


8Memory Systems

8.1 INTRODUCTION

Computer system performance depends on the memory system as well as
the processor microarchitecture. Chapter 7 assumed an ideal memory sys-
tem that could be accessed in a single clock cycle. However, this would be
true only for a very small memory—or a very slow processor! Early proc-
essors were relatively slow, so memory was able to keep up. But processor
speed has increased at a faster rate than memory speeds. DRAMmemories
are currently 10 to 100 times slower than processors. The increasing gap
between processor and DRAMmemory speeds demands increasingly inge-
nious memory systems to try to approximate a memory that is as fast as the
processor. This chapter investigates memory systems and considers trade-
offs of speed, capacity, and cost.

The processor communicates with the memory system over a memory
interface. Figure 8.1 shows the simple memory interface used in our multi-
cycle ARM processor. The processor sends an address over the Address
bus to the memory system. For a read, MemWrite is 0 and the memory
returns the data on the ReadData bus. For a write, MemWrite is 1 and
the processor sends data to memory on the WriteData bus.

The major issues in memory system design can be broadly explained
using a metaphor of books in a library. A library contains many books on
the shelves. If you were writing a term paper on the meaning of dreams,
you might go to the library1 and pull Freud’s The Interpretation of Dreams
off the shelf and bring it to your cubicle. After skimming it, you might put it
back and pull out Jung’s The Psychology of the Unconscious. You might
then go back for another quote from Interpretation of Dreams, followed
by yet another trip to the stacks for Freud’s The Ego and the Id. Pretty soon
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1 We realize that library usage is plummeting among college students because of the Internet.
But we also believe that libraries contain vast troves of hard-won human knowledge that are
not electronically available. We hope that Web searching does not completely displace the
art of library research.
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you would get tired of walking from your cubicle to the stacks. If you are cle-
ver, you would save time by keeping the books in your cubicle rather than
schlepping them back and forth. Furthermore, when you pull a book by
Freud, you could also pull several of his other books from the same shelf.

This metaphor emphasizes the principle, introduced in Section 6.2.1,
of making the common case fast. By keeping books that you have recently
used or might likely use in the future at your cubicle, you reduce the num-
ber of time-consuming trips to the stacks. In particular, you use the prin-
ciples of temporal and spatial locality. Temporal locality means that if
you have used a book recently, you are likely to use it again soon. Spatial
locality means that when you use one particular book, you are likely to be
interested in other books on the same shelf.

The library itself makes the common case fast by using these princi-
ples of locality. The library has neither the shelf space nor the budget to
accommodate all of the books in the world. Instead, it keeps some of
the lesser-used books in deep storage in the basement. Also, it may have
an interlibrary loan agreement with nearby libraries so that it can offer
more books than it physically carries.

In summary, you obtain the benefits of both a large collection and
quick access to the most commonly used books through a hierarchy of sto-
rage. The most commonly used books are in your cubicle. A larger collec-
tion is on the shelves. And an even larger collection is available, with
advanced notice, from the basement and other libraries. Similarly, memory
systems use a hierarchy of storage to quickly access the most commonly
used data while still having the capacity to store large amounts of data.

Memory subsystems used to build this hierarchy were introduced in
Section 5.5. Computer memories are primarily built from dynamic RAM
(DRAM) and static RAM (SRAM). Ideally, the computer memory system
is fast, large, and cheap. In practice, a single memory only has two of these
three attributes; it is either slow, small, or expensive. But computer systems
can approximate the ideal by combining a fast small cheap memory and a
slow large cheap memory. The fast memory stores the most commonly used
data and instructions, so on average the memory system appears fast. The
large memory stores the remainder of the data and instructions, so the overall
capacity is large. The combination of two cheap memories is much less
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expensive than a single large fast memory. These principles extend to using an
entire hierarchy of memories of increasing capacity and decreasing speed.

Computer memory is generally built from DRAM chips. In 2015, a
typical PC had a main memory consisting of 8 to 16 GB of DRAM,
and DRAM cost about $7 per gigabyte (GB). DRAM prices have declined
at about 25% per year for the last three decades, and memory capacity
has grown at the same rate, so the total cost of the memory in a PC has
remained roughly constant. Unfortunately, DRAM speed has improved
by only about 7% per year, whereas processor performance has improved
at a rate of 25 to 50% per year, as shown in Figure 8.2. The plot shows
memory (DRAM) and processor speeds with the 1980 speeds as a base-
line. In about 1980, processor and memory speeds were the same. But
performance has diverged since then, with memories badly lagging.2

DRAM could keep up with processors in the 1970s and early 1980’s,
but it is now woefully too slow. The DRAM access time is one to two
orders of magnitude longer than the processor cycle time (tens of nanose-
conds, compared to less than one nanosecond).

To counteract this trend, computers store the most commonly used
instructions and data in a faster but smaller memory, called a cache.
The cache is usually built out of SRAM on the same chip as the processor.
The cache speed is comparable to the processor speed, because SRAM
is inherently faster than DRAM, and because the on-chip memory elimi-
nates lengthy delays caused by traveling to and from a separate chip.
In 2015, on-chip SRAM costs were on the order of $5,000/GB, but the
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Figure 8.2 Diverging processor
and memory performance
Adapted with permission from
Hennessy and Patterson,
Computer Architecture:
A Quantitative Approach,
5th ed., Morgan Kaufmann, 2011.

2 Although recent single processor performance has remained approximately constant, as
shown in Figure 8.2 for the years 2005–2010, the increase in multi-core systems (not depicted
on the graph) only worsens the gap between processor and memory performance.
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cache is relatively small (kilobytes to several megabytes), so the overall
cost is low. Caches can store both instructions and data, but we will refer
to their contents generically as “data.”

If the processor requests data that is available in the cache, it is
returned quickly. This is called a cache hit. Otherwise, the processor
retrieves the data from main memory (DRAM). This is called a cache
miss. If the cache hits most of the time, then the processor seldom has
to wait for the slow main memory, and the average access time is low.

The third level in the memory hierarchy is the hard drive. In the same
way that a library uses the basement to store books that do not fit in the
stacks, computer systems use the hard drive to store data that does not fit
in main memory. In 2015, a hard disk drive (HDD), built using magnetic
storage, cost less than $0.05/GB and had an access time of about 5 ms.
Hard disk costs have decreased at 60%/year but access times scarcely
improved. Solid state drives (SSDs), built using flash memory technology,
are an increasingly common alternative to HDDs. SSDs have been used by
niche markets for over two decades, and they were introduced into the
mainstream market in 2007. SSDs overcome some of the mechanical fail-
ures of HDDs, but they cost about ten times as much at $0.40/GB.

The hard drive provides an illusion of more capacity than actually
exists in the main memory. It is thus called virtual memory. Like books
in the basement, data in virtual memory takes a long time to access. Main
memory, also called physical memory, holds a subset of the virtual mem-
ory. Hence, the main memory can be viewed as a cache for the most com-
monly used data from the hard drive.

Figure 8.3 summarizes the memory hierarchy of the computer system
discussed in the rest of this chapter. The processor first seeks data in a small
but fast cache that is usually located on the same chip. If the data is not avail-
able in the cache, the processor then looks in main memory. If the data is not
there either, the processor fetches the data from virtual memory on the large
but slow hard disk. Figure 8.4 illustrates this capacity and speed trade-off in
the memory hierarchy and lists typical costs, access times, and bandwidth in
2015 technology. As access time decreases, speed increases.

Section 8.2 introduces memory system performance analysis. Section 8.3
explores several cache organizations, and Section 8.4 delves into virtual
memory systems.

CPU Cache 
Main 

Memory 

Processor Chip CLK 

Hard
Drive

Figure 8.3 A typical memory
hierarchy
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8.2 MEMORY SYSTEM PERFORMANCE ANALYSIS

Designers (and computer buyers) need quantitative ways to measure the
performance of memory systems to evaluate the cost-benefit trade-offs of
various alternatives. Memory system performance metrics are miss rate or
hit rate and average memory access time. Miss and hit rates are calculated as:

Miss Rate =
Number of misses

Number of total memory accesses
= 1−Hit Rate

Hit Rate =
Number of hits

Number of total memory accesses
= 1−MissRate

(8.1)

Example 8.1 CALCULATING CACHE PERFORMANCE

Suppose a program has 2000 data access instructions (loads or stores), and 1250
of these requested data values are found in the cache. The other 750 data values
are supplied to the processor by main memory or disk memory. What are the miss
and hit rates for the cache?

Solution: The miss rate is 750/2000= 0.375= 37.5%. The hit rate is 1250/2000=
0.625= 1 − 0.375= 62.5%.

Average memory access time (AMAT) is the average time a processor
must wait for memory per load or store instruction. In the typical compu-
ter system from Figure 8.3, the processor first looks for the data in the
cache. If the cache misses, the processor then looks in main memory. If
the main memory misses, the processor accesses virtual memory on the
hard disk. Thus, AMAT is calculated as:

AMAT = tcache +MRcacheðtMM +MRMMtVMÞ (8.2)
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where tcache, tMM, and tVM are the access times of the cache, main mem-
ory, and virtual memory, and MRcache and MRMM are the cache and main
memory miss rates, respectively.

Example 8.2 CALCULATING AVERAGE MEMORY ACCESS TIME

Suppose a computer system has a memory organization with only two levels of
hierarchy, a cache and main memory. What is the average memory access time
given the access times and miss rates in Table 8.1?

Solution: The average memory access time is 1+ 0.1(100)= 11 cycles.

Example 8.3 IMPROVING ACCESS TIME

An 11-cycle average memory access time means that the processor spends ten
cycles waiting for data for every one cycle actually using that data. What cache
miss rate is needed to reduce the average memory access time to 1.5 cycles given
the access times in Table 8.1?

Solution: If the miss rate is m, the average access time is 1+ 100m. Setting this time
to 1.5 and solving for m requires a cache miss rate of 0.5%.

As a word of caution, performance improvements might not always
be as good as they sound. For example, making the memory system ten
times faster will not necessarily make a computer program run ten times
as fast. If 50% of a program’s performance is due to loads and stores, a
tenfold memory system improvement only means a 1.82-fold improve-
ment in program performance. This general principle is called Amdahl’s
Law, which says that the effort spent on increasing the performance of
a subsystem is worthwhile only if the subsystem affects a large percentage
of the overall performance.

8.3 CACHES

A cache holds commonly used memory data. The number of data
words that it can hold is called the capacity, C. Because the capacity

Table 8.1 Access times and miss rates

Memory
Level

Access Time
(Cycles)

Miss
Rate

Cache 1 10%

Main Memory 100 0%

Gene Amdahl, 1922–. Most
famous for Amdahl’s Law, an
observation he made in 1965.
While in graduate school, he
began designing computers in
his free time. This side work
earned him his Ph.D. in
theoretical physics in 1952.
He joined IBM immediately
after graduation, and later
went on to found three
companies, including one
called Amdahl Corporation
in 1970.
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of the cache is smaller than that of main memory, the computer system
designer must choose what subset of the main memory is kept in
the cache.

When the processor attempts to access data, it first checks the cache
for the data. If the cache hits, the data is available immediately. If the
cache misses, the processor fetches the data from main memory and
places it in the cache for future use. To accommodate the new data, the
cache must replace old data. This section investigates these issues in cache
design by answering the following questions: (1) What data is held in
the cache? (2) How is data found? and (3) What data is replaced to make
room for new data when the cache is full?

When reading the next sections, keep in mind that the driving force in
answering these questions is the inherent spatial and temporal locality of
data accesses in most applications. Caches use spatial and temporal local-
ity to predict what data will be needed next. If a program accesses data in
a random order, it would not benefit from a cache.

As we explain in the following sections, caches are specified by their
capacity (C), number of sets (S), block size (b), number of blocks (B), and
degree of associativity (N).

Although we focus on data cache loads, the same principles apply for
fetches from an instruction cache. Data cache store operations are similar
and are discussed further in Section 8.3.4.

8 . 3 . 1 What Data is Held in the Cache?

An ideal cache would anticipate all of the data needed by the processor
and fetch it from main memory ahead of time so that the cache has a zero
miss rate. Because it is impossible to predict the future with perfect accu-
racy, the cache must guess what data will be needed based on the past
pattern of memory accesses. In particular, the cache exploits temporal
and spatial locality to achieve a low miss rate.

Recall that temporal locality means that the processor is likely to
access a piece of data again soon if it has accessed that data recently.
Therefore, when the processor loads or stores data that is not in the
cache, the data is copied from main memory into the cache. Subsequent
requests for that data hit in the cache.

Recall that spatial locality means that, when the processor accesses a
piece of data, it is also likely to access data in nearby memory locations.
Therefore, when the cache fetches one word from memory, it may also
fetch several adjacent words. This group of words is called a cache block
or cache line. The number of words in the cache block, b, is called the
block size. A cache of capacity C contains B=C/b blocks.

The principles of temporal and spatial locality have been experimen-
tally verified in real programs. If a variable is used in a program, the same

Cache: a hiding place
especially for concealing and
preserving provisions or
implements.

– Merriam Webster
Online Dictionary, 2015.
www.merriam-webster.com
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variable is likely to be used again, creating temporal locality. If an element
in an array is used, other elements in the same array are also likely to be
used, creating spatial locality.

8 . 3 . 2 How is Data Found?

A cache is organized into S sets, each of which holds one or more blocks
of data. The relationship between the address of data in main memory
and the location of that data in the cache is called the mapping. Each
memory address maps to exactly one set in the cache. Some of the address
bits are used to determine which cache set contains the data. If the set
contains more than one block, the data may be kept in any of the blocks
in the set.

Caches are categorized based on the number of blocks in a set. In a
direct mapped cache, each set contains exactly one block, so the cache
has S=B sets. Thus, a particular main memory address maps to a unique
block in the cache. In an N-way set associative cache, each set contains
N blocks. The address still maps to a unique set, with S= B/N sets. But
the data from that address can go in any of the N blocks in that set.
A fully associative cache has only S= 1 set. Data can go in any of the
B blocks in the set. Hence, a fully associative cache is another name for
a B-way set associative cache.

To illustrate these cache organizations, we will consider an ARM
memory system with 32-bit addresses and 32-bit words. The memory is
byte-addressable, and each word is four bytes, so the memory consists
of 230 words aligned on word boundaries. We analyze caches with an
eight-word capacity (C) for the sake of simplicity. We begin with a one-
word block size (b), then generalize later to larger blocks.

Direct Mapped Cache
A direct mapped cache has one block in each set, so it is organized into
S = B sets. To understand the mapping of memory addresses onto cache
blocks, imagine main memory as being mapped into b-word blocks, just
as the cache is. An address in block 0 of main memory maps to set 0 of
the cache. An address in block 1 of main memory maps to set 1 of the
cache, and so forth until an address in block B− 1 of main memory maps
to block B− 1 of the cache. There are no more blocks of the cache, so the
mapping wraps around, such that block B of main memory maps to block
0 of the cache.

This mapping is illustrated in Figure 8.5 for a direct mapped cache
with a capacity of eight words and a block size of one word. The cache
has eight sets, each of which contains a one-word block. The bottom two
bits of the address are always 00, because they are word aligned. The next
log28= 3 bits indicate the set onto which the memory address maps. Thus,
the data at addresses 0x00000004, 0x00000024, . . . , 0xFFFFFFE4 all
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map to set 1, as shown in blue. Likewise, data at addresses 0x00000010, . . . ,
0xFFFFFFF0 all map to set 4, and so forth. Eachmain memory address maps
to exactly one set in the cache.

Example 8.4 CACHE FIELDS

To what cache set in Figure 8.5 does the word at address 0x00000014 map?
Name another address that maps to the same set.

Solution: The two least significant bits of the address are 00, because the address is
word aligned. The next three bits are 101, so the word maps to set 5. Words at
addresses 0x34, 0x54, 0x74, . . . , 0xFFFFFFF4 all map to this same set.

Because many addresses map to a single set, the cache must also keep
track of the address of the data actually contained in each set. The least
significant bits of the address specify which set holds the data. The
remaining most significant bits are called the tag and indicate which of
the many possible addresses is held in that set.

In our previous examples, the two least significant bits of the 32-bit
address are called the byte offset, because they indicate the byte within
the word. The next three bits are called the set bits, because they indicate
the set to which the address maps. (In general, the number of set bits is
log2S.) The remaining 27 tag bits indicate the memory address of the data
stored in a given cache set. Figure 8.6 shows the cache fields for address
0xFFFFFFE4. It maps to set 1 and its tag is all l’s.

00...00010000

230-Word Main Memory

mem[0x00000000]
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23-Word Cache

Address
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00...00000100
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00...00100100

11...11110000
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11...11100100
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11...11101100
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Set 6 (110)
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Set 0 (000)
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Figure 8.5 Mapping of main
memory to a direct mapped
cache
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Example 8.5 CACHE FIELDS

Find the number of set and tag bits for a direct mapped cache with 1024 (210) sets
and a one-word block size. The address size is 32 bits.

Solution: A cache with 210 sets requires log2(2
10)= 10 set bits. The two least signif-

icant bits of the address are the byte offset, and the remaining 32− 10 – 2= 20 bits
form the tag.

Sometimes, such as when the computer first starts up, the cache sets
contain no data at all. The cache uses a valid bit for each set to indicate
whether the set holds meaningful data. If the valid bit is 0, the contents
are meaningless.

Figure 8.7 shows the hardware for the direct mapped cache of Figure 8.5.
The cache is constructed as an eight-entry SRAM. Each entry, or set,
contains one line consisting of 32 bits of data, 27 bits of tag, and 1 valid
bit. The cache is accessed using the 32-bit address. The two least signif-
icant bits, the byte offset bits, are ignored for word accesses. The next
three bits, the set bits, specify the entry or set in the cache. A load
instruction reads the specified entry from the cache and checks the tag
and valid bits. If the tag matches the most significant 27 bits of the

00
Tag  Set

Byte
OffsetMemory 

Address
001111    ...   111

FFFFFF          E          4

Figure 8.6 Cache fields for
address 0xFFFFFFE4 when
mapping to the cache in
Figure 8.5
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Figure 8.7 Direct mapped cache
with 8 sets
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address and the valid bit is 1, the cache hits and the data is returned to
the processor. Otherwise, the cache misses and the memory system must
fetch the data from main memory.

Example 8.6 TEMPORAL LOCALITY WITH A DIRECT MAPPED CACHE

Loops are a common source of temporal and spatial locality in applications. Using
the eight-entry cache of Figure 8.7, show the contents of the cache after executing
the following silly loop in ARM assembly code. Assume that the cache is initially
empty. What is the miss rate?

MOV R0, #5
MOV R1, #0

LOOP CMP R0, #0
BEQ DONE
LDR R2, [R1, #4]
LDR R3, [R1, #12]
LDR R4, [R1, #8]
SUB R0, R0, #1
B LOOP

DONE

Solution: The program contains a loop that repeats for five iterations. Each itera-
tion involves three memory accesses (loads), resulting in 15 total memory accesses.
The first time the loop executes, the cache is empty and the data must be fetched
from main memory locations 0x4, 0xC, and 0x8 into cache sets 1, 3, and 2,
respectively. However, the next four times the loop executes, the data is found
in the cache. Figure 8.8 shows the contents of the cache during the last request
to memory address 0x4. The tags are all 0 because the upper 27 bits of the
addresses are 0. The miss rate is 3/15= 20%.

When two recently accessed addresses map to the same cache block, a
conflict occurs, and the most recently accessed address evicts the previous
one from the block. Direct mapped caches have only one block in each

DataTagV
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Set 0 (000)

Figure 8.8 Direct mapped cache
contents
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set, so two addresses that map to the same set always cause a conflict.
Example 8.7 illustrates conflicts.

Example 8.7 CACHE BLOCK CONFLICT

What is the miss rate when the following loop is executed on the eight-word direct
mapped cache from Figure 8.7? Assume that the cache is initially empty.

MOV R0, #5
MOV R1, #0

LOOP CMP R0, #0
BEQ DONE
LDR R2, [R1, #0x4]
LDR R3, [R1, #0x24]
SUB R0, R0, #1
B LOOP

DONE

Solution: Memory addresses 0x4 and 0x24 both map to set 1. During the initial
execution of the loop, data at address 0x4 is loaded into set 1 of the cache. Then
data at address 0x24 is loaded into set 1, evicting the data from address 0x4.
Upon the second execution of the loop, the pattern repeats and the cache must
refetch data at address 0x4, evicting data from address 0x24. The two addresses
conflict, and the miss rate is 100%.

Multi-way Set Associative Cache
An N-way set associative cache reduces conflicts by providing N blocks in
each set where data mapping to that set might be found. Each memory
address still maps to a specific set, but it can map to any one of theN blocks
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in the set. Hence, a direct mapped cache is another name for a one-way set
associative cache. N is also called the degree of associativity of the cache.

Figure 8.9 shows the hardware for a C= 8-word, N= 2-way set asso-
ciative cache. The cache now has only S= 4 sets rather than 8. Thus, only
log24= 2 set bits rather than 3 are used to select the set. The tag increases
from 27 to 28 bits. Each set contains two ways or degrees of associativity.
Each way consists of a data block and the valid and tag bits. The cache
reads blocks from both ways in the selected set and checks the tags and
valid bits for a hit. If a hit occurs in one of the ways, a multiplexer selects
data from that way.

Set associative caches generally have lower miss rates than direct
mapped caches of the same capacity, because they have fewer conflicts.
However, set associative caches are usually slower and somewhat more
expensive to build because of the output multiplexer and additional com-
parators. They also raise the question of which way to replace when both
ways are full; this is addressed further in Section 8.3.3. Most commercial
systems use set associative caches.

Example 8.8 SET ASSOCIATIVE CACHE MISS RATE

Repeat Example 8.7 using the eight-word two-way set associative cache from
Figure 8.9.

Solution: Both memory accesses, to addresses 0x4 and 0x24, map to set 1. How-
ever, the cache has two ways, so it can accommodate data from both addresses.
During the first loop iteration, the empty cache misses both addresses and loads
both words of data into the two ways of set 1, as shown in Figure 8.10. On the next
four iterations, the cache hits. Hence, the miss rate is 2/10= 20%. Recall that the
direct mapped cache of the same size from Example 8.7 had a miss rate of 100%.

Fully Associative Cache
A fully associative cache contains a single set with B ways, where B is the
number of blocks. A memory address can map to a block in any of these
ways. A fully associative cache is another name for a B-way set associa-
tive cache with one set.

Figure 8.11 shows the SRAM array of a fully associative cache with
eight blocks. Upon a data request, eight tag comparisons (not shown)
must be made, because the data could be in any block. Similarly, an 8:1

DataTagV DataTagV

00...001 mem[0x00...24] 00...101 mem[0x00...04]

0

0

0

0
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0
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Set 0

Figure 8.10 Two-way set
associative cache contents
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multiplexer chooses the proper data if a hit occurs. Fully associative
caches tend to have the fewest conflict misses for a given cache capacity,
but they require more hardware for additional tag comparisons. They are
best suited to relatively small caches because of the large number of
comparators.

Block Size
The previous examples were able to take advantage only of temporal
locality, because the block size was one word. To exploit spatial locality,
a cache uses larger blocks to hold several consecutive words.

The advantage of a block size greater than one is that when a miss
occurs and the word is fetched into the cache, the adjacent words in the
block are also fetched. Therefore, subsequent accesses are more likely to
hit because of spatial locality. However, a large block size means that a
fixed-size cache will have fewer blocks. This may lead to more conflicts,
increasing the miss rate. Moreover, it takes more time to fetch the missing
cache block after a miss, because more than one data word is fetched
from main memory. The time required to load the missing block into
the cache is called the miss penalty. If the adjacent words in the block
are not accessed later, the effort of fetching them is wasted. Nevertheless,
most real programs benefit from larger block sizes.

Figure 8.12 shows the hardware for a C= 8-word direct mapped
cache with a b= 4-word block size. The cache now has only B=C/b=
2 blocks. A direct mapped cache has one block in each set, so this cache

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Way 0Way 1Way 2Way 3Way 4Way 5Way 6Way 7

Figure 8.11 Eight-block fully associative cache
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Figure 8.12 Direct mapped cache with two sets and a four-word block size
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is organized as two sets. Thus, only log22 = 1 bit is used to select the set.
A multiplexer is now needed to select the word within the block. The
multiplexer is controlled by the log24= 2 block offset bits of the address.
The most significant 27 address bits form the tag. Only one tag is needed
for the entire block, because the words in the block are at consecutive
addresses.

Figure 8.13 shows the cache fields for address 0x8000009C when it
maps to the direct mapped cache of Figure 8.12. The byte offset bits are
always 0 for word accesses. The next log2b = 2 block offset bits indicate
the word within the block. And the next bit indicates the set. The remain-
ing 27 bits are the tag. Therefore, word 0x8000009C maps to set 1, word
3 in the cache. The principle of using larger block sizes to exploit spatial
locality also applies to associative caches.

Example 8.9 SPATIAL LOCALITY WITH A DIRECT MAPPED CACHE

Repeat Example 8.6 for the eight-word direct mapped cache with a four-word
block size.

Solution: Figure 8.14 shows the contents of the cache after the first memory access.
On the first loop iteration, the cache misses on the access to memory address 0x4.
This access loads data at addresses 0x0 through 0xC into the cache block. All sub-
sequent accesses (as shown for address 0xC) hit in the cache. Hence, the miss rate
is 1/15= 6.67%.

Putting it All Together
Caches are organized as two-dimensional arrays. The rows are called
sets, and the columns are called ways. Each entry in the array
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Figure 8.13 Cache fields for
address 0x8000009C when
mapping to the cache of
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consists of a data block and its associated valid and tag bits. Caches are
characterized by

▶ capacity C

▶ block size b (and number of blocks, B=C/b)

▶ number of blocks in a set (N)

Table 8.2 summarizes the various cache organizations. Each address in
memory maps to only one set but can be stored in any of the ways.

Cache capacity, associativity, set size, and block size are typically
powers of 2. This makes the cache fields (tag, set, and block offset bits)
subsets of the address bits.

Increasing the associativity N usually reduces the miss rate caused by
conflicts. But higher associativity requires more tag comparators. Increas-
ing the block size b takes advantage of spatial locality to reduce the miss
rate. However, it decreases the number of sets in a fixed sized cache and
therefore could lead to more conflicts. It also increases the miss penalty.

8 . 3 . 3 What Data is Replaced?

In a direct mapped cache, each address maps to a unique block and set. If
a set is full when new data must be loaded, the block in that set is
replaced with the new data. In set associative and fully associative caches,
the cache must choose which block to evict when a cache set is full. The
principle of temporal locality suggests that the best choice is to evict the
least recently used block, because it is least likely to be used again soon.
Hence, most associative caches have a least recently used (LRU) replace-
ment policy.

In a two-way set associative cache, a use bit, U, indicates which
way within a set was least recently used. Each time one of the ways
is used, U is adjusted to indicate the other way. For set associative
caches with more than two ways, tracking the least recently used way
becomes complicated. To simplify the problem, the ways are often
divided into two groups and U indicates which group of ways was least
recently used. Upon replacement, the new block replaces a random

Table 8.2 Cache organizations

Organization
Number of Ways

(N)
Number of Sets

(S)

Direct Mapped 1 B

Set Associative 1<N<B B/N

Fully Associative B 1
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block within the least recently used group. Such a policy is called
pseudo-LRU and is good enough in practice.

Example 8.10 LRU REPLACEMENT

Show the contents of an eight-word two-way set associative cache after executing
the following code. Assume LRU replacement, a block size of one word, and an
initially empty cache.

MOV R0, #0
LDR R1, [R0, #4]
LDR R2, [R0, #0x24]
LDR R3, [R0, #0x54]

Solution: The first two instructions load data from memory addresses 0x4 and
0x24 into set 1 of the cache, shown in Figure 8.15(a). U = 0 indicates that data
in way 0 was the least recently used. The next memory access, to address 0x54,
also maps to set 1 and replaces the least recently used data in way 0, as shown
in Figure 8.15(b). The use bit U is set to 1 to indicate that data in way 1 was
the least recently used.

8 . 3 . 4 Advanced Cache Design*

Modern systems use multiple levels of caches to decrease memory access
time. This section explores the performance of a two-level caching system
and examines how block size, associativity, and cache capacity affect miss
rate. The section also describes how caches handle stores, or writes, by
using a write-through or write-back policy.
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Multiple-Level Caches
Large caches are beneficial because they are more likely to hold data of
interest and therefore have lower miss rates. However, large caches tend
to be slower than small ones. Modern systems often use at least two levels
of caches, as shown in Figure 8.16. The first-level (L1) cache is small
enough to provide a one- or two-cycle access time. The second-level
(L2) cache is also built from SRAM but is larger, and therefore slower,
than the L1 cache. The processor first looks for the data in the L1 cache.
If the L1 cache misses, the processor looks in the L2 cache. If the L2 cache
misses, the processor fetches the data from main memory. Many modern
systems add even more levels of cache to the memory hierarchy, because
accessing main memory is so slow.

Example 8.11 SYSTEM WITH AN L2 CACHE

Use the system of Figure 8.16 with access times of 1, 10, and 100 cycles for the
L1 cache, L2 cache, and main memory, respectively. Assume that the L1 and
L2 caches have miss rates of 5% and 20%, respectively. Specifically, of the 5%
of accesses that miss the L1 cache, 20% of those also miss the L2 cache. What
is the average memory access time (AMAT)?

Solution: Each memory access checks the L1 cache. When the L1 cache misses (5%
of the time), the processor checks the L2 cache. When the L2 cache misses (20% of
the time), the processor fetches the data from main memory. Using Equation 8.2,
we calculate the average memory access time as follows: 1 cycle+ 0.05[10 cycles+
0.2(100 cycles)]= 2.5 cycles

The L2 miss rate is high because it receives only the “hard” memory accesses,
those that miss in the L1 cache. If all accesses went directly to the L2 cache, the
L2 miss rate would be about 1%.
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Virtual Memory
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Figure 8.16 Memory hierarchy
with two levels of cache
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Reducing Miss Rate
Cache misses can be reduced by changing capacity, block size, and/or
associativity. The first step to reducing the miss rate is to understand
the causes of the misses. The misses can be classified as compulsory, capa-
city, and conflict. The first request to a cache block is called a compulsory
miss, because the block must be read from memory regardless of the
cache design. Capacity misses occur when the cache is too small to hold
all concurrently used data. Conflict misses are caused when several
addresses map to the same set and evict blocks that are still needed.

Changing cache parameters can affect one or more type of cache
miss. For example, increasing cache capacity can reduce conflict and
capacity misses, but it does not affect compulsory misses. On the other
hand, increasing block size could reduce compulsory misses (due to spa-
tial locality) but might actually increase conflict misses (because more
addresses would map to the same set and could conflict).

Memory systems are complicated enough that the best way to evaluate
their performance is by running benchmarks while varying cache para-
meters. Figure 8.17 plots miss rate versus cache size and degree of associa-
tivity for the SPEC2000 benchmark. This benchmark has a small number
of compulsory misses, shown by the dark region near the x-axis. As
expected, when cache size increases, capacity misses decrease. Increased
associativity, especially for small caches, decreases the number of conflict
misses shown along the top of the curve. Increasing associativity beyond
four or eight ways provides only small decreases in miss rate.
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Figure 8.17 Miss rate versus
cache size and associativity
on SPEC2000 benchmark
(Adapted with permission from
Hennessy and Patterson,
Computer Architecture: A
Quantitative Approach, 5th ed.,
Morgan Kaufmann, 2012.)
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As mentioned, miss rate can also be decreased by using larger block
sizes that take advantage of spatial locality. But as block size increases,
the number of sets in a fixed-size cache decreases, increasing the probabil-
ity of conflicts. Figure 8.18 plots miss rate versus block size (in number of
bytes) for caches of varying capacity. For small caches, such as the 4-KB
cache, increasing the block size beyond 64 bytes increases the miss rate
because of conflicts. For larger caches, increasing the block size beyond
64 bytes does not change the miss rate. However, large block sizes might
still increase execution time because of the larger miss penalty, the time
required to fetch the missing cache block from main memory.

Write Policy
The previous sections focused on memory loads. Memory stores, or
writes, follow a similar procedure as loads. Upon a memory store, the
processor checks the cache. If the cache misses, the cache block is fetched
from main memory into the cache, and then the appropriate word in the
cache block is written. If the cache hits, the word is simply written to the
cache block.

Caches are classified as either write-through or write-back. In a write-
through cache, the data written to a cache block is simultaneously written
to main memory. In a write-back cache, a dirty bit (D) is associated with
each cache block. D is 1 when the cache block has been written and 0
otherwise. Dirty cache blocks are written back to main memory only
when they are evicted from the cache. A write-through cache requires
no dirty bit but usually requires more main memory writes than a
write-back cache. Modern caches are usually write-back, because main
memory access time is so large.
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Figure 8.18 Miss rate versus block size and cache size on SPEC92 benchmark
(Adapted with permission from Hennessy and Patterson, Computer Architecture:

A Quantitative Approach, 5th ed., Morgan Kaufmann, 2012.)
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Example 8.12 WRITE-THROUGH VERSUS WRITE-BACK

Suppose a cache has a block size of four words. How many main memory accesses
are required by the following code when using each write policy: write-through or
write-back?

MOV R5, #0
STR R1, [R5]
STR R2, [R5, #12]
STR R3, [R5, #8]
STR R4, [R5, #4]

Solution: All four store instructions write to the same cache block. With a write-
through cache, each store instruction writes a word to main memory, requiring
four main memory writes. A write-back policy requires only one main memory
access, when the dirty cache block is evicted.

8 . 3 . 5 The Evolution of ARM Caches*

Table 8.3 traces the evolution of cache organizations used by the ARM
processor from 1985 to 2012. The major trends are the introduction of
multiple levels of cache, larger cache capacity, and separation of instruc-
tion and data L1 caches. These trends are driven by the growing disparity
between CPU frequency and main memory speed and the decreasing cost

Table 8.3 ARM cache evolution

Year CPU MHz L1 Cache L2 Cache

1985 ARM1 8 None None

1992 ARM6 30 4 KB, unified None

1994 ARM7 100 8 KB, unified None

1999 ARM9E 300 0–128 KB, I/D None

2002 ARM11 700 4–64 KB, I/D 0–128 KB, off-chip

2009 Cortex-A9 1000 16–64 KB, I/D 0–8 MB

2011 Cortex-A7 1500 32 KB, I/D 0–4 MB

2011 Cortex-A15 2000 32 KB, I/D 0–4 MB

2012 Cortex-M0+ 60–250 None None

2012 Cortex-A53 1500 8–64 KB, I/D 128 KB–2 MB

2012 Cortex-A57 2000 48 KB I / 32 KB D 512 KB–2 MB
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of transistors. The increasing difference between CPU and memory speeds
necessitates a lower miss rate to avoid the main memory bottleneck, and
the decreasing cost of transistors allows larger cache sizes.

8.4 VIRTUAL MEMORY

Most modern computer systems use a hard drive made of magnetic
or solid state storage as the lowest level in the memory hierarchy (see
Figure 8.4). Compared with the ideal large, fast, cheap memory, a hard
drive is large and cheap but terribly slow. It provides a much larger
capacity than is possible with a cost-effective main memory (DRAM).
However, if a significant fraction of memory accesses involve the hard
drive, performance is dismal. You may have encountered this on a PC
when running too many programs at once.

Figure 8.19 shows a hard drive made of magnetic storage, also called
a hard disk, with the lid of its case removed. As the name implies, the
hard disk contains one or more rigid disks or platters, each of which
has a read/write head on the end of a long triangular arm. The head

Figure 8.19 Hard disk
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moves to the correct location on the disk and reads or writes data magne-
tically as the disk rotates beneath it. The head takes several milliseconds
to seek the correct location on the disk, which is fast from a human per-
spective but millions of times slower than the processor. Hard disk drives
are increasingly being replaced by solid state drives because reading is
orders of magnitude faster (see Figure 8.4) and they are not as susceptible
to mechanical failures.

The objective of adding a hard drive to the memory hierarchy is to
inexpensively give the illusion of a very large memory while still providing
the speed of faster memory for most accesses. A computer with only
128MB of DRAM, for example, could effectively provide 2 GB of mem-
ory using the hard drive. This larger 2-GB memory is called virtual mem-
ory, and the smaller 128-MB main memory is called physical memory.
We will use the term physical memory to refer to main memory through-
out this section.

Programs can access data anywhere in virtual memory, so they must
use virtual addresses that specify the location in virtual memory. The phy-
sical memory holds a subset of most recently accessed virtual memory. In
this way, physical memory acts as a cache for virtual memory. Thus, most
accesses hit in physical memory at the speed of DRAM, yet the program
enjoys the capacity of the larger virtual memory.

Virtual memory systems use different terminologies for the same
caching principles discussed in Section 8.3. Table 8.4 summarizes the
analogous terms. Virtual memory is divided into virtual pages, typically
4 KB in size. Physical memory is likewise divided into physical pages of
the same size. A virtual page may be located in physical memory (DRAM)
or on the hard drive. For example, Figure 8.20 shows a virtual memory
that is larger than physical memory. The rectangles indicate pages. Some
virtual pages are present in physical memory, and some are located on the
hard drive. The process of determining the physical address from the vir-
tual address is called address translation. If the processor attempts to
access a virtual address that is not in physical memory, a page fault

A computer with 32-bit
addresses can access a
maximum of 232 bytes = 4 GB
of memory. This is one of the
motivations for moving to
64-bit computers, which can
access far more memory.

Table 8.4 Analogous cache and virtual memory terms

Cache Virtual Memory

Block Page

Block size Page size

Block offset Page offset

Miss Page fault

Tag Virtual page number
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occurs, and the operating system loads the page from the hard drive into
physical memory.

To avoid page faults caused by conflicts, any virtual page can map to
any physical page. In other words, physical memory behaves as a fully
associative cache for virtual memory. In a conventional fully associative
cache, every cache block has a comparator that checks the most significant
address bits against a tag to determine whether the request hits in the block.
In an analogous virtual memory system, each physical page would need a
comparator to check the most significant virtual address bits against a
tag to determine whether the virtual page maps to that physical page.

A realistic virtual memory system has so many physical pages that
providing a comparator for each page would be excessively expensive.
Instead, the virtual memory system uses a page table to perform address
translation. A page table contains an entry for each virtual page, indicat-
ing its location in physical memory or that it is on the hard drive. Each
load or store instruction requires a page table access followed by a physi-
cal memory access. The page table access translates the virtual address
used by the program to a physical address. The physical address is then
used to actually read or write the data.

The page table is usually so large that it is located in physical mem-
ory. Hence, each load or store involves two physical memory accesses: a
page table access, and a data access. To speed up address translation, a
translation lookaside buffer (TLB) caches the most commonly used page
table entries.

The remainder of this section elaborates on address translation, page
tables, and TLBs.

8 . 4 . 1 Address Translation

In a system with virtual memory, programs use virtual addresses so that
they can access a large memory. The computer must translate these virtual

Physical Memory 

Physical Addresses 
Virtual Addresses 

Hard Drive

Address Translation 

Figure 8.20 Virtual and physical
pages
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addresses to either find the address in physical memory or take a page
fault and fetch the data from the hard drive.

Recall that virtual memory and physical memory are divided into
pages. The most significant bits of the virtual or physical address specify
the virtual or physical page number. The least significant bits specify the
word within the page and are called the page offset.

Figure 8.21 illustrates the page organization of a virtual memory sys-
tem with 2 GB of virtual memory and 128 MB of physical memory
divided into 4-KB pages. MIPS accommodates 32-bit addresses. With a
2-GB = 231-byte virtual memory, only the least significant 31 virtual
address bits are used; the 32nd bit is always 0. Similarly, with a
128-MB= 227-byte physical memory, only the least significant 27 physi-
cal address bits are used; the upper 5 bits are always 0.

Because the page size is 4 KB = 212 bytes, there are 231/212= 219 virtual
pages and 227/212= 215 physical pages. Thus, the virtual and physical page
numbers are 19 and 15 bits, respectively. Physical memory can only hold
up to 1/16th of the virtual pages at any given time. The rest of the virtual
pages are kept on the hard drive.

Figure 8.21 shows virtual page 5 mapping to physical page 1, virtual
page 0x7FFFC mapping to physical page 0x7FFE, and so forth. For
example, virtual address 0x53F8 (an offset of 0x3F8 within virtual page 5)
maps to physical address 0x13F8 (an offset of 0x3F8 within physical
page 1). The least significant 12 bits of the virtual and physical addresses
are the same (0x3F8) and specify the page offset within the virtual and
physical pages. Only the page number needs to be translated to obtain
the physical address from the virtual address.
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pages
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Figure 8.22 illustrates the translation of a virtual address to a physical
address. The least significant 12 bits indicate the page offset and require
no translation. The upper 19 bits of the virtual address specify the virtual
page number (VPN) and are translated to a 15-bit physical page number
(PPN). The next two sections describe how page tables and TLBs are used
to perform this address translation.

Example 8.13 VIRTUAL ADDRESS TO PHYSICAL ADDRESS TRANSLATION

Find the physical address of virtual address 0x247C using the virtual memory sys-
tem shown in Figure 8.21.

Solution: The 12-bit page offset (0x47C) requires no translation. The remaining 19 bits
of the virtual address give the virtual page number, so virtual address 0x247C is found
in virtual page 0x2. In Figure 8.21, virtual page 0x2 maps to physical page 0x7FFF.
Thus, virtual address 0x247C maps to physical address 0x7FFF47C.

8 . 4 . 2 The Page Table

The processor uses a page table to translate virtual addresses to physical
addresses. The page table contains an entry for each virtual page. This
entry contains a physical page number and a valid bit. If the valid bit is 1,
the virtual page maps to the physical page specified in the entry. Otherwise,
the virtual page is found on the hard drive.

Because the page table is so large, it is stored in physical memory. Let us
assume for now that it is stored as a contiguous array, as shown in
Figure 8.23. This page table contains the mapping of the memory system of
Figure 8.21. The page table is indexed with the virtual page number (VPN).
For example, entry 5 specifies that virtual page 5 maps to physical page 1.
Entry 6 is invalid (V= 0), so virtual page 6 is located on the hard drive.

Example 8.14 USING THE PAGE TABLE TO PERFORM ADDRESS
TRANSLATION

Find the physical address of virtual address 0x247C using the page table shown in
Figure 8.23.
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Figure 8.22 Translation from
virtual address to physical
address
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Solution: Figure 8.24 shows the virtual address to physical address translation for
virtual address 0x247C. The 12-bit page offset requires no translation. The remain-
ing 19 bits of the virtual address are the virtual page number, 0x2, and give the index
into the page table. The page table maps virtual page 0x2 to physical page 0x7FFF.
So, virtual address 0x247C maps to physical address 0x7FFF47C. The least signifi-
cant 12 bits are the same in both the physical and the virtual address.

The page table can be stored anywhere in physical memory, at the
discretion of the OS. The processor typically uses a dedicated register,
called the page table register, to store the base address of the page table
in physical memory.

To perform a load or store, the processor must first translate the vir-
tual address to a physical address and then access the data at that physical
address. The processor extracts the virtual page number from the virtual
address and adds it to the page table register to find the physical address
of the page table entry. The processor then reads this page table entry
from physical memory to obtain the physical page number. If the entry
is valid, it merges this physical page number with the page offset to create
the physical address. Finally, it reads or writes data at this physical
address. Because the page table is stored in physical memory, each load
or store involves two physical memory accesses.
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Figure 8.24 Address translation
using the page table
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8 . 4 . 3 The Translation Lookaside Buffer

Virtual memory would have a severe performance impact if it required
a page table read on every load or store, doubling the delay of loads
and stores. Fortunately, page table accesses have great temporal local-
ity. The temporal and spatial locality of data accesses and the large
page size mean that many consecutive loads or stores are likely to
reference the same page. Therefore, if the processor remembers the last
page table entry that it read, it can probably reuse this translation
without rereading the page table. In general, the processor can keep
the last several page table entries in a small cache called a translation
lookaside buffer (TLB). The processor “looks aside” to find the trans-
lation in the TLB before having to access the page table in physical
memory. In real programs, the vast majority of accesses hit in the
TLB, avoiding the time-consuming page table reads from physical
memory.

A TLB is organized as a fully associative cache and typically holds
16 to 512 entries. Each TLB entry holds a virtual page number and its
corresponding physical page number. The TLB is accessed using the
virtual page number. If the TLB hits, it returns the corresponding
physical page number. Otherwise, the processor must read the page
table in physical memory. The TLB is designed to be small enough that
it can be accessed in less than one cycle. Even so, TLBs typically have
a hit rate of greater than 99%. The TLB decreases the number of
memory accesses required for most load or store instructions from
two to one.

Example 8.15 USING THE TLB TO PERFORM ADDRESS TRANSLATION

Consider the virtual memory system of Figure 8.21. Use a two-entry TLB or
explain why a page table access is necessary to translate virtual addresses
0x247C and 0x5FB0 to physical addresses. Suppose the TLB currently holds valid
translations of virtual pages 0x2 and 0x7FFFD.

Solution: Figure 8.25 shows the two-entry TLB with the request for virtual
address 0x247C. The TLB receives the virtual page number of the incoming
address, 0x2, and compares it to the virtual page number of each entry. Entry
0 matches and is valid, so the request hits. The translated physical address is
the physical page number of the matching entry, 0x7FFF, concatenated with
the page offset of the virtual address. As always, the page offset requires no
translation.

The request for virtual address 0x5FB0 misses in the TLB. So, the request is for-
warded to the page table for translation.
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8 . 4 . 4 Memory Protection

So far, this section has focused on using virtual memory to provide a fast,
inexpensive, large memory. An equally important reason to use virtual
memory is to provide protection between concurrently running
programs.

As you probably know, modern computers typically run several pro-
grams or processes at the same time. All of the programs are simulta-
neously present in physical memory. In a well-designed computer
system, the programs should be protected from each other so that no pro-
gram can crash or hijack another program. Specifically, no program
should be able to access another program’s memory without permission.
This is called memory protection.

Virtual memory systems provide memory protection by giving each
program its own virtual address space. Each program can use as much
memory as it wants in that virtual address space, but only a portion of
the virtual address space is in physical memory at any given time. Each
program can use its entire virtual address space without having to worry
about where other programs are physically located. However, a program
can access only those physical pages that are mapped in its page table. In
this way, a program cannot accidentally or maliciously access another
program’s physical pages, because they are not mapped in its page table.
In some cases, multiple programs access common instructions or data.
The operating system adds control bits to each page table entry to deter-
mine which programs, if any, can write to the shared physical pages.
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8 . 4 . 5 Replacement Policies*

Virtual memory systems use write-back and an approximate least recently
used (LRU) replacement policy. A write-through policy, where each write
to physical memory initiates a write to the hard drive, would be impracti-
cal. Store instructions would operate at the speed of the hard drive instead
of the speed of the processor (milliseconds instead of nanoseconds). Under
the writeback policy, the physical page is written back to the hard drive
only when it is evicted from physical memory. Writing the physical page
back to the hard drive and reloading it with a different virtual page is called
paging, and the hard drive in a virtual memory system is sometimes called
swap space. The processor pages out one of the least recently used physical
pages when a page fault occurs, then replaces that page with the missing
virtual page. To support these replacement policies, each page table entry
contains two additional status bits: a dirty bit D and a use bit U.

The dirty bit is 1 if any store instructions have changed the physical
page since it was read from the hard drive. When a physical page is paged
out, it needs to be written back to the hard drive only if its dirty bit is 1;
otherwise, the hard drive already holds an exact copy of the page.

The use bit is 1 if the physical page has been accessed recently. As in a
cache system, exact LRU replacement would be impractically compli-
cated. Instead, the OS approximates LRU replacement by periodically
resetting all the use bits in the page table. When a page is accessed, its
use bit is set to 1. Upon a page fault, the OS finds a page with U= 0 to
page out of physical memory. Thus, it does not necessarily replace the
least recently used page, just one of the least recently used pages.

8 . 4 . 6 Multilevel Page Tables*

Page tables can occupy a large amount of physical memory. For example,
the page table from the previous sections for a 2 GB virtual memory with
4 KB pages would need 219 entries. If each entry is 4 bytes, the page table
is 219 × 22 bytes = 221 bytes = 2 MB.

To conserve physical memory, page tables can be broken up into mul-
tiple (usually two) levels. The first-level page table is always kept in phys-
ical memory. It indicates where small second-level page tables are stored
in virtual memory. The second-level page tables each contain the actual
translations for a range of virtual pages. If a particular range of transla-
tions is not actively used, the corresponding second-level page table can
be paged out to the hard drive so it does not waste physical memory.

In a two-level page table, the virtual page number is split into two parts:
the page table number and the page table offset, as shown in Figure 8.26.
The page table number indexes the first-level page table, which must reside
in physical memory. The first-level page table entry gives the base address
of the second-level page table or indicates that it must be fetched from the
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hard drive when V is 0. The page table offset indexes the second-level page
table. The remaining 12 bits of the virtual address are the page offset, as
before, for a page size of 212= 4 KB.

In Figure 8.26 the 19-bit virtual page number is broken into 9 and
10 bits, to indicate the page table number and the page table offset,
respectively. Thus, the first-level page table has 29= 512 entries. Each of
these 512 second-level page tables has 210= 1 K entries. If each of the
first- and second-level page table entries is 32 bits (4 bytes) and only
two second-level page tables are present in physical memory at once,
the hierarchical page table uses only (512 × 4 bytes)+ 2× (1 K× 4 bytes)=
10 KB of physical memory. The two-level page table requires a fraction
of the physical memory needed to store the entire page table (2 MB).
The drawback of a two-level page table is that it adds yet another mem-
ory access for translation when the TLB misses.

Example 8.16 USING A MULTILEVEL PAGE TABLE FOR ADDRESS
TRANSLATION

Figure 8.27 shows the possible contents of the two-level page table from Figure 8.26.
The contents of only one second-level page table are shown. Using this two-level page
table, describe what happens on an access to virtual address 0x003FEFB0.
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Solution: As always, only the virtual page number requires translation. The most
significant nine bits of the virtual address, 0x0, give the page table number, the
index into the first-level page table. The first-level page table at entry 0x0 indicates
that the second-level page table is resident in memory (V= 1) and its physical
address is 0x2375000.

The next ten bits of the virtual address, 0x3FE, are the page table offset, which
gives the index into the second-level page table. Entry 0 is at the bottom of the sec-
ond-level page table, and entry 0x3FF is at the top. Entry 0x3FE in the second-
level page table indicates that the virtual page is resident in physical memory
(V= 1) and that the physical page number is 0x23F1. The physical page number
is concatenated with the page offset to form the physical address, 0x23F1FB0.

8.5 SUMMARY

Memory system organization is a major factor in determining computer
performance. Different memory technologies, such as DRAM, SRAM,
and hard drives, offer trade-offs in capacity, speed, and cost. This chapter
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introduced cache and virtual memory organizations that use a hierarchy
of memories to approximate an ideal large, fast, inexpensive memory.
Main memory is typically built from DRAM, which is significantly slower
than the processor. A cache reduces access time by keeping commonly
used data in fast SRAM. Virtual memory increases the memory capacity
by using a hard drive to store data that does not fit in the main memory.
Caches and virtual memory add complexity and hardware to a computer
system, but the benefits usually outweigh the costs. All modern personal
computers use caches and virtual memory.

EPILOGUE

This chapter brings us to the end of our journey together into the realm of
digital systems. We hope this book has conveyed the beauty and thrill of
the art as well as the engineering knowledge. You have learned to design
combinational and sequential logic using schematics and hardware
description languages. You are familiar with larger building blocks such
as multiplexers, ALUs, and memories. Computers are one of the most
fascinating applications of digital systems. You have learned how to
program an ARM processor in its native assembly language and how to
build the processor and memory system using digital building blocks.
Throughout, you have seen the application of abstraction, discipline, hier-
archy, modularity, and regularity. With these techniques, we have pieced
together the puzzle of a microprocessor’s inner workings. From cell
phones to digital television to Mars rovers to medical imaging systems,
our world is an increasingly digital place.

Imagine what Faustian bargain Charles Babbage would have made to
take a similar journey a century and a half ago. He merely aspired to cal-
culate mathematical tables with mechanical precision. Today’s digital sys-
tems are yesterday’s science fiction. Might Dick Tracy have listened to
iTunes on his cell phone? Would Jules Verne have launched a constella-
tion of global positioning satellites into space? Could Hippocrates have
cured illness using high-resolution digital images of the brain? But at the
same time, George Orwell’s nightmare of ubiquitous government surveil-
lance becomes closer to reality each day. Hackers and governments wage
undeclared cyberwarfare, attacking industrial infrastructure and financial
networks. And rogue states develop nuclear weapons using laptop com-
puters more powerful than the room-sized supercomputers that simulated
Cold War bombs. The microprocessor revolution continues to accelerate.
The changes in the coming decades will surpass those of the past. You
now have the tools to design and build these new systems that will shape
our future. With your newfound power comes profound responsibility.
We hope that you will use it, not just for fun and riches, but also for
the benefit of humanity.
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Exercises

Exercise 8.1 In less than one page, describe four everyday activities that exhibit
temporal or spatial locality. List two activities for each type of locality, and be
specific.

Exercise 8.2 In one paragraph, describe two short computer applications that
exhibit temporal and/or spatial locality. Describe how. Be specific.

Exercise 8.3 Come up with a sequence of addresses for which a direct mapped
cache with a size (capacity) of 16 words and block size of 4 words outperforms a
fully associative cache with least recently used (LRU) replacement that has the
same capacity and block size.

Exercise 8.4 Repeat Exercise 8.3 for the case when the fully associative cache
outperforms the direct mapped cache.

Exercise 8.5 Describe the trade-offs of increasing each of the following cache
parameters while keeping the others the same:

(a) block size

(b) associativity

(c) cache size

Exercise 8.6 Is the miss rate of a two-way set associative cache always, usually,
occasionally, or never better than that of a direct mapped cache of the same
capacity and block size? Explain.

Exercise 8.7 Each of the following statements pertains to the miss rate of caches.
Mark each statement as true or false. Briefly explain your reasoning; present a
counterexample if the statement is false.

(a) A two-way set associative cache always has a lower miss rate than a direct
mapped cache with the same block size and total capacity.

(b) A 16-KB direct mapped cache always has a lower miss rate than an 8-KB
direct mapped cache with the same block size.

(c) An instruction cache with a 32-byte block size usually has a lower miss rate
than an instruction cache with an 8-byte block size, given the same degree of
associativity and total capacity.
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Exercise 8.8 A cache has the following parameters: b, block size given in numbers
of words; S, number of sets; N, number of ways; and A, number of address bits.

(a) In terms of the parameters described, what is the cache capacity, C?

(b) In terms of the parameters described, what is the total number of bits
required to store the tags?

(c) What are S and N for a fully associative cache of capacity C words with
block size b?

(d) What is S for a direct mapped cache of size C words and block size b?

Exercise 8.9 A 16-word cache has the parameters given in Exercise 8.8. Consider
the following repeating sequence of LDR addresses (given in hexadecimal):

40 44 48 4C 70 74 78 7C 80 84 88 8C 90 94 98 9C 0 4 8 C 10 14 18 1C 20

Assuming least recently used (LRU) replacement for associative caches, determine
the effective miss rate if the sequence is input to the following caches, ignoring
startup effects (i.e., compulsory misses).

(a) direct mapped cache, b= 1 word

(b) fully associative cache, b= 1 word

(c) two-way set associative cache, b= 1 word

(d) direct mapped cache, b= 2 words

Exercise 8.10 Repeat Exercise 8.9 for the following repeating sequence of LDR
addresses (given in hexadecimal) and cache configurations. The cache capacity is
still 16 words.

74 A0 78 38C AC 84 88 8C 7C 34 38 13C 388 18C

(a) direct mapped cache, b= 1 word

(b) fully associative cache, b= 2 words

(c) two-way set associative cache, b= 2 words

(d) direct mapped cache, b= 4 words

Exercise 8.11 Suppose you are running a program with the following data access
pattern. The pattern is executed only once.

0x0 0x8 0x10 0x18 0x20 0x28
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(a) If you use a direct mapped cache with a cache size of 1 KB and a block size of
8 bytes (2 words), how many sets are in the cache?

(b) With the same cache and block size as in part (a), what is the miss rate of the
direct mapped cache for the given memory access pattern?

(c) For the given memory access pattern, which of the following would decrease
the miss rate the most? (Cache capacity is kept constant.) Circle one.

(i) Increasing the degree of associativity to 2.

(ii) Increasing the block size to 16 bytes.

(iii) Either (i) or (ii).

(iv) Neither (i) nor (ii).

Exercise 8.12 You are building an instruction cache for an ARM processor. It
has a total capacity of 4C= 2c+2 bytes. It is N= 2n-way set associative (N ≥ 8),
with a block size of b= 2b′ bytes (b ≥ 8). Give your answers to the following
questions in terms of these parameters.

(a) Which bits of the address are used to select a word within a block?

(b) Which bits of the address are used to select the set within the cache?

(c) How many bits are in each tag?

(d) How many tag bits are in the entire cache?

Exercise 8.13 Consider a cache with the following parameters:
N (associativity) = 2, b (block size) = 2 words, W (word size)= 32 bits,
C (cache size)= 32 K words, A (address size)= 32 bits. You need consider
only word addresses.

(a) Show the tag, set, block offset, and byte offset bits of the address. State how
many bits are needed for each field.

(b) What is the size of all the cache tags in bits?

(c) Suppose each cache block also has a valid bit (V) and a dirty bit (D). What is
the size of each cache set, including data, tag, and status bits?

(d) Design the cache using the building blocks in Figure 8.28 and a small number
of two-input logic gates. The cache design must include tag storage, data
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storage, address comparison, data output selection, and any other parts
you feel are relevant. Note that the multiplexer and comparator blocks may
be any size (n or p bits wide, respectively), but the SRAM blocks must be
16K × 4 bits. Be sure to include a neatly labeled block diagram. You need
only design the cache for reads.

Exercise 8.14 You’ve joined a hot new Internet startup to build wrist watches
with a built-in pager and Web browser. It uses an embedded processor with a
multilevel cache scheme depicted in Figure 8.29. The processor includes a small
on-chip cache in addition to a large off-chip second-level cache. (Yes, the watch
weighs 3 pounds, but you should see it surf!)

Assume that the processor uses 32-bit physical addresses but accesses data only on
word boundaries. The caches have the characteristics given in Table 8.5. The
DRAM has an access time of tm and a size of 512 MB.

CPU
Level 1
Cache

Level 2
Cache

Main
Memory

Processor Chip

Figure 8.29 Computer system

Table 8.5 Memory characteristics

Characteristic On-chip Cache Off-chip Cache

Organization Four-way set associative Direct mapped

Hit rate A B

Access time ta tb

Block size 16 bytes 16 bytes

Number of blocks 512 256K
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Figure 8.28 Building blocks
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(a) For a given word in memory, what is the total number of locations in which it
might be found in the on-chip cache and in the second-level cache?

(b) What is the size, in bits, of each tag for the on-chip cache and the second-level
cache?

(c) Give an expression for the average memory read access time. The caches are
accessed in sequence.

(d) Measurements show that, for a particular problem of interest, the on-chip
cache hit rate is 85% and the second-level cache hit rate is 90%. However,
when the on-chip cache is disabled, the second-level cache hit rate shoots up
to 98.5%. Give a brief explanation of this behavior.

Exercise 8.15 This chapter described the least recently used (LRU) replacement
policy for multiway associative caches. Other, less common, replacement policies
include first-in-first-out (FIFO) and random policies. FIFO replacement evicts the
block that has been there the longest, regardless of how recently it was accessed.
Random replacement randomly picks a block to evict.

(a) Discuss the advantages and disadvantages of each of these replacement
policies.

(b) Describe a data access pattern for which FIFO would perform better than LRU.

Exercise 8.16 You are building a computer with a hierarchical memory system
that consists of separate instruction and data caches followed by main memory.
You are using the ARM multicycle processor from Figure 7.30 running at
1 GHz.

(a) Suppose the instruction cache is perfect (i.e., always hits) but the data cache
has a 5% miss rate. On a cache miss, the processor stalls for 60 ns to access
main memory, then resumes normal operation. Taking cache misses into
account, what is the average memory access time?

(b) How many clock cycles per instruction (CPI) on average are required for load
and store word instructions considering the non-ideal memory system?

(c) Consider the benchmark application of Example 7.5 that has 25% loads,
10% stores, 13% branches, and 52% data-processing instructions. Taking
the non-ideal memory system into account, what is the average CPI for this
benchmark?

(d) Now suppose that the instruction cache is also non-ideal and has a 7% miss
rate. What is the average CPI for the benchmark in part (c)? Take into
account both instruction and data cache misses.
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Exercise 8.17 Repeat Exercise 8.16 with the following parameters.

(a) The instruction cache is perfect (i.e., always hits) but the data cache has a
15% miss rate. On a cache miss, the processor stalls for 200 ns to access main
memory, then resumes normal operation. Taking cache misses into account,
what is the average memory access time?

(b) How many clock cycles per instruction (CPI) on average are required for load
and store word instructions considering the non-ideal memory system?

(c) Consider the benchmark application of Example 7.5 that has 25% loads,
10% stores, 13% branches, and 52% data-processing instructions. Taking
the non-ideal memory system into account, what is the average CPI for this
benchmark?

(d) Now suppose that the instruction cache is also non-ideal and has a 10% miss
rate. What is the average CPI for the benchmark in part (c)? Take into
account both instruction and data cache misses.

Exercise 8.18 If a computer uses 64-bit virtual addresses, how much virtual
memory can it access? Note that 240 bytes= 1 terabyte, 250 bytes= 1 petabyte,
and 260 bytes= 1 exabyte.

Exercise 8.19 A supercomputer designer chooses to spend $1 million on DRAM
and the same amount on hard disks for virtual memory. Using the prices from
Figure 8.4, how much physical and virtual memory will the computer have? How
many bits of physical and virtual addresses are necessary to access this memory?

Exercise 8.20 Consider a virtual memory system that can address a total of 232

bytes. You have unlimited hard drive space, but are limited to only 8 MB of
semiconductor (physical) memory. Assume that virtual and physical pages are
each 4 KB in size.

(a) How many bits is the physical address?

(b) What is the maximum number of virtual pages in the system?

(c) How many physical pages are in the system?

(d) How many bits are the virtual and physical page numbers?

(e) Suppose that you come up with a direct mapped scheme that maps virtual
pages to physical pages. The mapping uses the least significant bits of the
virtual page number to determine the physical page number. How many
virtual pages are mapped to each physical page? Why is this “direct
mapping” a bad plan?
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(f) Clearly, a more flexible and dynamic scheme for translating virtual addresses
into physical addresses is required than the one described in part (e). Suppose you
use a page table to store mappings (translations from virtual page number to
physical page number). Howmany page table entries will the page table contain?

(g) Assume that, in addition to the physical page number, each page table entry
also contains some status information in the form of a valid bit (V) and a
dirty bit (D). How many bytes long is each page table entry? (Round up to an
integer number of bytes.)

(h) Sketch the layout of the page table. What is the total size of the page table in
bytes?

Exercise 8.21 Consider a virtual memory system that can address a total of 250 bytes.
You have unlimited hard drive space, but are limited to 2 GB of semiconductor
(physical) memory. Assume that virtual and physical pages are each 4 KB in size.

(a) How many bits is the physical address?

(b) What is the maximum number of virtual pages in the system?

(c) How many physical pages are in the system?

(d) How many bits are the virtual and physical page numbers?

(e) How many page table entries will the page table contain?

(f) Assume that, in addition to the physical page number, each page table entry
also contains some status information in the form of a valid bit (V) and a
dirty bit (D). How many bytes long is each page table entry? (Round up to an
integer number of bytes.)

(g) Sketch the layout of the page table. What is the total size of the page table in
bytes?

Exercise 8.22 You decide to speed up the virtual memory system of Exercise 8.20
by using a translation lookaside buffer (TLB). Suppose your memory system has
the characteristics shown in Table 8.6. The TLB and cache miss rates indicate how

Table 8.6 Memory characteristics

Memory Unit Access Time (Cycles) Miss Rate

TLB 1 0.05%

Cache 1 2%

Main memory 100 0.0003%

Hard drive 1,000,000 0%
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often the requested entry is not found. The main memory miss rate indicates how
often page faults occur.

(a) What is the average memory access time of the virtual memory system before
and after adding the TLB? Assume that the page table is always resident in
physical memory and is never held in the data cache.

(b) If the TLB has 64 entries, how big (in bits) is the TLB? Give numbers for data
(physical page number), tag (virtual page number), and valid bits of each
entry. Show your work clearly.

(c) Sketch the TLB. Clearly label all fields and dimensions.

(d) What size SRAM would you need to build the TLB described in part (c)?
Give your answer in terms of depth ×width.

Exercise 8.23 You decide to speed up the virtual memory system of Exercise 8.21
by using a translation lookaside buffer (TLB) with 128 entries.

(a) How big (in bits) is the TLB? Give numbers for data (physical page number),
tag (virtual page number), and valid bits of each entry. Show your work
clearly.

(b) Sketch the TLB. Clearly label all fields and dimensions.

(c) What size SRAM would you need to build the TLB described in part (b)?
Give your answer in terms of depth ×width.

Exercise 8.24 Suppose the ARM multicycle processor described in Section 7.4
uses a virtual memory system.

(a) Sketch the location of the TLB in the multicycle processor schematic.

(b) Describe how adding a TLB affects processor performance.

Exercise 8.25 The virtual memory system you are designing uses a single-level
page table built from dedicated hardware (SRAM and associated logic). It
supports 25-bit virtual addresses, 22-bit physical addresses, and 216-byte (64 KB)
pages. Each page table entry contains a physical page number, a valid bit (V), and
a dirty bit (D).

(a) What is the total size of the page table, in bits?

(b) The operating system team proposes reducing the page size from 64 to 16 KB,
but the hardware engineers on your team object on the grounds of added
hardware cost. Explain their objection.

Exercises 527



(c) The page table is to be integrated on the processor chip, along with the
on-chip cache. The on-chip cache deals only with physical (not virtual)
addresses. Is it possible to access the appropriate set of the on-chip cache
concurrently with the page table access for a given memory access? Explain
briefly the relationship that is necessary for concurrent access to the cache set
and page table entry.

(d) Is it possible to perform the tag comparison in the on-chip cache concurrently
with the page table access for a given memory access? Explain briefly.

Exercise 8.26 Describe a scenario in which the virtual memory system might
affect how an application is written. Be sure to include a discussion of how
the page size and physical memory size affect the performance of the
application.

Exercise 8.27 Suppose you own a personal computer (PC) that uses 32-bit virtual
addresses.

(a) What is the maximum amount of virtual memory space each program
can use?

(b) How does the size of your PC’s hard drive affect performance?

(c) How does the size of your PC’s physical memory affect performance?
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Interview Questions

The following exercises present questions that have been asked on interviews.

Question 8.1 Explain the difference between direct mapped, set associative, and
fully associative caches. For each cache type, describe an application for which
that cache type will perform better than the other two.

Question 8.2 Explain how virtual memory systems work.

Question 8.3 Explain the advantages and disadvantages of using a virtual memory
system.

Question 8.4 Explain how cache performance might be affected by the virtual page
size of a memory system.
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