
BARM Instructions

This appendix summarizes ARMv4 instructions used in this book.
Condition encodings are given in Table 6.3.

B.1 DATA-PROCESSING INSTRUCTIONS

Standard data-processing instructions use the encoding in Figure B.1. The
4-bit cmd field specifies the type of instruction as given in Table B.1.
When the S-bit is 1, the status register is updated with the condition flags
produced by the instruction. The I-bit and bits 4 and 7 specify one of
three encodings for the second source operand, Src2, as described in
Section 6.4.2. The cond field specifies which condition codes to check,
as given in Section 6.3.2.

B.1 Data-processing Instructions

B.2 Memory Instructions

B.3 Branch Instructions

B.4 Miscellaneous Instructions

B.5 Condition Flags

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

Digital Design and Computer Architecture, Second Edition. DOI: 10.1016/B978-0-12-800056-4.00017-0
© 2016 Elsevier Inc. All rights reserved.

535

http://dx.doi.org/10.1016/B978-0-12-800056-4.00017-0


Data-processing

cond op cmd Rn Rd
31:28 27:26 24:21 19:16 15:12 11:0 411:7 6:5

shshamt5 0

11:8

Rs sh
6:5

10
47

11:8

rot imm8
7:0

Src2 Rm

Rm

3:0

3:0

00 I
25

S
20

funct

I = 1

I = 0

Immediate

Register

Register-shifted 
Register

Figure B.1 Data-processing instruction encodings

Table B.1 Data-processing instructions

cmd Name Description Operation

0000 AND Rd, Rn, Src2 Bitwise AND Rd ← Rn & Src2

0001 EOR Rd, Rn, Src2 Bitwise XOR Rd ← Rn ^ Src2

0010 SUB Rd, Rn, Src2 Subtract Rd ← Rn – Src2

0011 RSB Rd, Rn, Src2 Reverse Subtract Rd ← Src2 – Rn

0100 ADD Rd, Rn, Src2 Add Rd ← Rn+Src2

0101 ADC Rd, Rn, Src2 Add with Carry Rd ← Rn+Src2+C

0110 SBC Rd, Rn, Src2 Subtract with Carry Rd ← Rn – Src2 – C

0111 RSC Rd, Rn, Src2 Reverse Sub w/ Carry Rd ← Src2 – Rn – C

1000 (S = 1) TST Rd, Rn, Src2 Test Set flags based on Rn & Src2

1001 (S = 1) TEQ Rd, Rn, Src2 Test Equivalence Set flags based on Rn ^ Src2

1010 (S = 1) CMP Rn, Src2 Compare Set flags based on Rn – Src2

1011 (S = 1) CMN Rn, Src2 Compare Negative Set flags based on Rn+Src2

1100 ORR Rd, Rn, Src2 Bitwise OR Rd ← Rn | Src2

1101 Shifts:

I = 1 OR
(instr11:4 = 0)

MOV Rd, Src2 Move Rd ← Src2

I = 0 AND
(sh = 00;
instr11:4 ≠ 0)

LSL Rd, Rm, Rs/shamt5 Logical Shift Left Rd ← Rm << Src2

I = 0 AND
(sh = 01)

LSR Rd, Rm, Rs/shamt5 Logical Shift Right Rd ← Rm >> Src2

(continued)

536 APPENDIX B ARM Instructions



B . 1 . 1 Multiply Instructions

Multiply instructions use the encoding in Figure B.2 The 3-bit cmd field
specifies the type of multiply, as given in Table B.2.

Table B.1 Data-processing instructions—Cont’d

cmd Name Description Operation

I = 0 AND
(sh = 10)

ASR Rd, Rm, Rs/shamt5 Arithmetic Shift Right Rd ← Rm>>>Src2

I = 0 AND
(sh = 11;
instr11:7, 4 = 0)

RRX Rd, Rm, Rs/shamt5 Rotate Right Extend {Rd, C} ← {C, Rd}

I = 0 AND
(sh = 11;
instr11:7 ≠ 0)

ROR Rd, Rm, Rs/shamt5 Rotate Right Rd ← Rn ror Src2

1110 BIC Rd, Rn, Src2 Bitwise Clear Rd ← Rn & ~Src2

1111 MVN Rd, Rn, Src2 Bitwise NOT Rd ← ~Rn

NOP (no operation) is typically encoded as 0xE1A000, which is equivalent to MOV R0, R0.

Table B.2 Multiply instructions

cmd Name Description Operation

000 MUL Rd, Rn, Rm Multiply Rd ← Rn × Rm (low 32 bits)

001 MLA Rd, Rn, Rm, Ra Multiply
Accumulate

Rd ← (Rn × Rm)+Ra (low 32 bits)

100 UMULL Rd, Rn, Rm, Ra Unsigned Multiply
Long

{Rd, Ra} ← Rn × Rm
(all 64 bits, Rm/Rn unsigned)

101 UMLAL Rd, Rn, Rm, Ra Unsigned Multiply
Accumulate Long

{Rd, Ra} ← (Rn × Rm)+{Rd, Ra}
(all 64 bits, Rm/Rn unsigned)

110 SMULL Rd, Rn, Rm, Ra Signed Multiply
Long

{Rd, Ra} ← Rn × Rm
(all 64 bits, Rm/Rn signed)

111 SMLAL Rd, Rn, Rm, Ra Signed Multiply
Accumulate Long

{Rd, Ra} ← (Rn × Rm)+{Rd, Ra}
(all 64 bits, Rm/Rn signed)

cond cmd Rd Ra

Multiply

4 bits 2 bits 6 bits 4 bits 4 bits

31:28 27:26 23:21 19:16 15:12 7:4

Rmop
00 00 S

20

Rn1001

4 bits 4 bits

3:025:24 11:8

4 bits

Figure B.2 Multiply instruction
encoding

B.1 Data-processing Instructions 537



B.2 MEMORY INSTRUCTIONS

The most common memory instructions (LDR, STR, LDRB, and STRB) oper-
ate on words or bytes and are encoded with op = 01. Extra memory
instructions operating on halfwords or signed bytes are encoded with
op = 00 and have less flexibility generating Src2. The immediate offset
is only 8 bits and the register offset cannot be shifted. LDRB and LDRH
zero-extend the bits to fill a word, while LDRSB and LDRSH sign-extend
the bits. Also see memory indexing modes in Section 6.3.6.

Memory

cond op Rn Rd

31:28 27:26 25:20 19:16 15:12 11:0

11:7

shamt5 sh

6:5

1

4Src2

Rm

3:001 I L

funct

I = 0

I = 1

11:0

imm12

WBUP

Extra memory

cond op Rn Rd

31:28 27:26 25:20 19:16 15:12 6:5

Src2a00 0 L

funct

I = 1

I = 0

11:8

WIUP Src2b1 op2 1

11:8 3:07 4 imm87:4

3:0

imm83:0

11:8

0000

3:0

Rm

Immediate

Register

Immediate

Register

Figure B.3 Memory instruction encodings

Table B.3 Memory instructions

op B op2 L Name Description Operation

01 0 N/A 0 STR Rd, [Rn, ±Src2] Store Register Mem[Adr] ← Rd

01 0 N/A 1 LDR Rd, [Rn, ±Src2] Load Register Rd ← Mem[Adr]

01 1 N/A 0 STRB Rd, [Rn, ±Src2] Store Byte Mem[Adr] ← Rd7:0

01 1 N/A 1 LDRB Rd, [Rn, ±Src2] Load Byte Rd ← Mem[Adr]7:0

00 N/A 01 0 STRH Rd, [Rn, ±Src2] Store Halfword Mem[Adr] ← Rd15:0

00 N/A 01 1 LDRH Rd, [Rn, ±Src2] Load Halfword Rd ← Mem[Adr]15:0

00 N/A 10 1 LDRSB Rd, [Rn, ±Src2] Load Signed Byte Rd ← Mem[Adr]7:0

00 N/A 11 1 LDRSH Rd, [Rn, ±Src2] Load Signed Half Rd ← Mem[Adr]15:0

538 APPENDIX B ARM Instructions



B.3 BRANCH INSTRUCTIONS

Figure B.4 shows the encoding for branch instructions (B and BL) and
Table B.4 describes their operation.

B.4 MISCELLANEOUS INSTRUCTIONS

The ARMv4 instruction set includes the following miscellaneous instruc-
tions. Consult the ARM Architecture Reference Manual for details.

cond imm24

Branch
31:28 27:26 25:24 23:0

1Lop
10

funct

Figure B.4 Branch instruction
encoding

Instructions Description Purpose

LDM, STM Load/store multiple Save and recall registers in
subroutine calls

SWP / SWPB Swap (byte) Atomic load and store for
process synchronization

LDRT, LDRBT,
STRT, STRBT

Load/store word/byte
with translation

Allow operating system to
access memory in user virtual
memory space

SWI1 Software Interrupt Create an exception, often
used to call the operating
system

CDP, LDC, MCR,
MRC, STC

Coprocessor access Communicate with optional
coprocessor

MRS, MSR Move from/to status
register

Save status register during
exceptions

1 SWI was renamed SVC (supervisor call) in ARMv7.

Table B.4 Branch instructions

L Name Description Operation

0 B label Branch PC ← (PC+8)+imm24 << 2

1 BL label Branch with Link LR ← (PC+8) – 4; PC ← (PC+8)+imm24 << 2

B.3 Branch Instructions 539



B.5 CONDITION FLAGS

Condition flags are changed by data-processing instructions with S = 1 in
the machine code. All instructions except CMP, CMN, TEQ, and TSTmust have
an “S” appended to the instruction mnemonic to make S = 1. Table B.5
shows which condition flags are affected by each instruction.

Table B.5 Instructions that affect condition flags

Type Instructions Condition Flags

Add ADDS, ADCS N, Z, C, V

Subtract SUBS, SBCS, RSBS, RSCS N, Z, C, V

Compare CMP, CMN N, Z, C, V

Shifts ASRS, LSLS, LSRS, RORS, RRXS N, Z, C

Logical ANDS, ORRS, EORS, BICS N, Z, C

Test TEQ, TST N, Z, C

Move MOVS, MVNS N, Z, C

Multiply MULS, MLAS, SMLALS, SMULLS, UMLALS,
UMULLS

N, Z

540 APPENDIX B ARM Instructions


	Outline placeholder
	B.1 Data-processing Instructions
	B.1.1 Multiply Instructions

	B.2 Memory Instructions
	B.3 Branch Instructions
	B.4 Miscellaneous Instructions
	B.5 Condition Flags


