.17 for LOOP

// Compute 9!

int i; // loop variable

int fact = 1;

for (i=1; i<10; i++)

fact *= i;

541.e20 APPENDIX C

SUMMARY
▶ Control-flow statements: C provides control-flow statements for con-

ditional statements and loops.

▶ Conditional statements: Conditional statements execute a statement
when a condition is TRUE. C includes the following conditional
statements: if, if/else, and switch/case.

▶ Loops: Loops repeatedly execute a statement until a condition is
FALSE. C provides while, do/while, and for loops.

C.8 MORE DATA TYPES

Beyond various sizes of integers and floating-point numbers, C includes
other special data types including pointers, arrays, strings, and structures.
These data types are introduced in this section along with dynamic mem-
ory allocation.

C . 8 . 1 Pointers

A pointer is the address of a variable. C Code Example eC.18 shows how to
use pointers. salary1 and salary2 are variables that can contain integers,
and ptr is a variable that can hold the address of an integer. The compiler
will assign arbitrary locations in RAM for these variables depending on the
runtime environment. For the sake of concreteness, suppose this program is
compiled on a 32-bit system with salary1 at addresses 0x70-73, salary2
at addresses 0x74-77, and ptr at 0x78-7B. Figure eC.3 shows memory and
its contents after the program is executed.

In a variable declaration, a star (*) before a variable name indicates that
the variable is a pointer to the declared type. In using a pointer variable,
the * operator dereferences a pointer, returning the value stored at the

Memory

Address
(Byte #)

Data Variable Name

salary1

ptr

salary2

..

.

67500

68500

0x70

Memory

Address
(Byte #)

Data Variable Name

salary1

ptr

salary2

..

.

0x07
0xAC

0x00
0x01

0x94
0x0B
0x01

0x70
0x00

0x00
0x00

0x00

(a) (b)

0x71
0x70

0x73
0x72

0x74
0x75
0x76

0x78
0x77

0x7A
0x79

0x7B

0x71
0x70

0x73
0x72

0x74
0x75
0x76

0x78
0x77

0x7A
0x79

0x7B

Figure eC.3 Contents of memory
after C Code Example eC.18
executes shown (a) by value and
(b) by byte using little-endian
memory

C.8 More Data Types 541.21

indicated memory address contained in the pointer. The & operator is pro-
nounced “address of,” and it produces the memory address of the variable
being referenced.

Pointers are particularly useful when a function needs to modify a vari-
able, instead of just returning a value. Because functions can’t modify their

inputs directly, a function can make the input a pointer to the variable. This
is called passing an input variable by reference instead of by value, as
shown in prior examples. C Code Example eC.19 gives an example of pas-
sing x by reference so that quadruple can modify the variable directly.

A pointer to address 0 is called a null pointer and indicates that the pointer is
not actually pointing to meaningful data. It is written as NULL in a program.

Dereferencing a pointer to
a non-existent memory
location or an address outside
of the range accessible by the
program will usually cause a
program to crash. The crash
is often called a segmentation
fault. C Code Example eC.18 POINTERS

// Example pointer manipulations

int salary1, salary2; // 32-bit numbers

int *ptr; // a pointer specifying the address of an int variable

salary1 = 67500; // salary1 = $67,500 = 0x000107AC

ptr = &salary1; // ptr = 0x0070, the address of salary1

salary2 = *ptr + 1000; /* dereference ptr to give the contents of address 70 = $67,500,

then add $1,000 and set salary2 to $68,500 */

C Code Example eC.19 PASSING AN INPUT VARIABLE BY REFERENCE

// Quadruple the value pointed to by a

#include <stdio.h>

void quadruple(int *a)

{

*a = *a * 4;

}

int main(void)

{

int x = 5;

printf("x before: %d\n", x);

quadruple(&x);

printf("x after: %d\n", x);

return 0;

}

Console Output

x before: 5

x after: 20

541.e22 APPENDIX C

C . 8 . 2 Arrays

An array is a group of similar variables stored in consecutive addresses in
memory. The elements are numbered from 0 to N−1, where N is the
length of the array. C Code Example eC.20 declares an array variable
called scores that holds the final exam scores for three students. Memory
space is reserved for three longs, that is, 3 × 4 = 12 bytes. Suppose the
scores array starts at address 0x40. The address of the 1st element
(i.e., scores[0]) is 0x40, the 2nd element is 0x44, and the 3rd element
is 0x48, as shown in Figure eC.4. In C, the array variable, in this case
scores, is a pointer to the 1st element. It is the programmer’s responsibil-
ity not to access elements beyond the end of the array. C has no internal
bounds checking, so a program that writes beyond the end of an array
will compile fine but may stomp on other parts of memory when it runs.

The elements of an array can be initialized either at declaration using
curly braces {}, as shown in C Code Example eC.21, or individually in the
body of the code, as shown in C Code Example eC.22. Each element of an
array is accessed using brackets []. The contents of memory containing the
array are shown in Figure eC.4. Array initialization using curly braces{} can
only be performed at declaration, and not afterward. for loops are commonly
used to assign and read array data, as shown in C Code Example eC.23.

C Code Example eC.21 ARRAY INITIALIZATIONATDECLARATIONUSING { }

long scores[3]={93, 81, 97}; // scores[0]=93; scores[1]=81; scores[2]=97;

C Code Example eC.20 ARRAY DECLARATION

long scores[3]; // array of three 4-byte numbers

Memory

Address
(Byte #)

Data Variable Name

scores[0]

scores[2]

scores[1]

..

.

0x41
0x40

0x43
0x42

0x44
0x45
0x46

0x48
0x47

0x4A
0x49

0x4B

93

81

97

Memory

Address
(Byte #)

Data Variable Name

..

.

0x41
0x40

0x43
0x42

0x44
0x45
0x46

0x48
0x47

0x4A
0x49

0x4B

0x00
0x5D

0x00
0x00

0x51
0x00
0x00

0x61
0x00

0x00
0x00

0x00

scores[0]

scores[2]

scores[1]

Figure eC.4 scores array
stored in memory

C.8 More Data Types 541.e23

When an array is declared, the length must be constant so that the compiler
can allocate the proper amount of memory. However, when the array is
passed to a function as an input argument, the length need not be defined
because the function only needs to know the address of the beginning of
the array. C Code Example eC.24 shows how an array is passed to a func-
tion. The input argument arr is simply the address of the 1st element of an
array. Often the number of elements in an array is also passed as an input
argument. In a function, an input argument of type int[] indicates that it
is an array of integers. Arrays of any type may be passed to a function.

C Code Example eC.23 ARRAY INITIALIZATION USING A for LOOP

// User enters 3 student scores into an array

long scores[3];

int i, entered;

printf("Please enter the student's 3 scores.\n");

for (i=0; i<3; i++) {

printf("Enter a score and press enter.\n");

scanf("%d", &entered);

scores[i] = entered;

}

printf("Scores: %d %d %d\n", scores[0], scores[1], scores[2]);

C Code Example eC.24 PASSING AN ARRAY AS AN INPUT ARGUMENT

// Initialize a 5-element array, compute the mean, and print the result.

#include <stdio.h>

// Returns the mean value of an array (arr) of length len

float getMean(int arr[], int len) {

int i;

float mean, total = 0;

for (i=0; i < len; i++)

total += arr[i];

mean = total / len;

return mean;

}

C Code Example eC.22 ARRAY INITIALIZATION USING ASSIGNMENT

long scores[3];

scores[0] = 93;

scores[1] = 81;

scores[2] = 97;

541.e24 APPENDIX C

An array argument is equivalent to a pointer to the beginning of the
array. Thus, getMean could also have been declared as

float getMean(int *arr, int len);

Although functionally equivalent, datatype[] is the preferred
method for passing arrays as input arguments because it more clearly
indicates that the argument is an array.

A function is limited to a single output, i.e., return variable. However,
by receiving an array as an input argument, a function can essentially
output more than a single value by changing the array itself. C Code
Example eC.25 sorts an array from lowest to highest and leaves the result
in the same array. The three function prototypes below are equivalent.
The length of an array in a function declaration (i.e., int vals[100]) is
ignored.

void sort(int *vals, int len);
void sort(int vals[], int len);
void sort(int vals[100], int len);

int main(void) {

int data[4] = {78, 14, 99, 27};

float avg;

avg = getMean(data, 4);

printf("The average value is: %f.\n", avg);

}

Console Output

The average value is: 54.500000.

C Code Example eC.25 PASSING AN ARRAY AND ITS LENGTH AS INPUTS

// Sort the elements of the array vals of length len from lowest to highest

void sort(int vals[], int len)

{

int i, j, temp;

for (i=0; i<len; i++) {

for (j=i+1; j<len; j++) {

if (vals[i] > vals[j]) {

temp = vals[i];

vals[i] = vals[j];

vals[j] = temp;

}

}

}

}

C.8 More Data Types 541.e25

Arrays may have multiple dimensions. C Code Example eC.26 uses a
two-dimensional array to store the grades across eight problem sets for
ten students. Recall that initialization of array values using {} is only
allowed at declaration.

C Code Example eC.27 shows some functions that operate on the 2-D
grades array from C Code Example eC.26. Multi-dimensional arrays
used as input arguments to a function must define all but the first dimen-
sion. Thus, the following two function prototypes are acceptable:

void print2dArray(int arr[10][8]);
void print2dArray(int arr[][8]);

C Code Example eC.26 TWO-DIMENSIONAL ARRAY INITIALIZATION

// Initialize 2-D array at declaration

int grades[10][8] = { {100, 107, 99, 101, 100, 104, 109, 117},

{103, 101, 94, 101, 102, 106, 105, 110},

{101, 102, 92, 101, 100, 107, 109, 110},

{114, 106, 95, 101, 100, 102, 102, 100},

{98, 105, 97, 101, 103, 104, 109, 109},

{105, 103, 99, 101, 105, 104, 101, 105},

{103, 101, 100, 101, 108, 105, 109, 100},

{100, 102, 102, 101, 102, 101, 105, 102},

{102, 106, 110, 101, 100, 102, 120, 103},

{99, 107, 98, 101, 109, 104, 110, 108} };

C Code Example eC.27 OPERATING ON MULTI-DIMENSIONAL ARRAYS

#include <stdio.h>

// Print the contents of a 10 × 8 array

void print2dArray(int arr[10][8])

{

int i, j;

for (i=0; i<10; i++) { // for each of the 10 students

printf("Row %d\n", i);

for (j=0; j<8; j++) {

printf("%d ", arr[i][j]); // print scores for all 8 problem sets

}

printf("\n");

}

}

// Calculate the mean score of a 10 × 8 array

float getMean(int arr[10][8])

{

int i, j;

float mean, total = 0;

// get the mean value across a 2D array

for (i=0; i<10; i++) {

541.e26 APPENDIX C

The term “carriage return”
originates from typewriters
that required the carriage, the
contraption that holds the
paper, to move to the right in
order to allow typing to begin
at the left side of the page.
A carriage return lever, shown
on the left in the figure below,
is pressed so that the carriage
would both move to the right
and advance the paper by
one line, called a line feed.

A Remington electric typewriter
used by Winston Churchill.
(http://cwr.iwm.org.uk/server/
show/conMediaFile.71979)

Note that because an array is represented by a pointer to the initial element,
C cannot copy or compare arrays using the = or == operators. Instead, you
must use a loop to copy or compare each element one at a time.

C . 8 . 3 Characters

A character (char) is an 8-bit variable. It can be viewed either as a two’s
complement number between −128 and 127 or as an ASCII code for a
letter, digit, or symbol. ASCII characters can be specified as a numeric value
(in decimal, hexadecimal, etc.) or as a printable character enclosed in single
quotes. For example, the letter A has the ASCII code 0x41, B=0x42, etc. Thus
'A' + 3 is 0x44, or 'D'. Table 6.5 lists the ASCII character encodings, and
Table eC.4 lists characters used to indicate formatting or special characters.
Formatting codes include carriage return (\r), newline (\n), horizontal tab
(\t), and the end of a string (\0). \r is shown for completeness but is rarely
used in C programs. \r returns the carriage (location of typing) to the begin-
ning (left) of the line, but any text that was there is overwritten. \n, instead,
moves the location of typing to the beginning of a new line.2 The NULL
character ('\0') indicates the end of a text string and is discussed next
in Section C.8.4.

for (j=0; j<8; j++) {

total += arr[i][j]; // sum array values

}

}

mean = total/(10*8);

printf("Mean is: %f\n", mean);

return mean;

}

Table eC.4 Special characters

Special Character Hexadecimal Encoding Description

\r 0x0D carriage return

\n 0x0A new line

\t 0x09 tab

\0 0x00 terminates a string

\\ 0x5C backslash

\" 0x22 double quote

\' 0x27 single quote

\a 0x07 bell

2 Windows text files use \r\n to represent end-of-line while UNIX-based systems use \n,
which can cause nasty bugs when moving text files between systems.

C.8 More Data Types 541.e27

http://cwr.iwm.org.uk/server/show/conMediaFile.71979
http://cwr.iwm.org.uk/server/show/conMediaFile.71979

C strings are called null
terminated or zero terminated
because the length is
determined by looking for a
zero at the end. In contrast,
languages such as Pascal use
the first byte to specify the
string length, up to a
maximum of 255 characters.
This byte is called the prefix
byte and such strings are
called P-strings. An advantage
of null-terminated strings is
that the length can be
arbitrarily great. An
advantage of P-strings is that
the length can be determined
immediately without having
to inspect all of the characters
of the string.

C . 8 . 4 Strings

A string is an array of characters used to store a piece of text of bounded
but variable length. Each character is a byte representing the ASCII code
for that letter, number, or symbol. The size of the array determines the
maximum length of the string, but the actual length of the string could
be shorter. In C, the length of the string is determined by looking for
the null terminator (ASCII value 0x00) at the end of the string.

C Code Example eC.28 shows the declaration of a 10-element char-
acter array called greeting that holds the string "Hello!". For concrete-
ness, suppose greeting starts at memory address 0x50. Figure eC.5
shows the contents of memory from 0x50 to 0x59 holding the string
"Hello!" Note that the string only uses the first seven elements of the
array, even though ten elements are allocated in memory.

C Code Example eC.29 shows an alternate declaration of the string
greeting. The pointer greeting holds the address of the 1st element of
a 7-element array comprised of each of the characters in “Hello!”
followed by the null terminator. The code also demonstrates how to print
strings by using the %s format code.

Unlike primitive variables, a string cannot be set equal to another string
using the equals operator, =. Each element of the character array must be
individually copied from the source string to the target string. This is true
for any array. C Code Example eC.30 copies one string, src, to another,
dst. The sizes of the arrays are not needed, because the end of the src string
is indicated by the null terminator. However, dst must be large enough so
that you don’t stomp on other data. strcpy and other string manipulation
functions are available in C’s built-in libraries (see Section C.9.4).

C Code Example eC.28 STRING DECLARATION

char greeting[10] = "Hello!";

C Code Example eC.29 ALTERNATE STRING DECLARATION

char *greeting = "Hello!";
printf("greeting: %s", greeting);

Console Output

greeting: Hello!

C Code Example eC.30 COPYING STRINGS

// Copy the source string, src, to the destination string, dst

void strcpy(char *dst, char *src)

{

541.e28 APPENDIX C

C . 8 . 5 Structures

In C, structures are used to store a collection of data of various types. The
general format of a structure declaration is

struct name {
type1 element1;
type2 element2;
…

};

where struct is a keyword indicating that it is a structure, name is the
structure tag name, and element1 and element2 are members of the struc-
ture. A structure may have any number of members. C Code Example
eC.31 shows how to use a structure to store contact information. The pro-
gram then declares a variable c1 of type struct contact.

Memory

Address
(Byte #)

Data Variable Name

str

..

.

0x50
0x4F

0x52
0x51

0x53
0x54
0x55

0x57
0x56

0x59
0x58

0x5A

"Hello!"

Memory

Address
(Byte #)

Data Variable Name

..

.

0x50
0x4F

0x52
0x51

0x53
0x54
0x55

0x57
0x56

0x59
0x58

0x5A

0x48
0x65
0x6C

0x6F
0x6C

0x00
0x21

str

unknown

unknown
unknown

Figure eC.5 The string “Hello!”
stored in memory

int i = 0;

do {

dst[i] = src[i]; // copy characters one byte at a time

} while (src[i++]); // until the null terminator is found

}

C Code Example eC.31 STRUCTURE DECLARATION

struct contact {

char name[30];

int phone;

float height; // in meters

};

struct contact c1;

C.8 More Data Types 541.e29

Just like built-in C types, you can create arrays of structures and pointers
to structures. C Code Example eC.32 creates an array of contacts.

It is common to use pointers to structures. C provides the member access
operator -> to dereference a pointer to a structure and access a member of
the structure. C Code Example eC.33 shows an example of declaring a
pointer to a struct contact, assigning it to point to the 42nd element of
classlist from C Code Example eC.32, and using the member access
operator to set a value in that element.

Structures can be passed as function inputs or outputs by value or by refer-
ence. Passing by value requires the compiler to copy the entire structure into
memory for the function to access. This can require a large amount of mem-
ory and time for a big structure. Passing by reference involves passing a
pointer to the structure, which is more efficient. The function can also
modify the structure being pointed to rather than having to return another
structure. C Code Example eC.34 shows two versions of the stretch func-
tion that makes a contact 2 cm taller. stretchByReference avoids
copying the large structure twice.

C Code Example eC.32 ARRAY OF STRUCTURES

struct contact classlist[200];

classlist[0].phone = 9642025;

C Code Example eC.33 ACCESSING STRUCTURE MEMBERS USING
POINTERS AND ->

struct contact *cptr;

cptr = &classlist[42];

cptr->height = 1.9; // equivalent to: (*cptr).height = 1.9;

strcpy(c1.name, "Ben Bitdiddle");

c1.phone = 7226993;

c1.height = 1.82;

C Code Example eC.34 PASSING STRUCTURES BY VALUE OR BY NAME

struct contact stretchByValue(struct contact c)

{

c.height += 0.02;

return c;

}

541.e30 APPENDIX C

C . 8 . 6 typedef

C also allows you to define your own names for data types using the
typedef statement. For example, writing struct contact becomes
tedious when it is often used, so we can define a new type named contact
and use it as shown in C Code Example eC.35.

typedef can be used to create a new type occupying the same amount of
memory as a primitive type. C Code Example eC.36 defines byte and bool
as 8-bit types. The byte type may make it clearer that the purpose of pos is
to be an 8-bit number rather than an ASCII character. The bool type indi-
cates that the 8-bit number is representing TRUE or FALSE. These types
make a program easier to read than if one simply used char everywhere.

void stretchByReference(struct contact *cptr)

{

cptr->height += 0.02;

}

int main(void)

{

struct contact George;

George.height = 1.4; // poor fellow has been stooped over

George = stretchByValue(George); // stretch for the stars

stretchByReference(&George); // and stretch some more

}

C Code Example eC.35 CREATING A CUSTOM TYPE USING typedef

typedef struct contact {

char name[30];

int phone;

float height; // in meters

} contact; // defines contact as shorthand for "struct contact"

contact c1; // now we can declare the variable as type contact

C Code Example eC.36 typedef byte AND bool

typedef unsigned char byte;

typedef char bool;

#define TRUE 1

#define FALSE 0

byte pos = 0x45;

bool loveC = TRUE;

C.8 More Data Types 541.e31

C Code Example eC.37 illustrates defining a 3-element vector and a
3 × 3 matrix type using arrays.

C . 8 . 7 Dynamic Memory Allocation*

In all the examples thus far, variables have been declared statically; that is,
their size is known at compile time. This can be problematic for arrays and
strings of variable size because the array must be declared large enough to
accommodate the largest size the program will ever see. An alternative is
to dynamically allocate memory at run time when the actual size is known.

The malloc function from stdlib.h allocates a block of memory of
a specified size and returns a pointer to it. If not enough memory is avail-
able, it returns a NULL pointer instead. For example, the following code
allocates 10 shorts (10 × 2 = 20 bytes). The sizeof operator returns the
size of a type or variable in bytes.

// dynamically allocate 20 bytes of memory
short *data = malloc(10*sizeof(short));

C Code Example eC.38 illustrates dynamic allocation and de-allocation.
The program accepts a variable number of inputs, stores them in a dynami-
cally allocated array, and computes their average. The amount of memory
necessary depends on the number of elements in the array and the size of each
element. For example, if an int is a 4-byte variable and 10 elements are
needed, 40 bytes are dynamically allocated. The free function de-allocates
the memory so that it could later be used for other purposes. Failing to
de-allocate dynamically allocated data is called a memory leak and should
be avoided.

C Code Example eC.37 typedef vector AND matrix

typedef double vector[3];

typedef double matrix[3][3];

vector a = {4.5, 2.3, 7.0};

matrix b = {{3.3, 4.7, 9.2}, {2.5, 4, 9}, {3.1, 99.2, 88}};

C Code Example eC.38 DYNAMIC MEMORY ALLOCATION AND
DE-ALLOCATION

// Dynamically allocate and de-allocate an array using malloc and free

#include <stdlib.h>

// Insert getMean function from C Code Example eC.24.

int main(void) {

int len, i;

541.e32 APPENDIX C

C . 8 . 8 Linked Lists*

A linked list is a common data structure used to store a variable number
of elements. Each element in the list is a structure containing one or more
data fields and a link to the next element. The first element in the list is
called the head. Linked lists illustrate many of the concepts of structures,
pointers, and dynamic memory allocation.

C Code Example eC.39 describes a linked list for storing computer user
accounts to accommodate a variable number of users. Each user has a user
name, a password, a unique user identification number (UID), and a field indi-
cating whether they have administrator privileges. Each element of the list is of
type userL, containing all of this user information alongwith a link to the next
element in the list. A pointer to the head of the list is stored in a global variable
called users, and is initially set to NULL to indicate that there are no users.

The program defines functions to insert, delete, and find a user and to
count the number of users. The insertUser function allocates space for a
new list element and adds it to the head of the list. The deleteUser function
scans through the list until the specified UID is found and then removes that
element, adjusting the link from the previous element to skip the deleted
element and freeing the memory occupied by the deleted element. The
findUser function scans through the list until the specified UID is found
and returns a pointer to that element, or NULL if the UID is not found.
The numUsers function counts the number of elements in the list.

int *nums;

printf("How many numbers would you like to enter? ");

scanf("%d", &len);

nums = malloc(len*sizeof(int));

if (nums == NULL) printf("ERROR: out of memory.\n");

else {

for (i=0; i<len; i++) {

printf("Enter number: ");

scanf("%d", &nums[i]);

}

printf("The average is %f\n", getMean(nums, len));

}

free(nums);

}

C Code Example eC.39 LINKED LIST

#include <stdlib.h>

#include <string.h>

typedef struct userL {

C.8 More Data Types 541.e33

char uname[80]; // user name

char passwd[80]; // password

int uid; // user identification number

int admin; // 1 indicates administrator privileges

struct userL *next;

} userL;

userL *users = NULL;

void insertUser(char *uname, char *passwd, int uid, int admin) {

userL *newUser;

newUser = malloc(sizeof(userL)); // create space for new user

strcpy(newUser->uname, uname); // copy values into user fields

strcpy(newUser->passwd, passwd);

newUser->uid = uid;

newUser->admin = admin;

newUser->next = users; // insert at start of linked list

users = newUser;

}

void deleteUser(int uid) { // delete first user with given uid

userL *cur = users;

userL *prev = NULL;

while (cur != NULL) {

if (cur->uid == uid) { // found the user to delete

if (prev == NULL) users = cur->next;

else prev->next = cur->next;

free(cur);

return; // done

}

prev = cur; // otherwise, keep scanning through list

cur = cur->next;

}

}

userL *findUser(int uid) {

userL *cur = users;

while (cur != NULL) {

if (cur->uid == uid) return cur;

else cur = cur->next;

}

return NULL;

}

int numUsers(void) {

userL *cur = users;

int count = 0;

while (cur != NULL) {

count++;

cur = cur->next;

}

return count;

}

541.e34 APPENDIX C

SUMMARY
▶ Pointers: A pointer holds the address of a variable.

▶ Arrays: An array is a list of similar elements declared using square
brackets [].

▶ Characters: char types can hold small integers or special codes for
representing text or symbols.

▶ Strings: A string is an array of characters ending with the null termi-
nator 0x00.

▶ Structures: A structure stores a collection of related variables.

▶ Dynamic memory allocation: malloc is a built-in functions for allo-
cating memory as the program runs. free de-allocates the memory
after use.

▶ Linked Lists: A linked list is a common data structure for storing a
variable number of elements.

C.9 STANDARD LIBRARIES

Programmers commonly use a variety of standard functions, such as
printing and trigonometric operations. To save each programmer from
having to write these functions from scratch, C provides libraries of fre-
quently used functions. Each library has a header file and an associated
object file, which is a partially compiled C file. The header file holds vari-
able declarations, defined types, and function prototypes. The object file
contains the functions themselves and is linked at compile-time to create
the executable. Because the library function calls are already compiled
into an object file, compile time is reduced. Table eC.5 lists some of the
most frequently used C libraries, and each is described briefly below.

C . 9 . 1 stdio

The standard input/output library stdio.h contains commands for print-
ing to a console, reading keyboard input, and reading and writing files. To
use these functions, the library must be included at the top of the C file:

#include <stdio.h>

printf
The print formatted statement printf displays text to the console. Its
required input argument is a string enclosed in quotes "". The string contains
text and optional commands to print variables. Variables to be printed are
listed after the string and are printed using format codes shown in
Table eC.6. C Code Example eC.40 gives a simple example of printf.

C.9 Standard Libraries 541.e35

Table eC.5 Frequently used C libraries

C Library Header File Description

stdio.h Standard input/output library. Includes functions
for printing or reading to/from the screen or a file
(printf, fprintf and scanf, fscanf) and to open
and close files (fopen and fclose).

stdlib.h Standard library. Includes functions for random
number generation (rand and srand), for
dynamically allocating or freeing memory (malloc
and free), terminating the program early (exit),
and for conversion between strings and numbers
(atoi, atol, and atof).

math.h Math library. Includes standard math functions
such as sin, cos, asin, acos, sqrt, log, log10,
exp, floor, and ceil.

string.h String library. Includes functions to compare, copy,
concatenate, and determine the length of strings.

Table eC.6 printf format codes for printing variables

Code Format

%d Decimal

%u Unsigned decimal

%x Hexadecimal

%o Octal

%f Floating point number (float or double)

%e Floating point number (float or double) in scientific notation
(e.g., 1.56e7)

%c Character (char)

%s String (null-terminated array of characters)

C Code Example eC.40 PRINTING TO THE CONSOLE USING printf

// Simple print function

#include <stdio.h>

int num = 42;

541.e36 APPENDIX C

Floating point formats (floats and doubles) default to printing six digits
after the decimal point. To change the precision, replace %f with %w.df,
where w is the minimumwidth of the number, and d is the number of decimal
places to print. Note that the decimal point is included in the width count. In
C Code Example eC.41, pi is printed with a total of four characters, two of
which are after the decimal point: 3.14. e is printed with a total of eight char-
acters, three of which are after the decimal point. Because it only has one
digit before the decimal point, it is padded with three leading spaces to reach
the requested width. c should be printed with five characters, three of which
are after the decimal point. But it is too wide to fit, so the requested width is
overridden while retaining the three digits after the decimal point.

Because % and \ are used in print formatting, to print these characters
themselves, you must use the special character sequences shown in C
Code Example eC.42.

int main(void) {

printf("The answer is %d.\n", num);

}

Console Output:

The answer is 42.

C Code Example eC.41 FLOATING POINT NUMBER FORMATS FOR
PRINTING

// Print floating point numbers with different formats

float pi = 3.14159, e = 2.7182, c = 2.998e8;

printf("pi = %4.2f\ne = %8.3f\nc = %5.3f\n", pi, e, c);

Console Output:

pi = 3.14

e = 2.718

c = 299800000.000

C Code Example eC.42 PRINTING % AND \ USING printf

// How to print % and \ to the console

printf("Here are some special characters: %% \\ \n");

Console Output:

Here are some special characters: % \

C.9 Standard Libraries 541.e37

scanf
The scanf function reads text typed on the keyboard. It uses format
codes in the same way as printf. C Code Example eC.43 shows how
to use scanf. When the scanf function is encountered, the program waits
until the user types a value before continuing execution. The arguments to
scanf are a string indicating one or more format codes and pointers to
the variables where the results should be stored.

File Manipulation
Many programs need to read and write files, either to manipulate data
already stored in a file or to log large amounts of information. In C, the
file must first be opened with the fopen function. It can then be read or writ-
ten with fscanf or fprintf in a way analogous to reading and writing to
the console. Finally, it should be closed with the fclose command.

The fopen function takes as arguments the file name and a print mode. It
returns a file pointer of type FILE*. If fopen is unable to open the file,
it returns NULL. This might happen when one tries to read a nonexistent file
or write a file that is already opened by another program. The modes are:

"w": Write to a file. If the file exists, it is overwritten.

"r": Read from a file.

"a": Append to the end of an existing file. If the file doesn’t exist, it is
created.

C Code Example eC.43 READING USER INPUT FROM THE KEYBOARD WITH
scanf

// Read variables from the command line

#include <stdio.h>

int main(void)

{

int a;

char str[80];

float f;

printf("Enter an integer.\n");

scanf("%d", &a);

printf("Enter a floating point number.\n");

scanf("%f", &f);

printf("Enter a string.\n");

scanf("%s", str); // note no & needed: str is a pointer

}

541.e38 APPENDIX C

C Code Example eC.44 shows how to open, print to, and close a file.
It is good practice to always check if the file was opened successfully and
to provide an error message if it was not. The exit function will be dis-
cussed in Section C.9.2. The fprintf function is like printf but it also
takes the file pointer as an input argument to know which file to write.
fclose closes the file, ensuring that all of the information is actually writ-
ten to disk and freeing up file system resources.

C Code Example eC.45 illustrates reading numbers from a file named
data.txt using fscanf. The file must first be opened for reading. The pro-
gram then uses the feof function to check if it has reached the end of the
file. As long as the program is not at the end, it reads the next number and
prints it to the screen. Again, the program closes the file at the end to free
up resources.

C Code Example eC.44 PRINTING TO A FILE USING fprintf

// Write "Testing file write." to result.txt

#include <stdio.h>

#include <stdlib.h>

int main(void) {

FILE *fptr;

if ((fptr = fopen("result.txt", "w")) == NULL) {

printf("Unable to open result.txt for writing.\n");

exit(1); // exit the program indicating unsuccessful execution

}

fprintf(fptr, "Testing file write.\n");

fclose(fptr);

}

C Code Example eC.45 READING INPUT FROM A FILE USING fscanf

#include <stdio.h>

int main(void)

{

FILE *fptr;

int data;

// read in data from input file

if ((fptr = fopen("data.txt", "r")) == NULL) {

printf("Unable to read data.txt\n");

exit(1);

}

It is idiomatic to open a file
and check if the file pointer is
NULL in a single line of code, as
shown in C Code Example
eC.44. However, you could
just as easily separate the
functionality into two lines:

fptr = fopen(“result.txt”, “w”);
if (fptr == NULL)
...

C.9 Standard Libraries 541.e39

Other Handy stdio Functions
The sprintf function prints characters into a string, and sscanf reads
variables from a string. The fgetc function reads a single character from
a file, while fgets reads a complete line into a string.

fscanf is rather limited in its ability to read and parse complex files,
so it is often easier to fgets one line at a time and then digest that line
using sscanf or with a loop that inspects characters one at a time using
fgetc.

C . 9 . 2 stdlib

The standard library stdlib.h provides general purpose functions
including random number generation (rand and srand), dynamic mem-
ory allocation (malloc and free, already discussed in Section C.8.7),
exiting the program early (exit), and number format conversions. To
use these functions, add the following line at the top of the C file.

#include <stdlib.h>

rand and srand
rand returns a pseudo-random integer. Pseudo-random numbers have the
statistics of random numbers but follow a deterministic pattern starting
with an initial value called the seed. To convert the number to a particular
range, use the modulo operator (%) as shown in C Code Example eC.46 for
a range of 0 to 9. The values x and y will be random but they will be the
same each time this program runs. Sample console output is given below
the code.

while (!feof(fptr)) { // check that the end of the file hasn't been reached

fscanf(fptr, "%d", &data);

printf("Read data: %d\n", data);

}

fclose(fptr);

}

data.txt

25 32 14 89

Console Output:

Read data: 25

Read data: 32

Read data: 14

Read data: 89

541.e40 APPENDIX C

A programmer creates a different sequence of random numbers each time
a program runs by changing the seed. This is done by calling the srand
function, which takes the seed as its input argument. As shown in C
Code Example eC.47, the seed itself must be random, so a typical C
program assigns it by calling the time function, that returns the current
time in seconds.

exit
The exit function terminates a program early. It takes a single argument
that is returned to the operating system to indicate the reason for termina-
tion. 0 indicates normal completion, while nonzero conveys an error
condition.

Format Conversion: atoi, atol, atof
The standard library provides functions for converting ASCII strings to
integers, long integers, or doubles using atoi, atol, and atof, respec-
tively, as shown in C Code Example eC.48. This is particularly useful

C Code Example eC.46 RANDOM NUMBER GENERATION USING rand

#include <stdlib.h>

int x, y;

x = rand(); // x = a random integer

y = rand() % 10; // y = a random number from 0 to 9

printf(“x = %d, y = %d\n”, x, y);

Console Output:

x = 1481765933, y = 3

C Code Example eC.47 SEEDING THE RANDOM NUMBER GENERATOR
USING srand

// Produce a different random number each run

#include <stdlib.h>

#include <time.h> // needed to call time()

int main(void)

{

int x;

srand(time(NULL)); // seed the random number generator

x = rand() % 10; // random number from 0 to 9

printf("x = %d\n", x);

}

For historical reasons, the
time function usually returns
the current time in seconds
relative to January 1, 1970
00:00 UTC. UTC stands for
Coordinated Universal Time,
which is the same as
Greenwich Mean Time
(GMT). This date is just after
the UNIX operating system
was created by a group at Bell
Labs, including Dennis Ritchie
and Brian Kernighan, in 1969.
Similar to New Year’s Eve parties,
some UNIX enthusiasts hold
parties to celebrate significant
values returned by time. For
example, on February 1, 2009 at
23:31:30 UTC, time returned
1,234,567,890. In the year 2038,
32-bit UNIX clocks will overflow
into the year 1901.

C.9 Standard Libraries 541.e41

when reading in mixed data (a mix of strings and numbers) from a file or
when processing numeric command line arguments, as described in
Section C.10.3.

C . 9 . 3 math

The math library math.h provides commonly used math functions such
as trigonometry functions, square root, and logs. C Code Example
eC.49 shows how to use some of these functions. To use math functions,
place the following line in the C file:

#include <math.h>

C Code Example eC.48 FORMAT CONVERSION

// Convert ASCII strings to ints, longs, and floats

#include <stdlib.h>

int main(void)

{

int x;

long int y;

double z;

x = atoi("42");

y = atol("833");

z = atof("3.822");

printf("x = %d\ty = %d\tz = %f\n", x, y, z);

}

Console Output:

x = 42 y = 833 z = 3.822000

C Code Example eC.49 MATH FUNCTIONS

// Example math functions

#include <stdio.h>

#include <math.h>

int main(void) {

float a, b, c, d, e, f, g, h;

a = cos(0); // 1, note: the input argument is in radians

b = 2 * acos(0); // pi (acos means arc cosine)

c = sqrt(144); // 12

d = exp(2); // e^2 = 7.389056,

e = log(7.389056); // 2 (natural logarithm, base e)

541.e42 APPENDIX C

C . 9 . 4 string

The string library string.h provides commonly used string manipulation
functions. Key functions include:

// copy src into dst and return dst
char *strcpy(char *dst, char *src);

// concatenate (append) src to the end of dst and return dst
char *strcat(char *dst, char *src);

// compare two strings. Return 0 if equal, nonzero otherwise
int strcmp(char *s1, char *s2);

// return the length of str, not including the null termination
int strlen(char *str);

C.10 COMPILER AND COMMAND LINE OPTIONS

Although we have introduced relatively simple C programs, real-world
programs can consist of tens or even thousands of C files to enable mod-
ularity, readability, and multiple programmers. This section describes
how to compile a program spread across multiple C files and shows
how to use compiler options and command line arguments.

C . 1 0 . 1 Compiling Multiple C Source Files

Multiple C files are compiled into a single executable by listing all file
names on the compile line as shown below. Remember that the group
of C files still must contain only one main function, conventionally placed
in a file named main.c.

gcc main.c file2.c file3.c

C . 1 0 . 2 Compiler Options

Compiler options allow the programmer to specify such things as output
file names and formats, optimizations, etc. Compiler options are not

f = log10(1000); // 3 (log base 10)

g = floor(178.567); // 178, rounds to next lowest whole number

h = pow(2, 10); // computes 2 raised to the 10th power

printf("a = %.0f, b = %f, c = %.0f, d = %.0f, e = %.2f, f = %.0f, g = %.2f, h = %.2f\n",

a, b, c, d, e, f, g, h);

}

Console Output:

a = 1, b = 3.141593, c = 12, d = 7, e = 2.00, f = 3, g = 178.00, h = 1024.00

C.10 Compiler and Command Line Options 541.e43

standardized, but Table eC.7 lists ones that are commonly used. Each
option is typically preceded by a dash (-) on the command line, as shown.
For example, the "-o" option allows the programmer to specify an output
file name other than the a.out default. A plethora of options exist; they
can be viewed by typing gcc --help at the command line.

C . 1 0 . 3 Command Line Arguments

Like other functions, main can also take input variables. However,
unlike other functions, these arguments are specified at the command
line. As shown in C Code Example eC.50, argc stands for argument
count, and it denotes the number of arguments on the command
line. argv stands for argument vector, and it is an array of the strings
found on the command line. For example, suppose the program in
C Code Example eC.50 is compiled into an executable called testargs.
When the lines below are typed at the command line, argc has the value
4, and the array argv has the values {"./testargs", "arg1", "25",
"lastarg!"}. Note that the executable name is counted as the 1st

argument. The console output after typing this command is shown
below C Code Example eC.50.

gcc -o testargs testargs.c
./testargs arg1 25 lastarg!

Programs that need numeric arguments may convert the string arguments
to numbers using the functions in stdlib.h.

Table eC.7 Compiler options

Compiler Option Description Example

-o outfile specifies output file name gcc -o hello hello.c

-S create assembly language output file (not executable) gcc -S hello.c
this produces hello.s

-v verbose mode – prints the compiler results and
processes as compilation completes

gcc -v hello.c

-Olevel specify the optimization level (level is typically 0
through 3), producing faster and/or smaller code at the
expense of longer compile time

gcc -O3 hello.c

--version list the version of the compiler gcc –version

--help list all command line options gcc --help

-Wall print all warnings gcc -Wall hello.c

541.e44 APPENDIX C

C.11 COMMON MISTAKES

As with any programming language, you are almost certain to make
errors while you write nontrivial C programs. Below are descriptions of
some common mistakes made when programming in C. Some of these
errors are particularly troubling because they compile but do not function
as the programmer intended.

C Code Example eC.50 COMMAND LINE ARGUMENTS

// Print command line arguments

#include <stdio.h>

int main(int argc, char *argv[])

{

int i;

for (i=0; i<argc; i++)

printf("argv[%d] = %s\n", i, argv[i]);

}

Console Output:

argv[0] = ./testargs

argv[1] = arg1

argv[2] = 25

argv[3] = lastarg!

C Code Mistake eC.1 MISSING & IN scanf

Erroneous Code

int a;
printf("Enter an integer:\t");
scanf("%d", a); // missing & before a

Corrected Code:

int a;
printf("Enter an integer:\t");
scanf("%d", &a);

C Code Mistake eC.2 USING = INSTEAD OF == FOR COMPARISON

Erroneous Code

if (x = 1) // always evaluates as TRUE
printf("Found!\n");

Corrected Code

if (x == 1)
printf("Found!\n");

C.11 Common Mistakes 541.e45

C Code Mistake eC.3 INDEXING PAST LAST ELEMENT OF ARRAY

Erroneous Code

int array[10];
array[10] = 42; // index is 0-9

Corrected Code

int array[10];
array[9] = 42;

C Code Mistake eC.4 USING = IN #define STATEMENT

Erroneous Code

// replaces NUM with "= 4" in code
#define NUM = 4

Corrected Code

#define NUM 4

C Code Mistake eC.5 USING AN UNINITIALIZED VARIABLE

Erroneous Code

int i;
if (i == 10) // i is uninitialized

...

Corrected Code

int i = 10;
if (i == 10)

...

C Code Mistake eC.6 NOT INCLUDING PATH OF USER-CREATED HEADER
FILES

Erroneous Code

#include "myfile.h"

Corrected Code

#include "othercode\myfile.h"

Debugging skills are acquired
with practice, but here are a
few hints.

• Fix bugs starting with the
first error indicated by the
compiler. Later errors may
be downstream effects of
this error. After fixing that
bug, recompile and repeat
until all bugs (at least those
caught by the compiler!) are
fixed.

• When the compiler says a
valid line of code is in error,
check the code above it (i.e.,
for missing semicolons or
braces).

• When needed, split up
complicated statements into
multiple lines.

• Use printf to output
intermediate results.

• When a result doesn't match
expectations, start
debugging the code at the
first place it deviates from
expectations.

• Look at all compiler
warnings. While some
warnings can be ignored,
others may alert you to
more subtle code errors that
will compile but not run as
intended.

C Code Mistake eC.7 USING LOGICAL OPERATORS (!, ||, &&) INSTEAD OF
BITWISE (~, |, &)

Erroneous Code

char x=!5; // logical NOT: x = 0
char y=5||2; // logical OR: y = 1
char z=5&&2; // logical AND: z = 1

Corrected Code

char x=~5; // bitwise NOT: x = 0b11111010
char y=5|2;// bitwise OR: y = 0b00000111
char z=5&2;// logical AND: z = 0b00000000

541.e46 APPENDIX C

C Code Mistake eC.8 FORGETTING break IN A switch/case STATEMENT

Erroneous Code

char x = 'd';
...
switch (x) {

case 'u': direction = 1;
case 'd': direction = 2;
case 'l': direction = 3;
case 'r': direction = 4;
default: direction = 0;

}
// direction = 0

Corrected Code

char x = 'd';
...
switch (x) {

case 'u': direction = 1; break;
case 'd': direction = 2; break;
case 'l': direction = 3; break;
case 'r': direction = 4; break;
default: direction = 0;

}
// direction = 2

C Code Mistake eC.9 MISSING CURLY BRACES {}

Erroneous Code

if (ptr == NULL) // missing curly braces
printf("Unable to open file.\n");
exit(1); // always executes

Corrected Code

if (ptr == NULL) {
printf("Unable to open file.\n");
exit(1);

}

C Code Mistake eC.10 USING A FUNCTION BEFORE IT IS DECLARED

Erroneous Code

int main(void)
{

test();
}

void test(void)
{...
}

Corrected Code

void test(void)
{...
}

int main(void)
{

test();
}

C Code Mistake eC.11 DECLARING A LOCAL AND GLOBAL VARIABLE
WITH THE SAME NAME

Erroneous Code

int x = 5; // global declaration of x
int test(void)
{

int x = 3; // local declaration of x
...

}

Corrected Code

int x = 5; // global declaration of x
int test(void)
{

int y = 3; // local variable is y
...

}

C.11 Common Mistakes 541.e47

C Code Mistake eC.12 TRYING TO INITIALIZE AN ARRAY WITH {} AFTER
DECLARATION

Erroneous Code

int scores[3];
scores = {93, 81, 97}; // won't compile

Corrected Code

int scores[3] = {93, 81, 97};

C Code Mistake eC.13 ASSIGNING ONE ARRAY TO ANOTHER USING =

Erroneous Code

int scores[3] = {88, 79, 93};
int scores2[3];

scores2 = scores;

Corrected Code

int scores[3] = {88, 79, 93};
int scores2[3];

for (i=0; i<3; i++)
scores2[i] = scores[i];

C Code Mistake eC.14 FORGETTING THE SEMI-COLON AFTER A do/while
LOOP

Erroneous Code

int num;
do {

num = getNum();
} while (num < 100) // missing ;

Corrected Code

int num;
do {

num = getNum();
} while (num < 100);

C Code Mistake eC.15 USING COMMAS INSTEAD OF SEMICOLONS IN for
LOOP

Erroneous Code

for (i=0, i < 200, i++)
...

Corrected Code

for (i=0; i < 200; i++)
...

C Code Mistake eC.16 INTEGER DIVISION INSTEAD OF FLOATING POINT
DIVISION

Erroneous Code

// integer (truncated) division occurs when
// both arguments of division are integers
float x = 9 / 4; // x = 2.0

Corrected Code

// at least one of the arguments of
// division must be a float to
// perform floating point division
float x = 9.0 / 4; // x = 2.25

541.e48 APPENDIX C

This appendix has focused on using C on a system such as a personal
computer. Chapter 9 (available as a web supplement) describes how
C is used to program an ARM-based Raspberry Pi computer that can
be used in embedded systems. Microcontrollers are usually programmed
in C because the language provides nearly as much low-level control of
the hardware as assembly language, yet is much more succinct and faster
to write.

C Code Mistake eC.18 GREAT EXPECTATIONS (OR LACK THEREOF)

A common beginner error is to write an entire program (usually with little modularity) and
expect it to work perfectly the first time. For non-trivial programs, writing modular
code and testing the individual functions along the way are essential. Debugging becomes
exponentially harder and more time-consuming with complexity.

Another common error is lacking expectations. When this happens, the programmer
can only verify that the code produces a result, not that the result is correct. Testing a
program with known inputs and expected results is critical in verifying functionality.

C Code Mistake eC.17 WRITING TO AN UNINITIALIZED POINTER

Erroneous Code

int *y = 77;

Corrected Code

int x, *y = &x;
*y = 77;

C.11 Common Mistakes 541.e49

	Outline placeholder
	C.1 Introduction
	Summary
	C.2 Welcome to C
	C.2.1 C Program Dissection
	Header: #include <stdio.h>
	Main function: int main(void)

	Body: printf(
	Outline placeholder
	C.2.2 Running a C Program

	Summary
	C.3 Compilation
	C.3.1 Comments
	C.3.2 #define
	C.3.3 #include

	Summary
	C.4 Variables
	C.4.1 Primitive Data Types
	C.4.2 Global and Local Variables
	C.4.3 Initializing Variables

	Summary
	C.5 Operators
	C.6 Function Calls
	C.7 Control-Flow Statements
	C.7.1 Conditional Statements
	if Statements
	if/else Statements
	switch/case Statements

	C.7.2 Loops
	while Loops
	do/while Loops
	for Loops

	Summary
	C.8 More Data Types
	C.8.1 Pointers
	C.8.2 Arrays
	C.8.3 Characters
	C.8.4 Strings
	C.8.5 Structures
	C.8.6 typedef
	C.8.7 Dynamic Memory Allocation*
	C.8.8 Linked Lists*

	Summary
	C.9 Standard Libraries
	C.9.1 stdio
	printf
	scanf
	File Manipulation
	Other Handy stdio Functions

	C.9.2 stdlib
	rand and srand
	exit
	Format Conversion: atoi, atol, atof

	C.9.3 math
	C.9.4 string

	C.10 Compiler and Command Line Options
	C.10.1 Compiling Multiple C Source Files
	C.10.2 Compiler Options
	C.10.3 Command Line Arguments

	C.11 Common Mistakes

