Index

Note: Page numbers in italics indicate figures, tables and text boxes; page numbers preceded by "e" refer to online material.

0, 8, 22. See also LOW, FALSE
1, 8, 22. See also HIGH, TRUE
32-bit datapath, 386
32-bit instructions, 329
64-bit architecture, 360
74 xx series logic, 533.e1-533.e5 parts

2:1 mux (74157), 533.e4
3:8 decoder (74138), 533.e4
4:1 mux (74153), 533.e4
AND (7408), 533.e3
AND3 (7411), 533.e3
AND4 (7421), 533.e3
counter (74161, 74163), 533.e4
FLOP (7474), 533.e1, 533.e3
NAND (7400), 533.e3
NOR (7402), 533.e3
NOT (7404), 533.e1
OR (7432), 533.e3
register (74377), 533.e4
tristate buffer (74244), 533.e4 XOR (7486), 533.e3
非define, 541.e5-541.e6
非include, 541.e6-541.e7. See also Standard libraries

A

ABI. See Application Binary Interface (ABI) Abstraction, 4-5
digital. See Digital abstraction Accumulator, 367

Acorn Computer Group, 296, 472
Acorn RISC Machine, 350
Active low, 74-75
A/D conversion, 531.e31-531.e32
Ad hoc testing, 452
ADCs. See Analog-to-digital converters
(ADCs)
ADD, 297, 536
Adders, 239-246
carry propagate, 240
carry-lookahead, 241
full, 56, 240
half, 240
HDL for, 184, 200, 450
prefix, 243
ripple-carry, 240
Addition, 14-15, 17-18, 235, 239-246, 297. See also Adders
binary, 14-15
floating point, 259
signed binary, 15-17
Address. See also Memory
physical, 509-513
translation, 509-512
virtual, 508. See also Virtual memory
Addressing modes, ARM, 336
base, 336
immediate, 336
PC-relative, 336
register, 336
Advanced High-performance Bus
(AHB), 531.e54
Advanced Micro Devices
(AMD), 296

Advanced microarchitecture, 456-470
branch prediction. See Branch prediction
deep pipelines. See Deep pipelines
heterogeneous multiprocessors. See Heterogeneous multiprocessors
homogeneous multiprocessors. See Homogeneous multiprocessors
micro-operations. See Microoperations
multiprocessors. See Multiprocessors
multithreading. See Multithreading
out-of-order processor. See Out-oforder processor
register renaming. See Register renaming
single instruction multiple data. See Single instruction multiple data (SIMD)
superscalar processor. See Superscalar processor
Advanced Microcontroller Bus Architecture (AMBA), 531.e54
Advanced RISC Machines, 472
AHB. See Advanced High-performance Bus (AHB)
AHB-Lite bus, 531.e54-531.e55
Altera FPGA, 274-279
ALU. See Arithmetic/logical unit (ALU)
ALU Decoder, 398-400
ALUControl, 248-250, 392, 395
ALUOp, 398

ALUResult, 392-397

ALUSrc, 396
AMAT. See Average memory access time (AMAT)
AMBA. See Advanced Microcontroller Bus Architecture (AMBA)
AMD. See Advanced Micro Devices (AMD)
AMD64, 368
Amdahl, Gene, 492
Amdahl's Law, 492
American Standard Code for Information Interchange (ASCII), 315-316, 541.e8, 541. e27-541.e28
Analog I/O, 531.e25-531.e32
A/D conversion, 531.e31-531.e32
D/A conversion, 531.e25-531.e28
Pulse-width modulation (PWM), 531.e28-531.e31

Analog-to-digital converters (ADCs), 531.e25, 531.e27, 531.e31-531. e32
Analytical engine, 7-8
AND gate, 20-22, 179
chips (7408, 7411, 7421), 533.e3
truth table, 20, 22
using CMOS transistors, 32-33
AND, 303-304
AND-OR (AO) gate, 46
Anode, 27
Antidependence, 464
Application Binary Interface (ABI), 320
Application-specific integrated circuits (ASICs), 533.e9
Architectural state, 338, 364
for ARM, 385-386
Architecture, 295
assembly language, 296
instructions, 297-298
operands, 298-303
compiling, assembling, and loading, 339
assembling, 342-343
compilation, 340-341
linking, 343-344
loading, 344-345
memory map, 339-340
evolution of ARM architecture, 350
64-bit architecture, 360
digital signal processors (DSPs), 352-356
floating-point instructions, 357-358
power-saving and security instructions, 358
SIMD instructions, 358-360
Thumb instruction set, 351-352
machine language, 329
addressing modes, 336
branch instructions, 334-335
data-processing instructions, 329-333
interpreting, 336-337
memory instructions, 333-334
stored program, 337-338
odds and ends, 345
exceptions, 347-350
loading literals, 345-346
NOP, 346
programming, 303
branching, 308-309
conditional statements, 309-312
condition flags, 306-308
function calls, 317-329
getting loopy, 312-313
logical and arithmetic instructions, 303-306
memory, 313-317
x86 architecture, 360
big picture, 368
instruction encoding, 364-367
instructions, 364
operands, 362-363
peculiarities, 367-368
registers, 362
status flags, 363-364
Arguments, 317-319, 541.e15
pass by reference, 541.e22
pass by value, 541.e22
Arithmetic
ARM instructions, 303-306
circuits, 239-255
C operators, 541.e11-541.e13
HDL operators, 185
Arithmetic/logical unit (ALU), 248-251, 392
implementation of, 249
in processor, 392-430
ARM architecture, evolution of, 296, 350
64-bit architecture, 360
digital signal processing (DSP) instructions, 352-356
floating-point instructions, 357-358
power-saving and security instructions, 358

SIMD instructions, 358-360
Thumb instruction set, 351-352
ARM instructions, 295-369, 535-540
branch instructions, 308-309, 539
condition flags, 306-308, 540
data-processing instructions, 303-306, 535-537
logical instructions, 303-304
multiply instructions, 305-306, 537
shift instructions, 304-305
formats
addressing modes, 336
branch instructions, 334
data-processing instructions, 329-333
interpreting, 336-337
memory instructions, 333-335
stored program, 337-338
instruction set, 295
memory instructions, 301-303, 313-317, 538
miscellaneous instructions, 345-346, 539
ARM Microcontroller Development Kit (MDK-ARM), 297
ARM microprocessor, 385
data memory, 385-388
instruction memory, 385-388
multicycle, 406-425
pipelined, 425-433
program counter, 385-388
register file, 385-388
single-cycle, 390-406, 443-456
state elements of, 385-388
ARM processors, 470
ARM registers, 299-300
program counter, 308, 338, 386-387
register file, 386-387
register set, 299-300
ARM single-cycle HDL, 443-456
building blocks, 449-452
controller, 443
datapath, 443
testbench, 452-456
ARM7, 472, 473
ARM9, 474
ARM9E, 472
ARMv3 architecture, 472
ARMv4 instruction set, 295, 539
ARMv7 instruction, 472
Arrays, 313-317, 541.e23-541.e29
accessing, 313-317, 541.e23
bytes and characters, 315-317, 541. e27-541.e29
comparison or assignment of, 541.e28
declaration, 314-317, 541.e23
indexing, 314-317, 541.e23-541.e27
initialization, 541.e23-541.e24
as input argument, 541.e24-541.e25
multi-dimension, 541.e26-541.e27
ASCII. See American Standard Code for Information Interchange (ASCII)
ASICs. See Application-specific integrated circuits (ASICs)
ASR, 304
Assembler, 339, 541.e44
Assembling, 342-343
Assembly language, ARM, 295-350, 535-540
instructions, 297-350, 535-540
operands, 297-303
translating high-level code to, 339-345
translating machine language to, 337
Assembly language, x86. See x86
Associativity
in Boolean algebra, 62, 63
in caches, 493, 498-500
Astable circuits, 119
Asymmetric multiprocessors. See Heterogeneous multiprocessors
Asynchronous circuits, 120-123
Asynchronous resettable flip-flops definition, 116
HDL, 194-196
Asynchronous serial link, 531.e17, 531. e17. See also Universal Asynchronous Receiver Transmitter (UART)
AT Attachment (ATA), 531.e61-531.e62
Average memory access time (AMAT), 491, 504

B

B, 308-309, 334-336, 396-397
Babbage, Charles, 7
Banked registers, 348-349
Base addressing, 336
Baud rate, 531.e17-531.e19
BCD. See Binary coded decimal (BCD)
BCM2835, 531.e3, 531.e4-531.e5, 531. e8, 531.e9, 531.e19
timer, 531.e23

Behavioral modeling, 173-174
Benchmarks, 389
BEQ, 309
Biased exponent, 257
BIC (bit clear), 303-304
big.LITTLE, 469
Big-endian memory, 303
Big-endian order, 178
Binary addition, 14-15. See also Adders, Addition
Binary coded decimal (BCD), 258
Binary encoding, 125-126, 129-131
for divide-by- 3 counter, 129-131
for traffic light FSM, 125-126
Binary numbers
signed, 15-19
unsigned, 9-11
Binary to decimal conversion, 10 , 10-11
Binary to hexadecimal conversion, 12
Bipolar junction transistors, 26
Bipolar motor drive, 531.e50
Bipolar signaling, 531.e18
Bipolar stepper motor, 531.e51, 531. e52-531.e53
AIRPAX LB82773-M1, 531.e51, $531 . e 51$
direct drive current, 531.e52
Bistable element, 109
Bit, 8
dirty, 506
least significant, 13, 14
most significant, 13, 14
sign, 16
use, 502
valid, 496
Bit cells, 264-269
DRAM, 266-267
ROM, 268-270
SRAM, 267
Bit swizzling, 188
Bitline, 264
Bitwise operators, 177-179
BL (branch and link), 318
Block, 493
Block offset, 500-501
Block size (b), 493, 500-501
Blocking and nonblocking assignments, 199-200, 205-209
BLT. See Branch if less than (BLT)
BlueSMiRF silver module, 531.e42-531. e43, 531.e42

Bluetooth wireless communication, 531. e42-531.e43
BlueSMiRF silver module, 531. e42-531.e43
classes, 531.e42
BNE, 310
Boole, George, 8
Boolean algebra, 60-66
axioms, 61
equation simplification, 65-66
theorems, 61-64
Boolean equations, 58-60
product-of-sums form, 60
sum-of-products form, 58-60
Boolean logic, 8. See also Boolean algebra, Logic gates
Boolean theorems, 61-64
associativity, 63
combining, 62
commutativity, 63
complements, 62
consensus, 62, 64
covering, 62
De Morgan's, 63-64
distributivity, 63
idempotency, 62
identity, 62
involution, 62
null element, 62
Branch if less than (BLT), 334-335
Branch instructions, 308-309
ARM instructions, 539, 539
Branch misprediction penalty, 438, 459
Branch prediction, 459-461
Branch target address (BTA), 334-335
Branch target buffer, 459
Branching, 308-309, 334-336
conditional, 309
unconditional, 309
Breadboards, 533.e18-533.e19
BTA. See Branch target address (BTA)
Bubble, 20, 63
pushing, 63-64, 71-73
Bubble, in pipeline, 435-436
Buffers, 20
lack of, 117
tristate, 74-75
Bugs, 175
in C code, 541.e45-541.e49
Bus, 56
tristate, 75

Bus interfaces, 531.e54-531.e57
AHB-Lite, 531.e54-531.e55
memory and peripheral interface example, 531. e55-531.e57
Bypassing, 432. See also Forwarding
Byte, 13-14, 315-317. See also Characters
least significant, 13-14
most significant, 13-14
Byte offset, 495
Byte-addressable memory, 301-302
big-endian, 302-303
little-endian, 303

C

C programming, 541.e1-541.e49
common mistakes. See Common mistakes in C
compiler. See Compiler, i_Hlt414277118n C
conditional statements. See Conditional statements
control-flow statements. See Controlflow statements
data types. See Data types
executing a program, 541.e4 function calls. See Function calls
loops. See Loops
operators. See Operators
simple program, 541.e3-541.e4
standard libraries. See Standard libraries
variables. See Variables in C
Caches, 489-508
address fields
block offset, 500-501
byte offset, 495
set bits, 495
tag, 495
advanced design, 503-507
evolution of, in ARM, 507
multiple level, 504
organizations, 502
direct mapped, 494-498
fully associative, 499-500
multi-way set associative, 498-499
parameters
block, 493
block size, 493, 500-501
capacity (C), 492-493
degree of associativity $(N), 499$
number of sets (S), 493
performance of
hit, 490-492
hit rate, 491-492
miss, 480-492, 505
capacity, 505
compulsory, 505
conflict, 498, 505
penalty, 500
miss rate, 491-492 reducing, 505-506
miss rate v s. cache parameters, 505-506
replacement policy, 502-503
status bits
dirty bit (D), 506
use bit (U), 502
valid bit (V), 496
write policy, 506-507
write-back, 506-507
write-through, 506-507
CAD. See Computer-aided design (CAD)
Callee, 317
Callee save rule, 324
Callee-saved registers, 323
Caller save rule, 324
Caller-saved registers, 323
Canonical form. See Sum-of-products
(SOP) form, Product-of-sums
(POS) form
Capacitors, 28
Capacity, of cache, 492-493
Capacity miss, 505
Carry propagate adder (CPA). See Carrylookahead adder (CLA); Prefix adders; Ripple-carry adder
Carry-lookahead adder (CLA), 241-243, 242
case statement, in HDL, 201-203.
See also Switch/case statement
casez, case?, in HDL, 205
Cathode, 27
Cathode ray tube (CRT), 531.e36. See also VGA (Video Graphics Array) monitor
horizontal blanking interval, 531.e36
vertical blanking interval, 531.e36

Character LCDs, 531.e33-531.e36
Characters (char), 315-317, 541.e8, 541.e27
arrays. See also Strings
C type, 541.e27
Chips, 28
multiprocessors, 468
Chopper constant current drive, 531.e51
Circuits
74xx series. See 74xx series logic
application-specific integrated
(ASICs), 533.e9
astable, 119
asynchronous, 120, 122-123
combinational. See Combinational logic
definition of, 55
delay, 88-92
glitches in, 92-95
multiple-output, 68
priority, 68
sequential. See Sequential logic
synchronous, 122-123
synchronous sequential, 120-123
synthesized, 176, 179, 181
timing, 88-95, 141-151
CISC. See Complex Instruction Set Computer (CISC) architectures
CLBs. See Configurable logic blocks (CLBs)
Clock cycles per instruction (CPI), 390
Clock period, 142, 390
Clock skew, 148-151
Clustered multiprocessors, 470
cmd field, 330, 535, 537
CMOS. See Complementary Metal-Oxide-Semiconductor Logic (CMOS)
CMP, 402
Combinational composition, 56
Combinational logic, 174
design, 55-106
Boolean algebra, 60-66
Boolean equations, 58-60
building blocks, 83-88, 239-255
delays, 88-92
don't cares, 81-82
Karnaugh maps (K-maps), 75-83
multilevel, 66-73
precedence, 58
timing, 88-95
two-level, 69

X (contention). See Contention (X)

X (don't cares). See Don't care (X)

Z (floating). See Floating (Z)
HDLs. See Hardware description languages (HDLs)
Combining theorem, 62
Command line arguments, 541. e44-541.e45
Comments
in ARM assembly, 297-298
in C, 297-298, 541.e5
in SystemVerilog, 180
in VHDL, 180
Common mistakes in C, 541.e45-541. e49
Comparators, 246-248
Comparison
in hardware. See Comparators; Arithmetic/logical unit (ALU)
processor performance, 424-425
using ALU, 251
Compiler, in C, 339-345, 541.e4-541. e5, 541.e43-541.e44
Complementary Metal-OxideSemiconductor gates (CMOS), 26-34
Complements theorem, 62
Complex instruction set computer (CISC) architectures, 298, 361, 458
Complexity management, 4-7
digital abstraction, 4-5
discipline, 5-6
hierarchy, 6-7
modularity, 6-7
regularity, 6-7
Compulsory miss, 505
Computer-aided design (CAD), 71, 129
Concurrent signal assignment statement, 179, 183-184, 193, 200-206
cond field, 306-307, 330, 535
Condition flags, 306-308
ARM instructions, 540, 540
Condition mnemonics, 307
Conditional assignment, 181-182
Conditional branches, 308-309
Conditional Logic, 398-400, 413-415
Conditional operator, 181-182

Conditional signal assignments, 181-182
Conditional statements, 309
in ARM assembly
if, 309-310
if/else, 310-311
switch/case, 311-312
in C, 541.e17-541.e18
if, 541.e17-541.e18
if/e1se, 541.e17
switch/case, 541.e17-541.e18
in HDL, 194, 201-205
case, 201-203
casez, case?, 205
if, if/else, 202-205
Configurable logic blocks (CLBs), 275, 533.e7. See also Logic elements (LEs)
Conflict miss, 505
Consensus theorem, 62, 64
Constants
in ARM assembly, 300-301. See also Immediates
in C, 541.e5-541.e6
Contamination delay, 88-92. See also Short path
Contention (x), 73-74
Context switching, 467
Continuous assignment statements, 179, 193, 200, 206
Control hazard, 432, 437-440
Control signals, 91, 249
Control unit, 386. See also ALU Decoder, Main Decoder
of multicycle ARM processor, 413-423
of pipelined ARM processor, 430
of single-cycle ARM processor, 397-401
Control-flow statements
conditional statements. See Conditional statements
loops. See Loops
CoreMark, 389
Cortex-A7 and -A15, 475
Cortex-A9, 475
Counters, 260-261
divide-by-3, 130
Covering theorem, 62
CPA. See Carry propagate adder (CPA)

CPI. See Clock cycles per instruction
(CPI); Cycles per instruction (CPI)
Critical path, 89-92, 402
Cross-coupled inverters, 109, 110
bistable operation of, 110
CRT. See Cathode ray tube (CRT)
Current Program Status Register (CPSR), 306, 324, 347
Cycle time. See Clock period
Cycles per instruction (CPI), 390, 424
Cyclic paths, 120
Cyclone IV FPGA, 275-279

D

D flip-flops. See Flip-flops
D latch. See La_Hlt414277505tches
D/A conversion, 531.e25-531.e28
DACs. See Digital-to-analog converters (DACs)
DAQs. See Data Acquisition Systems (DAQs)
Data Acquisition Systems (DAQs), 531. e62-531.e63
myDAQ, 531.e62-531.e63
Data hazard, 432-436
HDL for, 455
Data memory, 387-388
Data segment, 340
Data sheets, 533.e9-533.e14
Data types, 541.e21-541.e35 arrays. See Arrays
characters. See Characters (char)
dynamic memory allocation. See Dynamic memory allocation (malloc, free)
linked list. See Linked list pointers. See Pointers
strings. See Strings
structures. See Structures (struct)
typedef, 541.e31-541.e32
Datapath
multicycle ARM processor, 406-413
B instruction, 412-413
LDR instruction, 407-410
STR instruction, 411-412
pipelined ARM processor, 428-430
single-cycle ARM processor, 390
B instruction, 396-397

Datapath (Continued)
LDR instruction, 391-394
STR instruction, 394-396
Data-processing instructions, 536
ARM instructions, 329-333, 396-397, 535-537
encodings, 536
DC motors, 531.e43, 531.e44-531.e48
H-bridge, 531.e44, 531.e45
shaft encoder, 531.e43-531.e44
DC transfer characteristics, 24-26. See also Direct current (DC) transfer characteristics, Noise margins
DDR. See Double-data rate memory (DDR)
De Morgan, Augustus, 63
De Morgan's theorem, 63-64
DE-9 cable, 531.e19
Decimal numbers, 9
Decimal to binary conversion, 11
Decimal to hexadecimal conversion, 13
Decode stage, 425
Decoders
definition of, 86-87
HDL for
behavioral, 202-203
parameterized, 219
logic using, 87-88
Seven-segment. See Seven-segment display decoder
Deep pipelines, 457
Delaymicros function, $531 . e 24$
Delays, logic gates. See also Propagation delay
in HDL (simulation only), 188-189
DeleteUser function, 541.e33
Dennard, Robert, 266
Destination register (rd or rt), 393, 409
Device driver, 531.e3, 531.e6-531.e8
Device under test (DUT), 220
Dhrystone, 389
Dice, 28
Dielectric, 28
Digital abstraction, 4-5, 7-9, 22-26
Digital circuits. See Logic
Digital signal processors (DSPs), 352-356, 469
Digital system implementation, 533. e1-533.e35
74 xx series logic. See 74 xx series logic
application-specific integrated circuits (ASICs), 533.e9
assembly of, 533.e17-533.e20
breadboards, 533.e18-533.e19
data sheets, 533.e9-533.e14
economics, 533.e33-533.e35
logic families, 533.e15-533.e17
packaging, 533.e17-533.e20
printed circuit boards, 533.e19-533. e20
programmable logic, 533.e2-533.e9
Digital-to-analog converters (DACs), 531.e25-531.e28

DIMM. See Dual inline memory module (DIMM)
Diodes, 27-28
p-n junction, 28
DIPs. See Dual-inline packages (DIPs)
Direct current (DC) transfer characteristics, 24, 25
Direct mapped cache, 494-498, 495
Direct voltage drive, 531.e51
Dirty bit (D), 506
Discipline
dynamic, 142-151. See also Timing analysis
static, 142-151. See also Noise margins
Discrete-valued variables, 7
Distributivity theorem, 63
Divide-by-3 counter
design of, 129-131
HDL for, 210-211
Divider, 254-255
Division
circuits, 254-255
Do/while loops, in C, 541.e19-541.e20
Don't care (X), 69, 81-83, 205
Dopant atoms, 27
Double, C type, 541.e8-541.e9
Double-data rate memory (DDR), 268, 531.e60-531.e61

Double-precision formats, 258
DRAM. See Dynamic random access memory (DRAM)
DSPs. See Digital signal processors (DSPs)
Dual inline memory module (DIMM), $531 . \mathrm{e} 60$
Dual-inline packages (DIPs), 28, 533.e1, $533 . \mathrm{e} 17$
Dynamic branch predictors, 459

Dynamic data segment, 340
Dynamic discipline, 142-151. See also Timing analysis
Dynamic memory allocation (ma11oc, free), 541.e32-541.e33
in ARM memory map, 340
Dynamic power, 34
Dynamic random access memory (DRAM), 266-267, 487-490, 519, 531.e58, 531.e60, 531.e61

E

EasyPIO, 531.e6
Economics, 533.e33
Edge-triggered flip-flop. See Flip-flops
EEPROM. See Electrically erasable programmable read only memory (EEPROM)
EFLAGS register, 363
Electrically erasable programmable read only memory (EEPROM), 270
Embedded I/O (input/output) systems, 531.e3-531.e32
analog I/O, 531.e25-531.e32
A/D conversion, 531.e31-531. e32
D/A conversion, 531.e25-531. e28
digital I/O, 531.e8-531.e11
general-purpose I/O (GPIO), 531. e8-531.e11
interrupts, 531.e32
LCDs. See Liquid Crystal Displays (LCDs)
microcontroller peripherals, 531. e32-531.e53
motors. See Motors
serial I/O, 531.e11-531.e23. See also Serial I/O
timers, 531.e23-531.e24
VGA monitor. See VGA (Video Graphics Array) monitor
Enabled flip-flops, 115-116
Enabled registers, 196-197. See also Flip-flops
EOR (XOR), 303-304
EPROM. See Erasable programmable read only memory (EPROM)

Equality comparator, 247
Equation minimization
using Boolean algebra, 65-66
using Karnaugh maps. See Karnaugh maps (K-maps)
Erasable programmable read only
memory (EPROM), 270, 533.e6
Ethernet, 531.e61
Exceptions, 346-350
banked registers, 348-349
exception-related instructions, 349-350
exception vector table, 347-348
execution modes and privilege levels, 347
handler, 340, 349
start-up, 350
Execution time, 389
exit, 541.e41
Extended instruction pointer (EIP), 362
ExtImm, 408

F

factorial function call, 326 stack during, 327
Factoring state machines, 134-136
False, 8, 20, 35, 58, 60, 74, 111, 112, 113, 116, 124, 196
Fast Fourier Transform (FFT), 352
FDIV. See Floating-point division (FDIV)
FFT. See Fast Fourier Transform (FFT)
Field programmable gate arrays (FPGAs), 274-279, 531.e14, 531.e38, 531.e63, 533.e7-533.e9
driving VGA cable, 531.e38
in SPI interface, 531.e13-531.e16
File manipulation, in C, 541.e38-541. e40
Finite state machines (FSMs), 123-141, 209-213, 413, 417
complete multicycle control, 424
deriving from circuit, 137-140
divide-by-3 FSM, 129-131, 210-211
factoring, 134-136, 136
in HDL, 209-213
LE configuration for, 277-279
Mealy FSM, 132-134
Moore FSM, 132-134
snail/pattern recognizer FSM, 132-134, 212-213
state encodings, 129-131. See also Binary encoding, One-cold encoding, One-hot encoding
state transition diagram, 124, 125
traffic light FSM, 123-129
Fixed-point numbers, 255-256
Flags, 250
Flash memory, 270. See also Solid state drive (SSD)
Flip-flops, 114-118, 193-197. See also Registers
back-to-back, 145, 152-157, 197. See also Synchronizers
comparison with latches, 118
enabled, 115-116
HDL for, 451. See also Registers
metastable state of. See Metastability
register, 114-115
resettable, 116
scannable, 262-263
shift register, 261-263
transistor count, 114, 117
transistor-level, 116-117
Float, C type, 541.e6-541.e9
print formats of, 541.e36-541.e37
Floating (Z), 74-75
in HDLs, 186-188
Floating output node, 117
Floating point division (FDIV) bug, 175
Floating-gate transistor, 270. See also Flash memory
Floating-point division (FDIV), 259
Floating-point instructions, ARM, 357-358
Floating-point numbers, 256-258
addition, 259
formats, single- and doubleprecision, 258
in programming. See Double, C type; Float, C type
rounding, 259
special cases infinity, 258
NaN, 258
Floating-Point Status and Control Register (FPSCR), 358
Floating-point unit (FPU), 259
For loops, 312-313, 541.e20

Format conversion (atoi, atol, atof), 541.e41-541.e42

Forwarding, 432-435. See also Hazards
FPGAs. See Field programmable gate arrays (FPGAs)
FPU. See Floating-point unit (FPU)
FPSCR. See Floating-Point Status and Control Register (FPSCR)
Frequency shift keying (FSK), 531.e42 and GFSK waveforms, 531.e42
Front porch, 531.e37
FSK. See Frequency shift keying (FSK)
FSMs. See Finite state machines (FSMs)
Full adder, 56, 182, 184, 200, 240
using always/process statement, 200
Fully associative cache, 499-500
funct field, 330, 333
Function calls, 317, 541.e15-541.e16
additional arguments and local variables, 328-329
arguments, 319, 541.e15
leaf, 324-326
multiple registers, loading and storing, 322
naming conventions, 541.e16
with no inputs or outputs, 318 , $541 . \mathrm{e} 15$
nonleaf, 324-326
preserved registers, 322-324
prototypes, 541.e16
recursive, 326-328
return, 318-319, 541.e15
stack, use of, 320-322. See also Stack
Furber, Steve, 473
Fuse-programmable ROM, 269-270

G

Gates
AND, 20, 22, 128
buffer, 20
multiple-input, 21-22
NAND, 21, 31
NOR, 21-22, 111, 128
NOT, 20
OR, 21
transistor-level. See Transistors
XNOR, 21
XOR, 21

General-purpose I/O (GPIO), 531. e8-531.e11
switches and LEDs example, 531.e8
Generate signal, 241, 243
Genwaves function, 531.e27
Glitches, 92-95
Global data segment, 340
GPIO. See General-purpose I/O (GPIO)
Graphics accelerators, 469
Graphics processing units (GPUs), 460
Gray, Frank, 76
Gray codes, 76
Ground (GND), 22
symbol for, 31

H

Half adder, 240, 240
Hard disk, 490-491. See also Hard drive
Hard drive, 490, 508. See also Hard disk, Solid state drive (SSD), Virtual memory
Hardware description languages (HDLs), 443-456. See also SystemVerilog, VHSIC Hardware Description Language (VHDL)
2:1 multiplexer, 452
adder, 450
capacity, 505
combinational logic, 174, 198
bitwise operators, 177-179
blocking and nonblocking assignments, 205-209
case statements, 201-202
conditional assignment, 181-182
delays, 188-189
data memory, 455
data types, 213-217
history of, 174-175
if statements, 202-205
internal variables, 182-184
numbers, 185
operators and precedence, 184-185
reduction operators, 180-181
immediate extension, 451
instruction memory, 455-456
modules, 173-174
parameterized modules, 217-220
processor building blocks, 449-452
register file, 450
resettable flip-flop, 451
resettable flip-flop with enable, 452
sequential logic, 193-198, 209-213
simulation and synthesis, 175-177
single-cycle ARM processor, 443-456
structural modeling, 190-193
testbench, 220-224, 452-453
top-level module, 454
Hardware handshaking, 531.e18
Hardware reduction, 70-71. See also Equation minimization
Hazard unit, 432-435
Hazards. See also Hazard unit control hazards, 432, 437-440 data hazards, 432-436 pipelined processor, 431-441
read after write (RAW), 431, 464
solving
control hazards, 437-440
forwarding, 432-434
stalls, 435-436
write after read (WAR), 464
write after write (WAW), 465
H-bridge control, 531.e45
HDL. See Hardware description languages (HDLs), SystemVerilog; VHSIC Hardware Description Language (VHDL)
Heap, 340
Heterogeneous multiprocessors, 469-470
Hexadecimal numbers, 11-13
Hexadecimal to binary and decimal conversion, 11, 12
Hierarchy, 6
HIGH, 23. See also 1, ON
High-level programming languages, 303, 541.e2
compiling, assembling, and loading, 339-345
translating into assembly, 300
High-performance microprocessors, 456
Hit, 490
Hit rate, 491
Hold time constraint, 142-148
with clock skew, 149-151
Hold time violations, 145, 146, 147-148, 150-151

Homogeneous multiprocessors, 468-469
Hopper, Grace, 340

I

I/O. See Input/output (I/O) systems
IA-32 architecture. See x86
IA-64, 368
ICs. See Integrated circuits (ICs)
Idempotency theorem, 62
Identity theorem, 62
Idioms, 177
if statements
in ARM assembly, 309-310
in C, $541 . \mathrm{e} 17$
in HDL, 202-205
if/e1se statements, 310, 541.e27
in ARM assembly, 310-311
in C, 541.e17-541.e18
in HDL, 202-205
ILP. See Instruction level parallelism (ILP)
IM. See Instruction memory
imm 8 field, 330-331
imm12 field, 333
imm 24 field, 334
Immediate addressing, 336
Immediate extension, 451
Immediates, 300-301, 330-332, 345-346. See also Constants
Implicit leading one, 257
Information, amount of, 8
Initializing
arrays in C, 541.e23-541.e24
variables in C, 541.e11
Input/Output (I/O) systems, 531. e1-531.e64
device driver, 531.e3, 531.e6-531.e8
embedded I/O systems. See
Embedded I/O (input/output) systems
I/O registers, 531.e3
memory-mapped I/O, 531.e1-531.e3 personal computer I/O systems. See Personal computer (PC) I/O systems
Input/output elements (IOEs), 275
Institute of Electrical and Electronics Engineers (IEEE), 257-258

Instruction encoding, x86, 364-367, 366
Instruction formats, ARM, 328
addressing modes, 336
branch instructions, 334-335
data-processing instructions, 329-333
interpreting, 336-337
memory instructions, 333-335
stored program, 337-338
Instruction formats, x86, 364-367
Instruction level parallelism (ILP), 465, 467, 468
Instruction memory, 387, 427, 455
Instruction register (IR), 407, 414
Instruction set, 295
for ARM, 386
Instruction set. See also Architecture
Instructions, x86, 360-368
Instructions, ARM, 295-360, 535-540
branch instructions, 308-309, 539
condition flags, 306-308, 540
data-processing instructions, 535
logical, 303-304, 536-537
memory instructions, 301-303, 313-317, 333-334, 538
miscellaneous instructions, 539
multiply instructions, 305-306, 537
shift instructions, 304-305
Instructions per cycle (IPC), 390
Integrated circuits (ICs), 533.e17
Intel. See x86
Intel processors, 360
Intel x86. See x86
Interrupts, 347, 531.e32
Invalid logic level, 186
Inverters, 20, 119, 178. See also NOT gate
cross-coupled, 109, 110
in HDL, 178, 199
An Investigation of the Laws of Thought (Boole), 8
Involution theorem, 62
IOEs. See Input/output elements (IOEs)
IPC. See Instructions per cycle (IPC)
IR. See Instruction register (IR)
IRWrite, 407, 414

J

Java, 303. See also Language

K

Karnaugh, Maurice, 75
Karnaugh maps (K-maps), 75-84, 93-95, 126
logic minimization using, 77-83
prime implicants, 65, 77-81, 94-95
seven-segment display decoder, 79-81 with "don't cares", 81-82
Kilobit (Kb/Kbit), 14
Kilobyte (KB), 14
K-maps. See Karnaugh maps (K-maps)

L

LAB. See Logic array block (LAB)
Land grid array, 531.e58
Language. See also Instructions
assembly, 296-303
machine, 329-338
mnemonic, 297
Last-in-first-out (LIFO) queue, 320. See also Stack
Latches, 111-113
comparison with flip-flops, 109, 118
D, 113, 120
SR, 111-113, 112
transistor-level, 116-117
Latency, 157-160, 425, 435
Lattice, silicon, 27
LCDs. See Liquid crystal displays (LCDs)
LDR, 301-303, 313-317, 333-334, 391-394, 538
critical paths for, 402
Leaf function, 324
Leakage current, 34
Least recently used (LRU) replacement, 502-503
two-way associative cache with, 502-503, 503
Least significant bit (lsb), 13, 14
Least significant byte (LSB), 13, 14, 301
LEs. See Logic elements (LEs)
Level-sensitive latch. See La_Hlt414277542tches: D
LIFO. See Last-in-first-out (LIFO) queue
Line options, compiler and command, 341-343, 541.e43-541.e45

Linked list, 541.e33-541.e34
Linker, 340-341
Linking, 339
Linux, 531.e23-531.e24
Liquid crystal displays (LCDs), 531.e33-531.e36

Literal, 58, 96
loading, 345-346
Little-endian bus order in HDL, 178
Little-endian memory addressing, 303
Load register instruction (LDR), 301-302
Loading literals, 345-346
Loads, 344-345
base addressing of, 336
Local variables, 328-329
Locality, 488
Logic
bubble pushing, 71-73
combinational. See Combinational logic
families, 25-26, 533.e15-533.e17, 533.e15, 533.e17
gates. See Gates
hardware reduction, 70-71
multilevel. See Multilevel combinational logic
programmable, 533.e2-533.e9 sequential. See Sequential logic transistor-level. See Transistors two-level, 69
Logic array block (LAB), 276
Logic arrays, 271-280. See also Field programmable gate arrays (FPGAs), Programmable logic arrays (PLAs)
transistor-level implementation, 279-280
Logic elements (LEs), 275-279
of Cyclone IV, 276-277
functions built using, 277-279
Logic families, 25-26, 533.e15-533.e17, 533.e15, $533 . e 17$
compatibility of, 26
logic levels of, 25
specifications, 533.e15, 533.e17
Logic gates, 19-22, 179, 533.e2
AND. See AND gate
AND-OR (AO) gate, 46
with delays in HDL, 189
multiple-input gates, 21-22
NAND. See NAND gate
NOR. See NOR gate

Logic gates (Continued)
NOT. See NOT gate
OR. See OR gate
OR-AND-INVERT (OAI) gate, 46
XNOR. See XNOR gate XOR. See XOR gate
Logic levels, 22-26
Logic simulation, 175-176
Logic synthesis, 176-177, 176
Logical instructions, 303-304
Logical shifter, 251
Lookup tables (LUTs), 270, 275-276
Loops, 312-313, 541.e19-541.e20
in ARM assembly
for, 312-313
while, 312
in C
do/while, 541.e19-541.e20
for, 541.e20
while, 541.e19
Lovelace, Ada, 338
LOW, 23. See also 0, FALSE
Low Voltage CMOS Logic (LVCMOS), 25
Low Voltage TTL Logic (LVTTL), 25
lsb. See Least significant bit (lsb)
LSB. See Least significant byte (LSB)
LSL, 304
LSR, 304
LUTs. See Lookup tables (LUTs)
LVCMOS. See Low Voltage CMOS Logic (LVCMOS)
LVTTL. See Low Voltage TTL Logic (LVTTL)

M

MAC. See Multiply-accumulate (MAC)
Machine code. See Machine language
Machine language, 329
addressing modes, 336
branch instructions, 334-335
data-processing instructions, 329-333
interpreting, 336-337
memory instructions, 333-335
stored program, 337-338, 338
translating to assembly language, 337

Magnitude comparator, 247
Main Decoder, 398-400, 400
Main FSM, 413-423, 423
main function in C, 541.e3
Main memory, 489-491
ma11oc function, 541.e32
Mantissa, 257
Master-slave flip-flop. See Flip-flops
Masuoka, Fujio, 270
math.h, C library, 541.e42-541.e43
Max-delay constraint. See Setup time constraint
Maxterms, 58
MCUs. See Microcontroller units (MCUs)
Mealy machines, 123, 123, 132-134
state transition and output table, 134
state transition diagrams, 133
timing diagrams for, 135
Mean time between failure (MTBF), 153-154
Medium-scale integration (MSI) chips, $533 . \mathrm{e} 2$
MemWrite, 394, 397
Memory, 313. See also Memory arrays access time, 491
addressing modes, 363
area and delay, 267-268
big-endian, 302
byte-addressable, 301-303
bytes and characters, 315-317
HDL for, 272, 273, 455-456
hierarchy, 490
little-endian, 303
logic using, 270-271
main, 490
operands in, 301-303
physical, 509
ports, 265-266
protection, 515. See also Virtual memory
types, 266-270
DDR, 268
DRAM, 266-267
flash, 270
register file, 268
ROM, 268-270
SRAM, 266
virtual, 490. See also Virtual memory
Memory address computation, 419
data flow during, 419

Memory and peripheral interface, 531. e55-531.e57
Memory arrays, 264-271. See also Memory
bit cell, 264-270
HDL for, 272, 273, 455-456
logic using, 270-271
organization, 264-265
Memory hierarchy, 490-491
Memory instructions, 301-303, 313-317, 333-334, 391-394
encodings, 333-334, 538
Memory interface, 487-488
Memory map, ARM, 339-340, 531.e2
Memory performance. See Average
Memory Access Time (AMAT)
Memory protection, 515
Memory systems, 487
ARM, 507-508
performance analysis, 491-492
x86, 531.e3
Memory-mapped I/O, 531.e1-531.e3, $531 . e^{7}$
address decoder, 531.e1, 531.e2
communicating with I/O devices, $531 . e 2$
hardware, 531.e2, 531.e2, 531.e3
MemtoReg, 396, 397
Metal-oxide-semiconductor field effect transistors (MOSFETs), 26
switch models of, 30
Metastability, 151-157
metastable state, 110,151
resolution time, 151-152, 154-157
synchronizers, 152-154
Microarchitecture, 296, 385, 388-389.
See also Architecture
advanced. See Advanced microarchitecture
architectural state. See Architectural state
description of, 385-389
design process, 386-388
evolution of, 470-476
HDL representation, 443-456
generic building blocks, 449-452
single-cycle processor, 444-449
testbench, 452-456
multicycle processor. See Multicycle ARM processor
performance analysis, 389-390. See also Performance analysis
pipelined processor. See Pipelined ARM processor
real-world perspective, 470-476
single-cycle processor. See Singlecycle ARM processor
Microcontroller, 531.e3, 531.e25
Microcontroller peripherals, 531. e32-531.e53
Bluetooth wireless communication, 531.e42-531.e43
character LCD, 531.e33-531.e36 control, 531.e35-531.e36 parallel interface, 531.e33
motor control, 531.e43-531.e53
VGA monitor, 531.e36-531.e42
Microcontroller units (MCUs), 531.e3
Micro-operations (micro-ops), 458-459 designers, 456
high-performance, 456
Microprocessors, 3, 13, 295
architectural state of, 338
Millions of instructions per second, 425
Min-delay constraint. See Hold time constraint
Minterms, 58
Miss, 490-492, 505
capacity, 505
compulsory, 505
conflict, 498, 505
Miss penalty, 500
Miss rate, 491-492
and access times, 492
Misses
cache, 490
capacity, 505
compulsory, 505
conflict, 505
page fault, 509-510
ModR/M byte, 366
Modularity, 6
Modules, in HDL
behavioral and structural, 173-174
parameterized modules, 217-220
Moore, Gordon, 30
Moore machines, 123, 132
state transition and output table, 134
state transition diagrams, 133
timing diagrams for, 135

Moore's law, 30
MOS transistors. See Metal-oxidesemiconductor field effect transistors (MOSFETs)
MOSFET. See Metal-oxidesemiconductor field effect transistors (MOSFETs)
Most significant bit (msb), 13, 14
Most significant byte (MSB), 13, 14, 301, 302
Motors
DC, 531.e43, 531.e44-531.e47
H-bridge, 531.e45-531.e46, 531. e45, 531.e46
servo, 531.e44, 531.e48-531.e49
stepper, 531.e44, 531.e49-531.e53
MOV, 301
MPSSE. See Multi-Protocol Synchronous Serial Engine (MPSSE)
msb. See Most significant bit (msb)
MSB. See Most significant byte (MSB)
MSI chips. See Medium-scale integration (MSI) chips
MTBF. See Mean time between failure (MTBF)
Multicycle ARM processor, 406
control, 413-421
datapath, 407-413
B instruction, 412-413
data-processing instructions, 412
LDR instruction, 407-410
STR instruction, 411-412
performance, 421-425
Multicycle microarchitectures, 388
Multilevel combinational logic, 69-73. See also Logic
Multilevel page tables, 516-518
Multiple-output circuit, 68-69
Multiplexers, 83-86
definition of, 83-84
HDL for
behavioral model of, 181-183
parameterized N-bit, 218-219
structural model of, 190-193
logic using, 84-86
symbol and truth table, 83
Multiplicand, 252-253
Multiplication. See Multiplier
Multiplier, 252-253
HDL for, 253
Multiply instructions, 305-306, 537, 537

Multiply and multiply-accumulate instructions, 355-356
Multiply-accumulate (MAC), 352, 356
Multiprocessors, 468-470
chip, 468
heterogeneous, 469-470
homogeneous, 468
Multi-Protocol Synchronous Serial Engine (MPSSE), 531.e63
Multithreaded processor, 467
Multithreading, 467-468
Mux. See Multiplexers
myDAQ, 531.e62-531.e63

N

NAND (7400), 533.e3
NAND gate, 21
CMOS, 31-32
Nested if/else statement, 311, 541.e18
Newton computer, 472
Nibbles, 13-14
nMOS transistors, 28-31, 29-30
Noise margins, 23-26, 23
calculating, 23-24
Nonarchitectural state, 386, 388
Nonblocking and blocking assignments, 199-200, 205-209
Nonleaf function calls, 324-326
Nonpreserved registers, 322-323, 326
NOP, 346, 431
NOR gate, 21-22, 63, 533.e3
chip (7402), 533.e3
CMOS, 32
pseudo-nMOS logic, 33
truth table, 22
Not a number (NaN), 258
NOT gate, 20
chip (7404), 533.e3
CMOS, 31
Noyce, Robert, 26
Null element theorem, 62
Number conversion
binary to decimal, 10-11
binary to hexadecimal, 12
decimal to binary, 11, 13
decimal to hexadecimal, 13
hexadecimal to binary and decimal, 11, 12
taking the two's complement, 16

Number systems, 9-19
binary, 9-11, 10-11
comparison of, 18-19, 19
estimating powers of two, 14
fixed-point, 255, 255-256
floating-point, 256-259
addition, 259, 260
special cases, 258
hexadecimal, 11-13, 12
negative and positive, 15
sign/magnitude, 15-16
signed, 15-18
two's complement, 16-18
unsigned, 9-11

0

Odds and ends, 345
exceptions, 346-350
loading literals, 345-346
NOP, 346
OFF, 26, 30
Offset, 302, 392, 408
Offset indexing, ARM, 314
ON, 26, 30
One-bit dynamic branch predictor, 460
One-cold encoding, 130
One-hot encoding, 129-131
One-time programmable (OTP), 533.e2
op field, 330
Opcode. See op field
Operands
ARM, 298
constants/immediates, 300-301
memory, 301-303
registers, 299
register set, 300
x86, 362-363, 363
Operation code. See op field
Operators
in C, 541.e11-541.e14
in HDL, 177-185
bitwise, 177-181
precedence, 185
reduction, 180-181
table of, 185
ternary, 181-182
OR gate, 21
OR-AND-INVERT (OAI) gate, 46

ORR (OR), 303-304
OTP. See One-time programmable (OTP)
Out-of-order execution, 466
Out-of-order processor, 463-465
Output dependence, 465
Overflow
with addition, 15
detection, 250-251
Oxide, 28

P

Packages, chips, 533.e17-533.e18
Page fault, 509
Page number, 511
Page offset, 511
Page table, 510-513
Pages, 509
Paging, 516
Parallel I/O, 531.e11
Parallelism, 157-160
Parity gate. See XOR gate
Partial products, 252
Pass by reference, 541.e22
Pass by value, 541.e22
Pass gate. See Transmission gates
PC. See Program counter (PC)
PC Logic, 400
PCB. See Printed circuit boards (PCBs)
PCI. See Peripheral Component Interconnect (PCI)
PCI express (PCIe), 531.e60
PC-relative addressing, 335, 336
PCSrC, 394, 395-396, 440
PCWrite, 410
Perfect induction, proving theorems using, 64-65
Performance analysis, 389-390
multicycle ARM processor, 422-424
pipelined ARM processor, 425-428
processor comparison, 424
single-cycle ARM processor, 402
Performance Analysis, 389-390. See also Average Memory Access Time (AMAT)
Peripheral Component Interconnect (PCI), 531.e59-531.e60
Peripherals devices. See Input/output (I/O) systems

Personal computer (PC) I/O systems, 531.e57-531.e64
data acquisition systems, 531. e62-531.e63
DDR3 memory, 531.e60-531.e61
networking, 531.e61
PCI, 531.e59-531.e60
SATA, 531.e61-531.e62
USB, 531.e59, 531.e63-531.e64
Phase locked loop (PLL), 531.e39
Physical memory, 509
Physical page number (PPN), 511
Physical pages, 509
Pipelined ARM processor, 425-428
abstract view of, 427
control unit, 430
datapath, 428-429
description, 425-428
hazards, 431-441
performance analysis, 441-443
throughput, 426
Pipelined microarchitecture. See Pipelined ARM processor
Pipelining, 158-160
PLAs. See Programmable logic arrays (PLAs)
Plastic leaded chip carriers (PLCCs), $533 . \mathrm{e} 17$
Platters, 508
PLCCs. See Plastic leaded chip carriers (PLCCs)
PLDs. See Programmable logic devices (PLDs)
PLL. See Phase locked loop (PLL)
pMOS transistors, 28-31, 29
Pointers, 541.e21-541.e23, 541.e25, 541.e28, 541.e30, 541.e32

POS. See Product-of-sums (POS) form
Positive edge-triggered flip-flop, 114
Post-indexed addressing, ARM, 314
Power consumption, 34-35
Power-saving and security instructions, 358
PPN. See Physical page number (PPN)
Prefix adders, 243-245, 244
Prefix tree, 245
Pre-indexed addressing, ARM, 314
Preserved registers, 322-324, 323
Prime implicants, 65, 77
Printed circuit boards (PCBs), 533.
e19-533.e20
printf, 541.e35-541.e37

Priority

circuit, 68-69
encoder, 102-103, 105
Procedure calls. See Function calls
Processor performance comparison, 442
multicycle ARM processor, 424
pipelined ARM processor, 442
single-cycle processor, 405
Processor-memory gap, 489
Product-of-sums (POS) form, 60
Program counter (PC), 308, 338, 387, 394
Programmable logic arrays (PLAs), 67, 272-274, 533.e6-533.e7
transistor-level implementation, 280
Programmable logic devices (PLDs), $533 . \mathrm{e} 6$
Programmable read only memories (PROMs), 269, 271, 533.e2-533. e6
Programming
in ARM, 303
arrays. See Arrays
branching. See Branching
in C. See C programming
conditional statements, 309-312
condition flags, 306-308
constants. See Constants; Immediates
function calls. See Function calls
getting loopy, 312-313
logical and arithmetic instructions, 303-306
loops. See Loops
memory, 313-317
shift instructions, 304-305
PROMs. See Programmable read only memories (PROMs)
Propagate signal, 241
Propagation delay, 88-92. See also Critical path
Pseudoinstructions, 346
Pseudo-nMOS logic, 33-34, 33
NOR gate, 33
ROMs and PLAs, 279-280
Pulse-Width Modulation (PWM), 531. e28-531.e31
analog output with, 531.e30-531. e31
duty cycle, 531.e28
signal, 531.e28
PWM. See Pulse-Width Modulation (PWM)

Q

Quiescent supply current, 34

R

Race conditions, 119-120, 120
rand, 541.e40-541.e41
Random access memory (RAM), 266-268, 271, 272
Raspberry Pi, 531.e3-531.e4, 531.e5, 531.e6, 531.e32, 531.e48-531. e49
RAW hazard. See Read after write (RAW) hazard
Rd field, 330
Read after write (RAW) hazard, 431, 464. See also Hazards

Read only memory (ROM), 266, 268-270
transistor-level implementation, 279-280
Read/write head, 508
ReadData bus, 393, 394
Receiver gate, 22
Recursive function calls, 326-328
Reduced instruction set computer (RISC) architecture, 298, 458
Reduction operators, 180-181
Register file (RF)
ARM register descriptions, 299
HDL for, 449
in pipelined ARM processor (write on falling edge), 428
schematic, 268
use in ARM processor, 387
Register renaming, 465-467
Register set, 300. See also Register file (RF)
Registers. See ARM registers; Flip-flops; x86 registers
loading and storing, 322
preserved and nonpreserved, 322-324
RegSrc, 402
Regularity, 6
RegWrite, 393, 433
Replacement policies, 516

Resettable flip-flops, 116
Resettable registers, 194-196
Resolution time, 151-152. See also Metastability
derivation of, 154-157
Return value, 317
RF. See Register file (RF)
Ring oscillator, 119, 119
Ripple-carry adder, 240, 240-241, 243
RISC architecture. See Reduced instruction set computer (RISC) architecture
Rising edge, 88
$R m$ field, 330
$R n$ field, 330
ROM. See Read only memory (ROM) ROR, 304
rot field, 330-331
Rotations per minute (RPM), 531.e44
Rotators, 251-252
Rounding modes, 259
RPM. See Rotations per minute (RPM)
RS-232, 531.e18

S

Sampling, 141
Sampling rate, 531.e25
SATA. See Serial ATA (SATA)
Saturated arithmetic, 353
Scalar processor, 461-463, 460
Scan chains, 262-263
scanf, 541.e38
Scannable flip-flop, 262-263
Schematics, rules of drawing, 31, 67
SCK. See Serial Clock (SCK)
SDI. See Serial Data In (SDI)
SDO. See Serial Data Out (SDO)
SDRAM. See Synchronous dynamic random access memory (SDRAM)
Segment descriptor, 367
Segmentation, 367
Selected signal assignment statements, 182
Semiconductors, 27
industry, sales, 3
Sequencing overhead, 143-144, 149, 160, 442
Sequential building blocks. See Sequential logic

Sequential logic, 109-161, 259-263
counters, 260
finite state machines. See Finite state machines (FSMs)
flip-flops, 114-118. See also Registers
latches, 111-113
D, 113
SR, 111-113
registers. See Registers
shift registers, 261-263
timing of. See Timing analysis
Serial ATA (SATA), 531.e62
Serial Clock (SCK), 531.e12
Serial communication, with PC, 531.e20
Serial Data In (SDI), 531.e12
Serial Data Out (SDO), 531.e12
Serial I/O, 531.e11-531.e23
SPI. See Serial peripheral interface (SPI)
UART. See Universal Asynchronous Receiver Transmitter (UART)
Serial Peripheral Interface (SPI), 531. e11, 531.e12-531.e17
connection between PI and FPGA, $531 . e 14$
ports
Serial Clock (SCK), 531.e12
Serial Data In (SDI), 531.e12
Serial Data Out (SDO), 531.e12
register fields in, 531.e13
slave circuitry and timing, 531.e15
waveforms, 531.e12
Servo motor, 531.e44, 531.e48-531.e49
Set bits, 495
Setup time constraint, 142, 145-147
with clock skew, 148-150
Seven-segment display decoder, 79-82
with don't cares, 82-83
HDL for, 201-202
Shaft encoder, 531.e43, 531.e47-531.

$$
\text { e48, } 531 . e 48
$$

Shift instructions, 304-305, 305
Shift registers, 261-263
Shifters, 251-252
Short path, 89-92
Sign bit, 16
Sign extension, 18
Sign/magnitude numbers, 15-16, 256
Signed binary numbers, 15-19
Signed multiplier, 217
Silicon dioxide (SiO_{2}), 28

Silicon lattice, 27
SIMD. See Single instruction multiple data (SIMD)
SIMD instructions, 358-360
simple function, 318
Simple programmable logic devices (SPLDs), 274
Simulation waveforms, 176
with delays, 189
Single instruction multiple data (SIMD), 460, 472
Single-cycle ARM processor, 390, 444
Conditional Logic, 447-448
control, 397-401
controller, 445
datapath, 390, 448-449
B instruction, 396-397
data-processing instructions, 395-396
LDR instruction, 391-394
STR instruction, 394-396
Decoder, 446
instructions, 402
performance, 402-405
Single-cycle microarchitecture, 388
Single-precision formats, 258. See also Floating-point numbers
Skew. See Clock skew
Slash notation, 56
Slave latch, 114. See also Flip-flops
Small-scale integration (SSI) chips, 533. e2
Solid state drive (SSD), 490. See also Flash memory, Hard drive
SOP. See Sum-of-products (SOP) form
Spatial locality, 488, 500-502
Spatial parallelism, 157-158
SPEC, 389
SPECINT2000, 424
SPI. See Serial Peripheral Interface (SPI)
Squashing, 465
SR latches, 111-113, 112
SRAM. See Static random access memory (SRAM)
srand, 541.e40-541.e41
Src2 field, 330, 333
SSI chips. See Small-scale integration (SSI) chips
Stack, 320-329. See also Function calls during recursive function call, 326-328
preserved registers, 322-324
stack frame, 322, 328
stack pointer (SP), 320
storing additional arguments on, 328-329
storing local variables on, 328-329
Stalls, 435-436. See also Hazards
Standard libraries, 541.e35-541.e43
math, 541.e42-541.e43
stdio, 541.e35-541.e40
file manipulation, 541.e38-541. e40
printf, 541.e35-541.e37
scanf, 541.e38
stdlib, 541.e40-541.e42
exit, 541.e41
format conversion (atoi, atol, atof), 541.e41-541.e42
rand, srand, 541.e40-541.e41
string, 541.e43
State encodings, FSM, 129-131, 134. See also Binary encoding, Onecold encoding, One-hot encoding
State machine circuit. See Finite state machines (FSMs)
State variables, 109
Static branch prediction, 459
Static discipline, 24-26
Static power, 34
Static random access memory (SRAM), 266, 267, 519
Status flags, 363. See also Condition flags
stdio.h, C library, 541.e35-541.e40. See also Standard libraries
stdlib.h, C library, 541.e40-541.e42. See also Standard libraries
Stepper motors, 531.e44, 531.e49-531. e53
bipolar stepper motor, 531.e49, 531. e50-531.e52
half-step drive, 531.e50, 531.e51
two-phase-on drive, 531.e50, $531 . \mathrm{e} 51$
wave drive, 531.e52-531.e53
Stored program, 337-338
STR, 394-396
string.h, C library, 541.e43
Strings, 316-317, 541.e28-541.e29.
See also Characters (char)
Structural modeling, 173-174, 190-193
Structures (struct), 541.e29-541.e31

SUB, 297
Substrate, 28-29
Subtraction, 17, 246, 297
Subtractor, 246-247
Sum-of-products (SOP) form, 58-60
Superscalar processor, 461-463
Supervisor call (SVC) instruction, 349
Supply voltage, 22. See also $V_{D D}$
SVC. See Supervisor call (SVC) instruction
Swap space, 516
switch/case statements
in ARM assembly, 311-312
in C, 541.e17-541.e18
in HDL. See case statement, in HDL
Symbol table, 342, 343
Symmetric multiprocessing (SMP), 468. See also Homogeneous multiprocessors
Synchronizers, 152-154, 152-153
Synchronous circuits, 122-123
Synchronous dynamic random access memory (SDRAM), 268
DDR, 268
Synchronous logic, design, 119-123
Synchronous resettable flip-flops, 116
Synchronous sequential circuits, 120-123, 122. See also Finite state machines (FSMs)
timing specification. See Timing analysis
SystemVerilog, 173-225. See also Hardware description languages (HDLs)
accessing parts of busses, 188, 192
bad synchronizer with blocking assignments, 209
bit swizzling, 188
blocking and nonblocking assignment, 199-200, 205-208
case statements, 201-202, 205
combinational logic using, 177-193, 198-208, 217-220
comments, 180
conditional assignment, 181-182
data types, 213-217
decoders, 202-203, 219
delays (in simulation), 189
divide-by-3 FSM, 210-211
finite state machines (FSMs), 209-213
Mealy FSM, 213

Moore FSM, 210, 212
full adder, 184
using always/process, 200
using nonblocking assignments, 208
history of, 175
if statements, 202-205
internal signals, 182-184
inverters, 178, 199
latches, 198
logic gates, 177-179
multiplexers, 181-183, 190-193, 218-219
multiplier, 217
numbers, 185-186
operators, 185
parameterized modules, 217-220
$N: 2^{N}$ decoder, 219
N-bit multiplexers, 218-219
N-input AND gate, 220
priority circuit, 204
using don't cares, 205
reduction operators, 180-181
registers, 193-197
enabled, 196
resettable, 194-196
sequential logic using, 193-198, 209-213
seven-segment display decoder, 201
simulation and synthesis, 175-177
structural models, 190-193
synchronizer, 197
testbench, 220-224
self-checking, 222
simple, 221
with test vector file, 223-224
tristate buffer, 187
truth tables with undefined and floating inputs, 187,188
z's and x's, 186-188, 205

T

Tag, 495
Taking the two's complement, 16-17
Temporal locality, 488, 493-494, 497, 502
Temporal parallelism, 158-159
Temporary registers, 299

Ternary operators, 181, 541.e13
Testbench, 452-456
Testbenches, HDLs, 220-224
self-checking, 221-222
simple, 220-221
with testvectors, 222-224
Text Segment, 340, 344
Thin small outline package (TSOP), 533. e17
Thread level parallelism (TLP), 467
Threshold voltage, 29
Throughput, 157-160, 388, 425, 468
Thumb instruction set, 351-352
Timers, 531.e23-531.e24
Timing
of combinational logic, 88-95
delay. See Contamination delay; Propagation delay glitches. See Glitches
of sequential logic, 141-157
analysis. See Timing analysis
clock skew. See Clock skew
dynamic discipline, 141-142
metastability. See Metastability
resolution time. See Resolution time
system timing. See Timing analysis
Timing analysis, 141-151
calculating cycle time. See Setup time constraint
with clock skew. See Clock skew
hold time constraint. See Hold time constraint
max-delay constraint. See Setup time constraint
min-delay constraint. See Hold time constraint
multicycle processor, 424
pipelined processor, 441
setup time constraint. See Setup time constraint
single-cycle processor, 405
TLB. See Translation lookaside buffer (TLB)
TLP. See Thread level parallelism (TLP)
Transistors, 26-34
bipolar, 26
CMOS, 26-33
gates made from, 31-34
latches and flip-flops, 116-117
MOSFETs, 26

Transistors (Continued)
nMOS, 28-34, 29-33
pMOS, 28-34, 29-33 pseudo-nMOS, 33-34 ROMs and PLAs, 279-280 transmission gate, 33
Transistor-Transistor Logic (TTL), 25-26, 533.e15-533.e16
Translating and starting a program, 339
Translation lookaside buffer (TLB), 514-515
Transmission Control Protocol and Internet Protocol (TCP/IP), 531. e61
Transmission gates, 33
Transmission lines, 533.e20-533.e33
characteristic impedance $\left(Z_{0}\right), 533$. e30-533.e31
derivation of, 533.e30-533.e31
matched termination, 533.e22-533. e24
mismatched termination, 533. e25-533.e28
open termination, 533.e24-533.e25
reflection coefficient $\left(k_{r}\right), 533$.
e31-533.e32
derivation of, 533.e31-533.e32
series and parallel terminations, 533. e28-533.e30
short termination, 533.e25
when to use, 533.e28
Transparent latch. See Latches: D
Traps, 347
Tristate buffer, 74-75, 187
HDL for, 186-187
multiplexer built using, 84-85, 91-93
True, 8, 20-22, 58-59, 70, 74, 111-112, 116, 129, 176, 180, 205
Truth tables, 20
ALU decoder, 399, 404
with don't cares, 69, 81-83, 205
multiplexer, 83
seven-segment display decoder, 79
SR latch, 111, 112
with undefined and floating inputs, 187-188
TSOP. See Thin small outline package (TSOP)

TTL. See Transistor-Transistor Logic
(TTL)
Two's complement numbers, 16-18
Two-bit dynamic branch predictor, 460
Two-cycle latency of LDR, 435
Two-level logic, 69
typedef, 541.e31-541.e32

U

UART. See Universal Asynchronous Receiver Transmitter (UART)
Unconditional branches, 308, 309
Undefined instruction exception, 347
Unicode, 315
Unit under test (UUT), 220
Unity gain points, 24
Universal Asynchronous Receiver Transmitter (UART), 531. e17-531.e23
hardware handshaking, 531.e18
Universal Serial Bus (USB), 270, 531. e18, 531.e59
USB 1.0, 531.e59
USB 2.0, 531.e59
USB 3.0, 531.e59
Unsigned multiplier, 217, 252-253
Unsigned numbers, 18
Upton, Eben, 531.e4
USB. See Universal Serial Bus (USB)
USB links, 531.e63-531.e64
FTDI, 531.e63
UM232H module, 531.e64
Use bit (U), 502

V

Valid bit (V), 496
Variables in C, 541.e7-541.e11
global and local, 541.e9-541.e10
initializing, 541.e11
primitive data types, 541.e8-541.e9
$V_{C C}, 23$. See also Supply voltage, $V_{D D}$
$V_{D D}, 22,23$. See also Supply voltage
Vector processor, 460
Verilog. See SystemVerilog

Very High Speed Integrated Circuits (VHSIC), 175. See also VHSIC Hardware Description Language (VHDL)
VGA (Video Graphics Array) monitor, 531.e36-531.e42
connector pinout, 531.e37
driver for, 531.e39-531.e42
VHDL. See VHSIC Hardware Description Language (VHDL)
VHSIC. See Very High Speed Integrated Circuits (VHSIC)
VHSIC Hardware Description Language (VHDL), 173-175
accessing parts of busses, 188, 192
bad synchronizer with blocking assignments, 209
bit swizzling, 188
blocking and nonblocking assignment, 199-200, 205-208
case statements, 201-202, 205
combinational logic using, 177-193, 198-208, 217-220
comments, 180
conditional assignment, 181-182
data types, 213-217
decoders, 202-203, 219
delays (in simulation), 189
divide-by-3 FSM, 210-211
finite state machines (FSMs), 209-213
Mealy FSM, 213
Moore FSM, 210, 212
full adder, 184
using always/process, 200
using nonblocking assignments, 208
history of, 175
if statements, 202
internal signals, 182-184
inverters, 178, 199
latches, 198
logic gates, 177-179
multiplexer, 181-183, 190-193, 218-219
multiplier, 217
numbers, 185-186
operators, 185
parameterized modules, 217-220
$N: 2^{N}$ decoder, 219
N-bit multiplexers, 218, 219
N -input AND gate, 220, 220
priority circuit, 204
reduction operators, 180-181
using don't cares, 205
reduction operators, 180-181
registers, 193-197
enabled, 196
resettable, 194-196
sequential logic using, 193-198, 209-213
seven-segment display decoder, 201
simulation and synthesis, 175-177
structural models, 190-193
synchronizer, 197
testbench, 220-224
self-checking, 222
simple, 221
with test vector file, 223-224
tristate buffer, 187
truth tables with undefined and
floating inputs, 187,188
z's and x's, 186-188, 205
Video Graphics Array (VGA). See VGA
(Video Graphics Array) monitor
Virtual address, 509
space, 515
Virtual memory, 490, 508-518
address translation, 509-512
cache terms comparison, 510
memory protection, 515
multilevel page tables, 516-518
page fault, 509-510
page number, 511
page offset, 511
pages, 509
page table, 512-513
replacement policies, 516
translation lookaside buffer (TLB), 514-515
write policy, 506-507
Virtual page number (VPN), 512
Virtual pages, 509
$V_{S S}, 23$

W

Wafers, 28
Wait for event (WFE) instruction, 358
Wait for interrupt (WFI) instruction, 358
Wall, Larry, 20
WAR hazard. See Write after read (WAR) hazard
WAW hazard. See Write after write (WAW) hazard
Weak pull-up, 33
Weird number, 18
WFE. See Wait for event (WFE) instruction
WFI. See Wait for interrupt (WFI) instruction
while loops, 312, 541.e19
White space, 180
Whitmore, Georgiana, 7
Wi-Fi, $531 . \mathrm{e}^{6} 1$
Wilson, Sophie, 472
Wire, 67
Wireless communication, Bluetooth, 531.e42-531.e43

Wordline, 264

Write after read (WAR) hazard, 464. See also Hazards
Write after write (WAW) hazard, 464-465
Write policy, 506-507
write-back, 506-507
write-through, 506-507

X

X. See Contention (x); Don't care (X) x86
architecture, 360-368, 362
big picture, 368
branch conditions, 366
instruction encoding, 364-367
instructions, 364-367
memory addressing modes, 363
operands, 362-363
peculiarities, 368
registers, 362
status flags, 363
Xilinx FPGA, 275
XNOR gate, 21-22
XOR gate, 21

Z

Z. See Floating (Z)

