

7Microarchitecture

7.1 INTRODUCTION

In this chapter, you will learn how to piece together a microprocessor.
Indeed, you will puzzle out three different versions, each with different
trade-offs between performance, cost, and complexity.

To the uninitiated, building a microprocessor may seem like black
magic. But it is actually relatively straightforward, and by this point you
have learned everything you need to know. Specifically, you have learned
to design combinational and sequential logic given functional and timing
specifications. You are familiar with circuits for arithmetic and memory.
And you have learned about the ARM architecture, which specifies the
programmer’s view of the ARM processor in terms of registers, instruc-
tions, and memory.

This chapter covers microarchitecture, which is the connection
between logic and architecture. Microarchitecture is the specific arrange-
ment of registers, ALUs, finite state machines (FSMs), memories, and
other logic building blocks needed to implement an architecture. A parti-
cular architecture, such as ARM, may have many different microarchitec-
tures, each with different trade-offs of performance, cost, and complexity.
They all run the same programs, but their internal designs vary widely.
We design three different microarchitectures in this chapter to illustrate
the trade-offs.

7 . 1 . 1 Architectural State and Instruction Set

Recall that a computer architecture is defined by its instruction set and
architectural state. The architectural state for the ARM processor consists
of 16 32-bit registers and the status register. Any ARM microarchitecture
must contain all of this state. Based on the current architectural state, the
processor executes a particular instruction with a particular set of data to
produce a new architectural state. Some microarchitectures contain

7.1 Introduction

7.2 Performance Analysis

7.3 Single-Cycle Processor

7.4 Multicycle Processor

7.5 Pipelined Processor

7.6 HDL Representation*

7.7 Advanced
Microarchitecture*

7.8 Real-World Perspective:
Evolution of ARM
Microarchitecture*

7.9 Summary

Exercises

Interview Questions

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

Digital Design and Computer Architecture, Second Edition. DOI: 10.1016/B978-0-12-800056-4.00007-8
© 2016 Elsevier Inc. All rights reserved.

385

http://dx.doi.org/10.1016/B978-0-12-800056-4.00007-8

additional nonarchitectural state to either simplify the logic or improve
performance; we point this out as it arises.

To keep the microarchitectures easy to understand, we consider only
a subset of the ARM instruction set. Specifically, we handle the following
instructions:

▶ Data-processing instructions: ADD, SUB, AND, ORR (with register and
immediate addressing modes but no shifts)

▶ Memory instructions: LDR, STR (with positive immediate offset)

▶ Branches: B

These particular instructions were chosen because they are sufficient
to write many interesting programs. Once you understand how to imple-
ment these instructions, you can expand the hardware to handle others.

7 . 1 . 2 Design Process

We divide our microarchitectures into two interacting parts: the datapath
and the control unit. The datapath operates on words of data. It contains
structures such as memories, registers, ALUs, and multiplexers. We are
implementing the 32-bit ARM architecture, so we use a 32-bit datapath.
The control unit receives the current instruction from the datapath and
tells the datapath how to execute that instruction. Specifically, the control
unit produces multiplexer select, register enable, and memory write sig-
nals to control the operation of the datapath.

A good way to design a complex system is to start with hardware
containing the state elements. These elements include the memories and
the architectural state (the program counter, registers, and status register).
Then, add blocks of combinational logic between the state elements to
compute the new state based on the current state. The instruction is read
from part of memory; load and store instructions then read or write data
from another part of memory. Hence, it is often convenient to partition
the overall memory into two smaller memories, one containing instruc-
tions and the other containing data. Figure 7.1 shows a block diagram
with the five state elements: the program counter, register file, status reg-
ister, and instruction and data memories.

In Figure 7.1, heavy lines are used to indicate 32-bit data busses.
Medium lines are used to indicate narrower busses, such as the 4-bit
address busses on the register file. Narrow lines indicate 1-bit buses,
and blue lines are used for control signals, such as the register file write
enable. We use this convention throughout the chapter to avoid cluttering
diagrams with bus widths. Also, state elements usually have a reset input
to put them into a known state at start-up. Again, to save clutter, this
reset is not shown.

386 CHAPTER SEVEN Microarchitecture

Although the program counter (PC) is logically part of the register
file, it is read and written on every cycle independent of the normal regis-
ter file operation and is more naturally built as a stand-alone 32-bit reg-
ister. Its output, PC, points to the current instruction. Its input, PC′,
indicates the address of the next instruction.

The instruction memory has a single read port.1 It takes a 32-bit
instruction address input, A, and reads the 32-bit data (i.e., instruction)
from that address onto the read data output, RD.

The 15-element × 32-bit register file holds registers R0–R14 and has
an additional input to receive R15 from the PC. The register file has
two read ports and one write port. The read ports take 4-bit address
inputs, A1 and A2, each specifying one of 24= 16 registers as source
operands. They read the 32-bit register values onto read data outputs
RD1 and RD2, respectively. The write port takes a 4-bit address input,
A3; a 32-bit write data input, WD3; a write enable input, WE3; and a
clock. If the write enable is asserted, then the register file writes the data
into the specified register on the rising edge of the clock. A read of R15
returns the value from the PC plus 8, and writes to R15 must be specially
handled to update the PC because it is separate from the register file.

The data memory has a single read/write port. If its write enable, WE,
is asserted, then it writes data WD into address A on the rising edge of the
clock. If its write enable is 0, then it reads address A onto RD.

Treating the PC as part of the
register file complicates the
system design, and complexity
ultimately means more gates and
higher power consumption.
Most other architectures treat
the PC as a special register that
is only updated by branches,
not by ordinary data-processing
instructions. As described in
Section 6.7.6, ARM’s 64-bit
ARMv8 architecture also makes
the PC a special register separate
from the register file.

Resetting the PC

At the very least, the program
counter must have a reset signal
to initialize its value when the
processor turns on. ARM
processors normally initialize the
PC to 0x00000000 on reset, and
we start our programs there.

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WEPCPC'

CLK

R15

CLK

Status

32 32 32 32

32

32

32

32

32

32

32

4

4

4

4 4

Figure 7.1 State elements of ARM processor

1 This is an oversimplification used to treat the instruction memory as a ROM; in most real
processors, the instruction memory must be writable so that the OS can load a new program
into memory. The multicycle microarchitecture described in Section 7.4 is more realistic in
that it uses a combined memory for instructions and data that can be both read and written.

7.1 Introduction 387

The instruction memory, register file, and data memory are all read
combinationally. In other words, if the address changes, then the new
data appears at RD after some propagation delay; no clock is involved.
They are written only on the rising edge of the clock. In this fashion,
the state of the system is changed only at the clock edge. The address,
data, and write enable must setup before the clock edge and must remain
stable until a hold time after the clock edge.

Because the state elements change their state only on the rising edge of
the clock, they are synchronous sequential circuits. The microprocessor is
built of clocked state elements and combinational logic, so it too is a syn-
chronous sequential circuit. Indeed, the processor can be viewed as a giant
finite state machine, or as a collection of simpler interacting state machines.

7 . 1 . 3 Microarchitectures

In this chapter, we develop three microarchitectures for the ARM archi-
tecture: single-cycle, multicycle, and pipelined. They differ in the way that
the state elements are connected together and in the amount of nonarch-
itectural state.

The single-cycle microarchitecture executes an entire instruction in
one cycle. It is easy to explain and has a simple control unit. Because it
completes the operation in one cycle, it does not require any nonarchitec-
tural state. However, the cycle time is limited by the slowest instruction.
Moreover, the processor requires separate instruction and data memories,
which is generally unrealistic.

The multicycle microarchitecture executes instructions in a series of
shorter cycles. Simpler instructions execute in fewer cycles than complicated
ones. Moreover, the multicycle microarchitecture reduces the hardware
cost by reusing expensive hardware blocks such as adders and memories.
For example, the adder may be used on different cycles for several purposes
while carrying out a single instruction. The multicycle microprocessor
accomplishes this by adding several nonarchitectural registers to hold inter-
mediate results. The multicycle processor executes only one instruction at
a time, but each instruction takes multiple clock cycles. The multicycle pro-
cessor requires only a single memory, accessing it on one cycle to fetch the
instruction and on another to read or write data. Therefore, multicycle
processors were the historical choice for inexpensive systems.

The pipelined microarchitecture applies pipelining to the single-cycle
microarchitecture. It therefore can execute several instructions simulta-
neously, improving the throughput significantly. Pipelining must add
logic to handle dependencies between simultaneously executing instruc-
tions. It also requires nonarchitectural pipeline registers. Pipelined proces-
sors must access instructions and data in the same cycle; they generally
use separate instruction and data caches for this purpose, as discussed

Examples of classic multicycle
processors include the 1947 MIT
Whirlwind, the IBM System/360,
the Digital Equipment
Corporation VAX, the 6502 used
in the Apple II, and the 8088 used
in the IBM PC. Multicycle
microarchitectures are still used
in inexpensive microcontrollers
such as the 8051, the 68HC11,
and the PIC16-series found in
appliances, toys, and gadgets.

Intel processors have been
pipelined since the 80486 was
introduced in 1989. Nearly all
RISC microprocessors are also
pipelined. ARM processors have
been pipelined since the original
ARM1 in 1985. A pipelined
ARM Cortex-M0 requires only
about 12,000 logic gates, so in a
modern integrated circuit it is so
small that one needs a
microscope to see it and the
manufacturing cost is a fraction
of a penny. Combined with
memory and peripherals, a
commercial Cortex-M0 chip such
as the Freescale Kinetis still
costs less than 50 cents. Thus,
pipelined processors are replacing
their slower multicycle siblings
in even the most cost-sensitive
applications.

388 CHAPTER SEVEN Microarchitecture

in Chapter 8. The added logic and registers are worthwhile; all commer-
cial high-performance processors use pipelining today.

We explore the details and trade-offs of these three microarchitec-
tures in the subsequent sections. At the end of the chapter, we briefly men-
tion additional techniques that are used to achieve even more speed in
modern high-performance microprocessors.

7.2 PERFORMANCE ANALYSIS

As we mentioned, a particular processor architecture can have many
microarchitectures with different cost and performance trade-offs. The
cost depends on the amount of hardware required and the implementa-
tion technology. Precise cost calculations require detailed knowledge of
the implementation technology but, in general, more gates and more
memory mean more dollars.

This section lays the foundation for analyzing performance. There
are many ways to measure the performance of a computer system, and
marketing departments are infamous for choosing the method that
makes their computer look fastest, regardless of whether the measure-
ment has any correlation to real-world performance. For example,
microprocessor makers often market their products based on the clock
frequency and the number of cores. However, they gloss over the com-
plications that some processors accomplish more work than others in
a clock cycle and that this varies from program to program. What is a
buyer to do?

The only gimmick-free way to measure performance is by measuring
the execution time of a program of interest to you. The computer that
executes your program fastest has the highest performance. The next best
choice is to measure the total execution time of a collection of programs
that are similar to those you plan to run; this may be necessary if you
have not written your program yet or if somebody else who does not have
your program is making the measurements. Such collections of programs
are called benchmarks, and the execution times of these programs are
commonly published to give some indication of how a processor
performs.

Equation 7.1 gives the execution time of a program,measured in seconds.

Execution Time =
�
#instructions

�
cycles

instruction

� �
seconds
cycle

� �
(7.1)

The number of instructions in a program depends on the processor archi-
tecture. Some architectures have complicated instructions that do more
work per instruction, thus reducing the number of instructions in a
program. However, these complicated instructions are often slower to

Dhrystone, CoreMark, and SPEC
are three popular benchmarks.
The first two are synthetic
benchmarks comprising
important common pieces of
programs. Dhrystone was
developed in 1984 and remains
commonly used for embedded
processors, although the code is
somewhat unrepresentative of
real-life programs. CoreMark
is an improvement over
Dhrystone and involves matrix
multiplications that exercise the
multiplier and adder, linked lists
to exercise the memory system,
state machines to exercise the
branch logic, and cyclical
redundancy checks that involve
many parts of the processor. Both
benchmarks are less than 16 KB
in size and do not stress the
instruction cache.

The SPEC CINT2006
benchmark from the Standard
Performance Evaluation
Corporation is composed of real
programs, including h264ref
(video compression), sjeng
(an artificial intelligence chess
player), hmmer (protein sequence
analysis), and gcc (a C compiler).
The benchmark is widely used for
high-performance processors
because it stresses the entire CPU
in a representative way.

7.2 Performance Analysis 389

execute in hardware. The number of instructions also depends enor-
mously on the cleverness of the programmer. For the purposes of this
chapter, we assume that we are executing known programs on an ARM
processor, so the number of instructions for each program is constant,
independent of the microarchitecture. The cycles per instruction (CPI)
is the number of clock cycles required to execute an average instruction.
It is the reciprocal of the throughput (instructions per cycle, or IPC).
Different microarchitectures have different CPIs. In this chapter, we
assume we have an ideal memory system that does not affect the CPI.
In Chapter 8, we examine how the processor sometimes has to wait for
the memory, which increases the CPI.

The number of seconds per cycle is the clock period, Tc. The clock
period is determined by the critical path through the logic on the proces-
sor. Different microarchitectures have different clock periods. Logic and
circuit designs also significantly affect the clock period. For example, a
carry-lookahead adder is faster than a ripple-carry adder. Manufacturing
advances have historically doubled transistor speeds every 4–6 years, so a
microprocessor built today will be faster than one from last decade, even
if the microarchitecture and logic are unchanged.

The challenge of the microarchitect is to choose the design that mini-
mizes the execution time while satisfying constraints on cost and/or power
consumption. Because microarchitectural decisions affect both CPI and Tc

and are influenced by logic and circuit designs, determining the best
choice requires careful analysis.

Many other factors affect overall computer performance. For exam-
ple, the hard disk, the memory, the graphics system, and the network con-
nection may be limiting factors that make processor performance
irrelevant. The fastest microprocessor in the world does not help surfing
the Internet on a dial-up connection. But these other factors are beyond
the scope of this book.

7.3 SINGLE-CYCLE PROCESSOR

We first design amicroarchitecture that executes instructions in a single cycle.
We begin constructing the datapath by connecting the state elements from
Figure 7.1 with combinational logic that can execute the various instructions.
Control signals determine which specific instruction is performed by the data-
path at any given time. The control unit contains combinational logic that
generates the appropriate control signals based on the current instruction.
We conclude by analyzing the performance of the single-cycle processor.

7 . 3 . 1 Single-Cycle Datapath

This section gradually develops the single-cycle datapath, adding one
piece at a time to the state elements from Figure 7.1. The new connections

390 CHAPTER SEVEN Microarchitecture

are emphasized in black (or blue, for new control signals), whereas
the hardware that has already been studied is shown in gray. The status
register is part of the controller and will be omitted while we focus on
the datapath.

The program counter contains the address of the instruction to exe-
cute. The first step is to read this instruction from instruction memory.
Figure 7.2 shows that the PC is simply connected to the address input
of the instruction memory. The instruction memory reads out, or fetches,
the 32-bit instruction, labeled Instr.

The processor’s actions depend on the specific instruction that was
fetched. First, we will work out the datapath connections for the LDR
instruction with positive immediate offset. Then, we will consider how
to generalize the datapath to handle other instructions.

LDR
For the LDR instruction, the next step is to read the source register con-
taining the base address. This register is specified in the Rn field of the
instruction, Instr19:16. These bits of the instruction are connected to the
address input of one of the register file ports, A1, as shown in
Figure 7.3. The register file reads the register value onto RD1.

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WE
PCPC'

Instr

CLK

R15

Figure 7.2 Fetch instruction from memory

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WE
PCPC'

Instr 19:16

CLK

R15

RA1

Figure 7.3 Read source operand from register file

7.3 Single-Cycle Processor 391

The LDR instruction also requires an offset. The offset is stored in the
immediate field of the instruction, Instr11:0. It is an unsigned value, so it
must be zero-extended to 32 bits, as shown in Figure 7.4. The 32-bit value
is called ExtImm. Zero extension simply means prepending leading zeros:
ImmExt31:12= 0 and ImmExt11:0= Instr11:0.

The processor must add the base address to the offset to find the
address to read from memory. Figure 7.5 introduces an ALU to perform
this addition. The ALU receives two operands, SrcA and SrcB. SrcA
comes from the register file, and SrcB comes from the extended immedi-
ate. The ALU can perform many operations, as was described in Section
5.2.4. The 2-bit ALUControl signal specifies the operation. The ALU gen-
erates a 32-bit ALUResult. For an LDR instruction, ALUControl should
be set to 00 to perform addition. ALUResult is sent to the data memory
as the address to read, as shown in Figure 7.5.

ExtImm

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WE
PCPC'

Instr 19:16

11:0

CLK

R15

RA1

Extend

Figure 7.4 Zero-extend the immediate

ExtImm

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WE
PCPC'

Instr 19:16

11:0

SrcB

ALUResult

SrcA

CLK

AL
U

R15

RA1

Extend

ALUControl
00

Figure 7.5 Compute memory address

392 CHAPTER SEVEN Microarchitecture

The data is read from the data memory onto the ReadData bus and
then written back to the destination register at the end of the cycle, as
shown in Figure 7.6. Port 3 of the register file is the write port. The des-
tination register for the LDR instruction is specified in the Rd field,
Instr15:12, which is connected to the port 3 address input, A3, of the reg-
ister file. The ReadData bus is connected to the port 3 write data input,
WD3, of the register file. A control signal called RegWrite is connected
to the port 3 write enable input, WE3, and is asserted during an LDR
instruction so that the data value is written into the register file. The write
takes place on the rising edge of the clock at the end of the cycle.

While the instruction is being executed, the processor must compute
the address of the next instruction, PC′. Because instructions are 32 bits
(4 bytes), the next instruction is at PC+ 4. Figure 7.7 uses an adder to

ExtImm

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WE
PCPC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

CLK

AL
U

R15

RA1

Extend

RegWrite ALUControl
1 00

Figure 7.6 Write data back to register file

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WE
PCPC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

AL
U

R15

RA1

Extend

RegWrite ALUControl
1 00

Figure 7.7 Increment program counter

7.3 Single-Cycle Processor 393

increment the PC by 4. The new address is written into the program coun-
ter on the next rising edge of the clock. This completes the datapath for
the LDR instruction, except for a sneaky case of the base or destination
register being R15.

Recall from Section 6.4.6 that in the ARM architecture, reading reg-
ister R15 returns PC+ 8. Therefore, another adder is needed to further
increment the PC and pass this sum to the R15 port of the register file.
Similarly, writing register R15 updates the PC. Therefore, PC′ may come
from the result of the instruction (ReadData) rather than PCPlus4. A
multiplexer chooses between these two possibilities. The PCSrc control
signal is set to 0 to choose PCPlus4 or 1 to choose ReadData. These
PC-related features are highlighted in Figure 7.8.

STR
Next, let us extend the datapath to also handle the STR instruction. Like
LDR, STR reads a base address from port 1 of the register file and zero-
extends the immediate. The ALU adds the base address to the immediate
to find the memory address. All of these functions are already supported
in the datapath.

The STR instruction also reads a second register from the register file
and writes it to the data memory. Figure 7.9 shows the new connections
for this function. The register is specified in the Rd field, Instr15:12, which
is connected to the A2 port of the register file. The register value is read
onto the RD2 port. It is connected to the write data (WD) port of the data
memory. The write enable port of the data memory, WE, is controlled
by MemWrite. For an STR instruction: MemWrite= 1 to write the data
to memory; ALUControl= 00 to add the base address and offset; and
RegWrite= 0, because nothing should be written to the register file.
Note that data is still read from the address given to the data memory,
but that this ReadData is ignored because RegWrite= 0.

ExtImm

CLK

A RD

Instruction
Memory

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WE
PC1

0
PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

AL
U

PCPlus8
R15+

4

RA1

Extend

RegWritePCSrc ALUControl
1 1 00

+

Figure 7.8 Read or write program counter as R15

394 CHAPTER SEVEN Microarchitecture

Data-Processing Instructions with Immediate Addressing
Next, consider extending the datapath to handle the data-processing
instructions, ADD, SUB, AND, and ORR, using the immediate addressing
mode. All of these instructions read a source register from the register file
and an immediate from the low bits of the instruction, perform some ALU
operation on them, and write the result back to a third register. They dif-
fer only in the specific ALU operation. Hence, they can all be handled
with the same hardware using different ALUControl signals. As described
in Section 5.2.4, ALUControl is 00 for ADD, 01 for SUB, 10 for AND, or 11
for ORR. The ALU also produces four flags, ALUFlags3:0 (Zero, Negative,
Carry, oVerflow), that are sent back to the controller.

Figure 7.10 shows the enhanced datapath handling data-processing
instructions with an immediate second source. Like LDR, the datapath
reads the first ALU source from port 1 of the register file and extends
the immediate from the low bits of Instr. However, data-processing

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory

WD

WE
PC1

0
PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

CLK

AL
U

PCPlus8
R15+

4

RA1

RA2

Extend

RegWritePCSrc MemWriteALUControl
0 0 00 1

Figure 7.9 Write data to memory for STR instruction

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory

WD

WE

1

0

PC1

0
PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
LU

F
lag

s

CLK

AL
U

PCPlus8
R15+

4

RA1

RA2

Extend

RegWritePCSrc ImmSrc MemWrite MemtoRegALUControl
0 1 0 varies 0 0

Figure 7.10 Datapath enhancements for data-processing instructions with immediate addressing

7.3 Single-Cycle Processor 395

instructions use only an 8-bit immediate rather than a 12-bit immediate.
Therefore, we provide the ImmSrc control signal to the Extend block.
When it is 0, ExtImm is zero-extended from Instr7:0 for data-processing
instructions. When it is 1, ExtImm is zero-extended from Instr11:0 for
LDR or STR.

For LDR, the register file received its write data from the data
memory. However, data-processing instructions write ALUResult to the
register file. Therefore, we add another multiplexer to choose between
ReadData and ALUResult. We call its output Result. The multiplexer is
controlled by another new signal, MemtoReg. MemtoReg is 0 for data-
processing instructions to choose Result from ALUResult; it is 1 for LDR
to choose ReadData. We do not care about the value of MemtoReg for
STR because STR does not write the register file.

Data-Processing Instructions with Register Addressing
Data-processing instructions with register addressing receive their
second source from Rm, specified by Instr3:0, rather than from the
immediate. Thus, we must add multiplexers on the inputs of the
register file and ALU to select this second source register, as shown in
Figure 7.11.

RA2 is chosen from the Rd field (Instr15:12) for STR and the Rm field
(Instr3:0) for data-processing instructions with register addressing based
on the RegSrc control signal. Similarly, based on the ALUSrc control sig-
nal, the second source to the ALU is selected from ExtImm for instruc-
tions using immediates and from the register file for data-processing
instructions with register addressing.

B
Finally, we extend the datapath to handle the B instruction, as shown in
Figure 7.12. The branch instruction adds a 24-bit immediate to PC + 8
and writes the result back to the PC. The immediate is multiplied by 4

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD
Data

Memory

WD

WE

1

0

PC1

0
PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
LU

F
lag

s

CLK

AL
U

PCPlus8
R15

3:0

+

4

RA1

RA2

Extend

0

1

RegSrc RegWritePCSrc ImmSrc MemWrite MemtoRegALUControlALUSrc
0 1 X 0 varies 0 00

Figure 7.11 Datapath enhancements for data-processing instructions with register addressing

396 CHAPTER SEVEN Microarchitecture

and sign extended. Therefore, the Extend logic needs yet another mode.
ImmSrc is increased to 2 bits, with the encoding given in Table 7.1.

PC+ 8 is read from the first port of the register file. Therefore, a mul-
tiplexer is needed to choose R15 as the RA1 input. This multiplexer is
controlled by another bit of RegSrc, choosing Instr19:16 for most instruc-
tions but 15 for B.

MemtoReg is set to 0 and PCSrc is set to 1 to select the new PC from
ALUResult for the branch.

This completes the design of the single-cycle processor datapath. We
have illustrated not only the design itself but also the design process in which
the state elements are identified, and the combinational logic connecting the
state elements is systematically added. In the next section, we consider how
to compute the control signals that direct the operation of our datapath.

7 . 3 . 2 Single-Cycle Control

The control unit computes the control signals based on the cond, op,
and funct fields of the instruction (Instr31:28, Instr27:26, and Instr25:20)
as well as the flags and whether the destination register is the PC. The con-
troller also stores the current status flags and updates them appropriately.
Figure 7.13 shows the entire single-cycle processor with the control unit
attached to the datapath.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD
Data

Memory

WD

WE

1

0

PC1

0
PC'

Instr
19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
LU

F
lag

s

CLK
AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

RegSrc RegWritePCSrc ImmSrc MemWrite MemtoRegALUControlALUSrc
11 0 10 1 00 0 0x

Figure 7.12 Datapath enhancements for B instruction

Table 7.1 ImmSrc Encoding

ImmSrc ExtImm Description

00 {24 0s} Instr7:0 8-bit unsigned immediate for data-processing

01 {20 0s} Instr11:0 12-bit unsigned immediate for LDR/STR

10 {6 Instr23} Instr23:0 00 24-bit signed immediate multiplied by 4 for B

7.3 Single-Cycle Processor 397

Figure 7.14 shows a detailed diagram of the controller. We partition
the controller into two main parts: the Decoder, which generates control
signals based on Instr, and the Conditional Logic, which maintains
the status flags and only enables updates to architectural state when the
instruction should be conditionally executed. The Decoder, shown in
Figure 7.14(b), is composed of a Main Decoder that produces most of
the control signals, an ALU Decoder that uses the Funct field to determine
the type of data-processing instruction, and PC Logic to determine
whether the PC needs updating due to a branch or a write to R15.

The behavior of the Main Decoder is given by the truth table
in Table 7.2. The Main Decoder determines the type of instruction:
Data-Processing Register, Data-Processing Immediate, STR, LDR, or B.
It produces the appropriate control signals to the datapath. It sends
MemtoReg, ALUSrc, ImmSrc1:0, and RegSrc1:0 directly to the datapath.
However, the write enablesMemW and RegWmust pass through the Con-
ditional Logic before becoming datapath signalsMemWrite and RegWrite.
These write enables may be killed (reset to 0) by the Conditional Logic if
the condition is not satisfied. The Main Decoder also generates the Branch
and ALUOp signals, which are used within the controller to indicate
that the instruction is B or data-processing, respectively. The logic for the
Main Decoder can be developed from the truth table using your favorite
techniques for combinational logic design.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory

WD

WE

1

0

PC1

0
PC'

Instr

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0

1

0

1

R
e

gS
rc

Figure 7.13 Complete single-cycle processor

398 CHAPTER SEVEN Microarchitecture

Thebehaviorof theALUDecoder is givenby the truth tables inTable 7.3.
For data-processing instructions, the ALU Decoder chooses ALUControl
based on the type of instruction (ADD, SUB, AND, ORR). Moreover, it asserts
FlagW to update the status flags when the S-bit is set. Note that ADD and
SUB update all flags, whereas AND and ORR only update the N and Z flags,
so two bits of FlagW are needed: FlagW1 for updating N and Z (Flags3:2),
and FlagW0 for updating C and V (Flags1:0). FlagW1:0 is killed by the
Conditional Logic when the condition is not satisfied (CondEx= 0).

ImmSrc1:0

MemW

MemtoReg

ALUSrc

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

C
o

n
d

itio
n

al
L

o
g

ic

PCSrcPCS

Main
Decoder

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl 1:0

Branch

ImmSrc1:0

MemtoReg

ALUSrc

RegSrc1:0

MemW

RegW

Cond 3:0

Flags3:2

CLK

CLK
ALUFlags 3:0

Flags1:0

[3:2]

[1:0]

FlagWrite1:0

[1]

[0]

C
o

n
d

itio
n

C

h
ec

k

FlagW 1:0

PCSrc

MemWrite

RegWrite

C
o

ndE
x

PCS

MemW

RegW

(c) Conditional Logic

4:0

CLK

(a) Control Unit

Decoder(b)

Figure 7.14 Single-cycle control unit

7.3 Single-Cycle Processor 399

The PC Logic checks if the instruction is a write to R15 or a branch
such that the PC should be updated. The logic is:

PCS = ððRd == 15Þ & RegWÞ jBranch
PCS may be killed by the Conditional Logic before it is sent to the
datapath as PCSrc.

The Conditional Logic, shown in Figure 7.14(c), determines whether
the instruction should be executed (CondEx) based on the cond field and
the current values of the N, Z, C, and V flags (Flags3:0), as was described
in Table 6.3. If the instruction should not be executed, the write enables
and PCSrc are forced to 0 so that the instruction does not change the
architectural state. The Conditional Logic also updates some or all of
the flags from the ALUFlags when FlagW is asserted by the ALU Decoder
and the instruction’s condition is satisfied (CondEx = 1).

Table 7.2 Main Decoder truth table

Op Funct5 Funct0 Type Branch MemtoReg MemW ALUSrc ImmSrc RegW RegSrc ALUOp

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Table 7.3 ALU Decoder truth table

ALUOp
Funct4:1
(cmd)

Funct0
(S) Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 (Add) 00

1 0100 0 ADD 00 (Add) 00

1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

400 CHAPTER SEVEN Microarchitecture

Example 7.1 SINGLE-CYCLE PROCESSOR OPERATION

Determine the values of the control signals and the portions of the datapath that
are used when executing an ORR instruction with register addressing mode.

Solution: Figure 7.15 illustrates the control signals and flow of data during execu-
tion of the ORR instruction. The PC points to the memory location holding the
instruction, and the instruction memory returns this instruction.

The main flow of data through the register file and ALU is represented
with a heavy blue line. The register file reads the two source operands specified
by Instr19:16 and Instr3:0, so RegSrc must be 00. SrcB should come from
the second port of the register file (not ExtImm), so ALUSrc must be 0.
The ALU performs a bitwise OR operation, so ALUControl must be 11. The
result comes from the ALU, so MemtoReg is 0. The result is written to the register
file, so RegWrite is 1. The instruction does not write memory, so MemWrite= 0.

The updating of PC with PCPlus4 is shown with a heavy gray line. PCSrc is 0 to
select the incremented PC.

Note that data certainly does flow through the nonhighlighted paths, but that the
value of that data is unimportant for this instruction. For example, the immediate
is extended and data is read from memory, but these values do not influence the
next state of the system.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory

WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0

1

0

1

R
e

gS
rc

000 1 XX 0 11 0 0

Figure 7.15 Control signals and data flow while executing an ORR instruction

7.3 Single-Cycle Processor 401

7 . 3 . 3 More Instructions

We have considered a limited subset of the full ARM instruction set.
In this section, we add support for the compare (CMP) instruction and
for addressing modes in which the second source is a shifted register.
These examples illustrate the principle of how to handle new instructions;
with enough effort, you could extend the single-cycle processor to handle
every ARM instruction. Moreover, we will see that supporting some
instructions simply requires enhancing the decoders, whereas supporting
others also requires new hardware in the datapath.

Example 7.2 CMP INSTRUCTION

The compare instruction, CMP, subtracts SrcB from SrcA and sets the flags but
does not write the difference to a register. The datapath is already capable of this
task. Determine the necessary changes to the controller to support CMP.

Solution: Introduce a new control signal calledNoWrite to prevent writingRd during
CMP. (This signal would also be helpful for other instructions such as TST that do not
write a register.)We extend theALUDecoder to produce this signal and theRegWrite
logic to accept it, as highlighted in blue in Figure 7.16. The enhanced ALU Decoder
truth table is given in Table 7.4, with the new instruction and signal also highlighted.

Example 7.3 ENHANCED ADDRESSING MODE: REGISTERS WITH
CONSTANT SHIFTS

So far, we assumed that data-processing instructions with register addressing did
not shift the second source register. Enhance the single-cycle processor to support
a shift by an immediate.

Solution: Insert a shifter before the ALU. Figure 7.17 shows the enhanced datapath.
The shifter uses Instr11:7 to specify the shift amount and Instr6:5 to specify the shift type.

7 . 3 . 4 Performance Analysis

Each instruction in the single-cycle processor takes one clock cycle, so
the CPI is 1. The critical paths for the LDR instruction are shown in
Figure 7.18 with a heavy blue line. It starts with the PC loading a new
address on the rising edge of the clock. The instruction memory reads the
new instruction. The Main Decoder computes RegSrc0, which drives the
multiplexer to choose Instr19:16 as RA1, and the register file reads this
register as SrcA. While the register file is reading, the immediate field is
zero-extended and selected at the ALUSrc multiplexer to determine SrcB.
The ALU adds SrcA and SrcB to find the effective address. The data mem-
ory reads from this address. TheMemtoRegmultiplexer selects ReadData.

402 CHAPTER SEVEN Microarchitecture

Finally, Result must set up at the register file before the next rising clock
edge so that it can be properly written. Hence, the cycle time is:

Tc1 = tpcq�PC + tmem + tdec +max½tmux + tRFread, text + tmux�
+ tALU + tmem + tmux + tRFsetup

(7.2)

We use the subscript 1 to distinguish this cycle time from that of
subsequent processor designs. In most implementation technologies, the

ImmSrc1:0

MemW

MemtoReg

ALUSrc

ALUControl
1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

C
o

n
d

itio
n

al
L

o
g

ic

PCSrcPCS

Main
Decoder

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

Branch

ImmSrc1:0

MemtoReg

ALUSrc

RegSrc1:0

MemW

RegW

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

FlagWrite1:0

[1]

[0]

C
o

n
d

itio
n

C

h
ec

k

FlagW1:0

MemWrite

RegWrite

PCSrc

C
o

ndE
x

PCS

MemW

RegW

(c) Conditional Logic

4:0

CLK

(a) Control Unit

Decoder(b)

NoWrite

NoWrite

NoWrite

Figure 7.16 Controller modification for CMP

7.3 Single-Cycle Processor 403

ALU, memory, and register file are substantially slower than other combi-
national blocks. Therefore, the cycle time simplifies to:

Tc1 = tpcq�PC + 2tmem + tdec + tRFread + tALU + 2tmux + tRFsetup (7.3)

Table 7.4 ALU Decoder truth table enhanced for CMP

ALUOp
Funct4:1
(cmd)

Funct0
(S) Notes ALUControl1:0 FlagW1:0 NoWrite

0 X X Not DP 00 00 0

1 0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1010 1 CMP 01 11 1

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory

WD

WE

1
0

PC1
0

PC'

In
str

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0

1

0

1

R
e

gS
rc

Shift

11:5

Figure 7.17 Enhanced datapath for register addressing with constant shifts

404 CHAPTER SEVEN Microarchitecture

The numerical values of these times will depend on the specific implemen-
tation technology.

Other instructions have shorter critical paths. For example, data-
processing instructions do not need to access data memory. However,
we are disciplining ourselves to synchronous sequential design, so the
clock period is constant and must be long enough to accommodate the
slowest instruction.

Example 7.4 SINGLE-CYCLE PROCESSOR PERFORMANCE

Ben Bitdiddle is contemplating building the single-cycle processor in a 16-nm
CMOS manufacturing process. He has determined that the logic elements have
the delays given in Table 7.5. Help him compute the execution time for a program
with 100 billion instructions.

Solution: According to Equation 7.3, the cycle time of the single-cycle processor
is Tc1 = 40 + 2(200) + 70 + 100 + 120 + 2(25) + 60 = 840 ps. According to
Equation 7.1, the total execution time is T1= (100 × 109 instruction) (1 cycle/
instruction) (840 × 10−12 s/cycle) = 84 seconds.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory

WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12

+

4

15
RA1

RA2

0 1

Extend

0

1

0

1

R
e

gS
rc

00 1 01 1

1

00 0 10

Rd

Figure 7.18 LDR critical path

7.3 Single-Cycle Processor 405

7.4 MULTICYCLE PROCESSOR

The single-cycle processor has three notable weaknesses. First, it requires
separate memories for instructions and data, whereas most processors
only have a single external memory holding both instructions and data.
Second, it requires a clock cycle long enough to support the slowest
instruction (LDR), even though most instructions could be faster. Finally,
it requires three adders (one in the ALU and two for the PC logic); adders
are relatively expensive circuits, especially if they must be fast.

The multicycle processor addresses these weaknesses by breaking an
instruction into multiple shorter steps. In each short step, the processor
can read or write the memory or register file or use the ALU. The instruc-
tion is read in one step and data can be read or written in a later step, so
the processor can use a single memory for both. Different instructions use
different numbers of steps, so simpler instructions can complete faster
than more complex ones. And the processor needs only one adder, which
is reused for different purposes on different steps.

We design a multicycle processor following the same procedure we
used for the single-cycle processor. First, we construct a datapath by con-
necting the architectural state elements and memories with combinational
logic. But, this time, we also add nonarchitectural state elements to hold
intermediate results between the steps. Then, we design the controller.
The controller produces different signals on different steps during execu-
tion of a single instruction, so now it is a finite state machine rather than
combinational logic. Finally, we analyze the performance of the multi-
cycle processor and compare it with the single-cycle processor.

Table 7.5 Delay of circuit elements

Element Parameter Delay (ps)

Register clk-to-Q tpcq 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

406 CHAPTER SEVEN Microarchitecture

7 . 4 . 1 Multicycle Datapath

Again, we begin our design with the memory and architectural state of the
processor, as shown in Figure 7.19. In the single-cycle design, we used sepa-
rate instruction and data memories because we needed to read the instruc-
tion memory and read or write the data memory all in one cycle. Now, we
choose to use a combined memory for both instructions and data. This is
more realistic, and it is feasible because we can read the instruction in one
cycle, then read or write the data in a separate cycle. The PC and register file
remain unchanged. As with the single-cycle processor, we gradually build
the datapath by adding components to handle each step of each instruction.

The PC contains the address of the instruction to execute. The first
step is to read this instruction from instruction memory. Figure 7.20
shows that the PC is simply connected to the address input of the
memory. The instruction is read and stored in a new nonarchitectural
instruction register (IR) so that it is available for future cycles. The IR
receives an enable signal, called IRWrite, which is asserted when the IR
should be loaded with a new instruction.

LDR
As we did with the single-cycle processor, we first work out the datapath
connections for the LDR instruction. After fetching LDR, the next step is

CLK

A
RD

Instr / Data
Memory

PCPC'

WD

WE

CLK

EN

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

Figure 7.19 State elements with unified instruction/data memory

CLK

A
RD

Instr / Data
Memory

PCPC'
Instr

CLK

WD

WE

CLK

EN
EN

IRWrite

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

Figure 7.20 Fetch instruction from memory

7.4 Multicycle Processor 407

to read the source register containing the base address. This register is
specified in the Rn field, Instr19:16. These bits of the instruction are con-
nected to address input A1 of the register file, as shown in Figure 7.21.
The register file reads the register into RD1. This value is stored in
another nonarchitectural register, A.

The LDR instruction also requires a 12-bit offset, found in the immediate
field of the instruction, Instr11:0, which must be zero-extended to 32 bits, as
shown in Figure 7.21. As in the single-cycle processor, the Extend block takes
an ImmSrc control signal to specify an 8-, 12-, or 24-bit immediate to extend
for various types of instructions. The 32-bit extended immediate is called
ExtImm. To be consistent, we might store ExtImm in another nonarchitec-
tural register. However, ExtImm is a combinational function of Instr and
will not change while the current instruction is being processed, so there is
no need to dedicate a register to hold the constant value.

The address of the load is the sum of the base address and offset. We
use an ALU to compute this sum, as shown in Figure 7.22. ALUControl

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
PC'

Instr

CLK

WD

WE

CLK CLK

A

EN
EN

IRWrite

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.21 Read one source from register file and extend the second source from the immediate field

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
PC'

Instr

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl

AL
U

WD

WE

CLK CLK

A CLK

EN
EN

IRWrite

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.22 Add base address to offset

408 CHAPTER SEVEN Microarchitecture

should be set to 00 to perform the addition. ALUResult is stored in a non-
architectural register called ALUOut.

The next step is to load the data from the calculated address in the
memory. We add a multiplexer in front of the memory to choose the mem-
ory address, Adr, from either the PC or ALUOut based on the AdrSrc
select, as shown in Figure 7.23. The data read from memory is stored in
another nonarchitectural register, calledData. Note that the address multi-
plexer permits us to reuse the memory during the LDR instruction. On a first
step, the address is taken from the PC to fetch the instruction. On a later
step, the address is taken from ALUOut to load the data. Hence, AdrSrc
must have different values on different steps. In Section 7.4.2, we develop
the FSM controller that generates these sequences of control signals.

Finally, the data is written back to the register file, as shown in
Figure 7.24. The destination register is specified by the Rd field of the
instruction, Instr15:12. The result comes from the Data register. Instead of

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

ENEN

IRWriteAdrSrc

R
eadD

ata

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.23 Load data from memory

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

RegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

ENEN

IRWriteAdrSrcPCWrite

R
eadD

ata

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

00
01

Result

ImmSrc

Extend

Figure 7.24 Write data back to register file

7.4 Multicycle Processor 409

connecting theData register directly to the register fileWD3 write port, let
us add a multiplexer on the Result bus to choose either ALUOut or Data
before feeding Result back to the register file write port. This will be helpful
because other instructions will need to write a result from the ALU. The
RegWrite signal is 1 to indicate that the register file should be updated.

While all this is happening, the processor must update the program
counter by adding 4 to the old PC. In the single-cycle processor, a sepa-
rate adder was needed. In the multicycle processor, we can use the exist-
ing ALU during the fetch step because it is not busy. To do so, we must
insert source multiplexers to choose PC and the constant 4 as ALU inputs,
as shown in Figure 7.25. A multiplexer controlled by ALUSrcA chooses
either PC or register A as SrcA. Another multiplexer chooses either 4 or
ExtImm as SrcB. To update the PC, the ALU adds SrcA (PC) to SrcB
(4), and the result is written into the program counter. The ResultSrc mul-
tiplexer chooses this sum from ALUResult rather than ALUOut; this
requires a third input. The PCWrite control signal enables the PC to be
written only on certain cycles.

Again, we face the ARM architecture idiosyncrasy that reading R15
returns PC+ 8 and writing R15 updates the PC. First, consider R15 reads.
We already computed PC + 4 during the fetch step, and the sum is available
in the PC register. Thus, during the second step, we obtain PC + 8 by add-
ing four to the updated PC using the ALU. ALUResult is selected as the
Result and fed to the R15 input port of the register file. Figure 7.26 shows
the completed LDR datapath with this new connection. Thus, a read of R15,
which also occurs during the second step, produces the value PC+ 8 on the
read data output of the register file. Writes to R15 require writing the PC
register instead of the register file. Thus, in the final step of the instruction,
Result must be routed to the PC register (instead of to the register file) and
PCWrite must be asserted (instead of RegWrite). The datapath already
accommodates this, so no datapath changes are required.

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

ALUSrcARegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

01
10

00
01
10

Result

ImmSrc

Extend

1

0

Figure 7.25 Increment PC by 4

410 CHAPTER SEVEN Microarchitecture

STR
Next, let us extend the datapath to handle the STR instruction. Like LDR,
STR reads a base address from port 1 of the register file and extends the
immediate. The ALU adds the base address to the immediate to find the
memory address. All of these functions are already supported by existing
hardware in the datapath.

The only new feature of STR is that we must read a second register
from the register file and write it into the memory, as shown in Figure 7.27.
The register is specified in theRd field of the instruction, Instr15:12, which is
connected to the second port of the register file. When the register is read,
it is stored in a nonarchitectural register, WriteData. On the next step, it
is sent to the write data port (WD) of the data memory to be written.

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

ALUSrcARegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

01
10

00
01
10

Result

ImmSrc

Extend

1

0

Figure 7.26 Handle R15 reads and writes

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite ALUSrcARegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

a
ta

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

01
10

00
01
10

Result

ImmSrc

Extend

15:12

1

0

Figure 7.27 Enhanced datapath for STR instruction

7.4 Multicycle Processor 411

The memory receives the MemWrite control signal to indicate that the
write should occur.

Data-Processing Instructions with Immediate Addressing
Data-processing instructions with immediate addressing read the first
source from Rn and extend the second source from an 8-bit immediate.
They operate on these two sources and then write the result back to the
register file. The datapath already contains all the connections necessary
for these steps. The ALU uses the ALUControl signal to determine the
type of data-processing instruction to execute. The ALUFlags are sent
back to the controller to update the Status register.

Data-Processing Instructions with Register Addressing
Data-processing instructions with register addressing select the second
source from the register file. The register is specified in the Rm field,
Instr3:0, so we insert a multiplexer to choose this field as RA2 for the
register file. We also extend the SrcB multiplexer to accept the value read
from the register file, as shown in Figure 7.28. Otherwise, the behavior is
the same as for data-processing instructions with immediate addressing.

B
The branch instruction B reads PC + 8 and a 24-bit immediate, sums
them, and adds the result to the PC. Recall from Section 6.4.6 that a read
to R15 returns PC+ 8, so we add a multiplexer to choose R15 as RA1 for
the register file, as shown in Figure 7.29. The rest of the hardware to per-
form the addition and write the PC is already present in the datapath.

This completes the design of the multicycle datapath. The design
process is much like that of the single-cycle processor in that hardware
is systematically connected between the state elements to handle each
instruction. The main difference is that the instruction is executed in
several steps. Nonarchitectural registers are inserted to hold the results

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite ALUSrcARegWrite

A
L

U
F

la
gs

ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

a
ta

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0

1

RegSrc

19:16

15:12

23:0

3:0

00
01
10

00
01
10

Result

ImmSrc

Extend

RA2

1

0

Figure 7.28 Enhanced datapath for data-processing instructions with register addressing

412 CHAPTER SEVEN Microarchitecture

of each step. In this way, the memory can be shared for instructions and
data and the ALU can be reused several times, reducing hardware costs.
In the next section, we develop an FSM controller to deliver the appropri-
ate sequence of control signals to the datapath on each step of each
instruction.

7 . 4 . 2 Multicycle Control

As in the single-cycle processor, the control unit computes the control sig-
nals based on the cond, op, and funct fields of the instruction (Instr31:28,
Instr27:26, and Instr25:20) as well as the flags and whether the destination
register is the PC. The controller also stores the current status flags
and updates them appropriately. Figure 7.30 shows the entire multicycle
processor with the control unit attached to the datapath. The datapath
is shown in black and the control unit is shown in blue.

As in the single-cycle processor, the control unit is partitioned into
Decoder and Conditional Logic blocks, as shown in Figure 7.31(a). The
Decoder is decomposed further in Figure 7.31(b). The combinational
Main Decoder of the single-cycle processor is replaced with a Main
FSM in the multicycle processor to produce a sequence of control signals
on the appropriate cycles. We design the Main FSM as a Moore machine
so that the outputs are only a function of the current state. However, we
will see during the state machine design that ImmSrc and RegSrc are a
function of Op rather than the current state, so we also use a small
Instruction Decoder to compute these signals, as will be described in
Table 7.6. The ALU Decoder and PC Logic are identical to those in the
single-cycle processor. The Conditional Logic is almost identical to that
of the single-cycle processor. We add a NextPC signal to force a write
to the PC when we compute PC+ 4. We also delay CondEx by one cycle

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite ALUSrcARegWrite

A
L

U
F

la
gs

ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

a
ta

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0

1

RegSrc

19:16

15:12

23:0

3:0
15

00
01
10

00
01
10

Result

ImmSrc

Extend

RA1

RA2

1

0
0

1

Figure 7.29 Enhanced datapath for the B instruction

7.4 Multicycle Processor 413

before sending it to PCWrite, RegWrite, and MemWrite so that updated
condition flags are not seen until the end of an instruction. The remainder
of this section develops the state transition diagram for the Main FSM.

The Main FSM produces multiplexer select, register enable, and
memory write enable signals for the datapath. To keep the following state
transition diagrams readable, only the relevant control signals are listed.
Select signals are listed only when their value matters; otherwise, they
are don’t care. Enable signals (RegW, MemW, IRWrite, and NextPC)
are listed only when they are asserted; otherwise, they are 0.

The first step for any instruction is to fetch the instruction frommemory
at the address held in the PC and to increment the PC to the next instruction.
The FSM enters this Fetch state on reset. The control signals are shown in
Figure 7.32. The data flow on this step is shown in Figure 7.33, with the
instruction fetch highlighted in blue and the PC increment highlighted
in gray. To read memory, AdrSrc= 0, so the address is taken from the PC.
IRWrite is asserted to write the instruction into the instruction register, IR.
Meanwhile, the PC should be incremented by 4 to point to the next instruc-
tion. Because the ALU is not being used for anything else, the processor can

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A
W

riteD
ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc

PCWrite

R
e

ad
D

a
ta

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0

1

R
egS

rc

19:16

15:12

23:0

3:0

15

00
01
10

00
01
10

Result

25:20

27:26 Op

Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1

0
0

1

Figure 7.30 Complete multicycle processor

414 CHAPTER SEVEN Microarchitecture

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCWritePCS

NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
o

n
d

itio
n

al L
o

g
ic

Main
FSM

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW

RegW

4:0

NextPC

IRWrite

AdrSrc

ResultSrc1:0

ALUSrcB1:0

Instr
Decoder

Op1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

C
o

n
d

itio
n

C

h
ec

k

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o

ndE
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register
Enables

Multiplexer
Selects

C
LK

F
lag

W
rite

1
:0

Figure 7.31 Multicycle control unit

7.4 Multicycle Processor 415

use it to compute PC+ 4 at the same time that it fetches the instruction.
ALUSrcA= 1, so SrcA comes from the PC. ALUSrcB= 10, so SrcB is the
constant 4. ALUOp= 0, so the ALU produces ALUControl= 00 to make
the ALU add. To update the PC with PC+ 4, ResultSrc= 10 to choose the
ALUResult and NextPC= 1 to enable PCWrite.

Table 7.6 Instr Decoder logic for RegSrc and ImmSrc

Instruction Op Funct5 Funct0 RegSrc1 RegSrc0 ImmSrc1:0

LDR 01 X 1 X 0 01

STR 01 X 0 1 0 01

DP immediate 00 1 X X 0 00

DP register 00 0 X 0 0 00

B 10 X X X 1 10

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

Reset

Figure 7.32 Fetch

1
0

00
01
10

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

ReadData
A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

0
1

R
egSrc19:16

15:12

23:0

3:0
15

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1 0 0 1 XX 0 XX 1 10 00 10

Figure 7.33 Data flow during the fetch step

416 CHAPTER SEVEN Microarchitecture

The second step is to read the register file and/or immediate and decode
the instructions. The registers and immediate are selected based on RegSrc
and ImmSrc, which are computed by the Instr Decoder based on Instr.
RegSrc0 should be 1 for branches to read PC+ 8 as SrcA. RegSrc1 should
be 1 for stores to read the store value as SrcB. ImmSrc should be 00 for
data-processing instructions to select an 8-bit immediate, 01 for loads
and stores to select a 12-bit immediate, and 10 for branches to select a
24-bit immediate. Because the multicycle FSM is a Moore machine whose
outputs depend only on the current state, the FSM cannot directly produce
these selects that depend on Instr. The FSM could be organized as a Mealy
machine whose outputs depend on Instr as well as the state, but this would
be messy. Instead, we choose the simplest solution, which is to make these
selects combinational functions of Instr, as given in Table 7.6. Taking
advantage of don't cares, the Instr Decoder logic can be simplified to:

RegSrc1 = (Op == 01)

RegSrc0 = (Op == 10)

ImmSrc1:0 = Op

Meanwhile, the ALU is reused to compute PC+ 8 by adding 4 more to the
PC that was incremented in the Fetch step. Control signals are applied to
select PC as the first ALU input (ALUSrcA = 1) and 4 as the second input
(ALUSrcB= 10) and to perform addition (ALUOp= 0). This sum is
selected as the Result (ResultSrc= 10) and provided to the R15 input of
the register file so that R15 reads as PC+ 8. The FSMDecode step is shown
in Figure 7.34 and the data flow is shown in Figure 7.35, highlighting the
R15 computation and the register file read.

Now the FSM proceeds to one of several possible states, depending
on Op and Funct that are examined during the Decode step. If the instruc-
tion is a memory load or store (LDR or STR, Op= 01), then the multi-
cycle processor computes the address by adding the base address to the
zero-extended offset. This requires ALUSrcA= 0 to select the base
address from the register file and ALUSrcB= 01 to select ExtImm.
ALUOp= 0 so the ALU adds. The effective address is stored in the

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10

Reset

Figure 7.34 Decode

7.4 Multicycle Processor 417

ALUOut register for use on the next step. The FSM MemAdr state is
shown in Figure 7.36 and the data flow is highlighted in Figure 7.37.

If the instruction is LDR (Funct0= 1), then the multicycle processor
must next read data from the memory and write it to the register file.
These two steps are shown in Figure 7.38. To read from the memory,
ResultSrc= 00 and AdrSrc= 1 to select the memory address that was just
computed and saved in ALUOut. This address in memory is read and
saved in the Data register during the MemRead step. Then, in the mem-
ory writeback step MemWB, Data is written to the register file. ResultSrc
= 01 to choose Result from Data and RegW is asserted to write the regis-
ter file, completing the LDR instruction. Finally, the FSM returns to the
Fetch state to start the next instruction. For these and subsequent steps,
try to visualize the data flow on your own.

From the MemAdr state, if the instruction is STR (Funct0= 0), the
data read from the second port of the register file is simply written to
memory. In this MemWrite state, ResultSrc= 00 and AdrSrc= 1 to select
the address computed in the MemAdr state and saved in ALUOut.
MemW is asserted to write the memory. Again, the FSM returns to the
Fetch state. The state is shown in Figure 7.39.

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A
W

riteD
ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

R
eadD

ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

0
1

R
egSrc19:16

15:12

23:0

3:0
15

00
01
10

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

0 X 0 0 ?? 0 XX 1 10 00 10

1
0

Figure 7.35 Data flow during the Decode step

418 CHAPTER SEVEN Microarchitecture

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

Reset

Memory
Op = 01

LDR
Funct0 = 1

Figure 7.36 Memory address
computation

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl
AL
U

WD

WE

CLK

Adr

Data

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc

PCWrite
R

eadD
ata

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0

1

0

1

R
e

gS
rc

19:16

15:12

23:0

3:0

15

00
01
10

00
01
10

Result

25:20

27:26 Op

Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

31:28

RA1

RA2

0 X 0 0 ?? 0 01 0 01 00 XX

1

0

CLK

Extend

Figure 7.37 Data flow during memory address computation

For data-processing instructions (Op= 00), the multicycle processor
must calculate the result using the ALU and write that result to the regis-
ter file. The first source always comes from the register (ALUSrcA= 0).
ALUOp= 1 so the ALU Decoder chooses the appropriate ALUControl
for the specific instruction based on cmd (Funct4:1). The second source
comes from the register file for register instructions (ALUSrcB = 00) or
from ExtImm for immediate instructions (ALUSrcB= 01). Thus, the
FSM needs ExecuteR and ExecuteI states to cover these two possibilities.
In either case, the data-processing instruction advances to the ALU Write-
back state (ALUWB), in which the result is selected from ALUOut
(ResultSrc= 00) and written to the register file (RegW = 1). All of these
states are shown in Figure 7.40.

For a branch instruction, the processor must calculate the destination
address (PC+ 8+ offset) and write it to the PC. During the Decode state,
PC+ 8 was already computed and read from the register file onto RD1.
Therefore, during the Branch state, the controller uses ALUSrcA= 0 to
choose R15 (PC+ 8), ALUSrcB= 01 to choose ExtImm, and ALUOp= 0

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

Reset

Memory
Op = 01

LDR

S4: MemWB
ResultSrc = 01

RegW

Funct0 = 1

Figure 7.38 Memory read

420 CHAPTER SEVEN Microarchitecture

to add. TheResultmultiplexer choosesALUResult (ResultSrc= 10). Branch
is asserted to write the result to the PC.

Putting these steps together, Figure 7.41 shows the complete Main
FSM state transition diagram for the multicycle processor. The function
of each state is summarized below the figure. Converting the diagram to
hardware is a straightforward but tedious task using the techniques of
Chapter 3. Better yet, the FSM can be coded in an HDL and synthesized
using the techniques of Chapter 4.

7 . 4 . 3 Performance Analysis

The execution time of an instruction depends on both the number of
cycles it uses and the cycle time. Whereas the single-cycle processor

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

Reset

Memory
Op = 01

LDR
STR

S4: MemWB
ResultSrc = 01

RegW

Funct0 = 1 Funct0 = 0

Figure 7.39 Memory write

7.4 Multicycle Processor 421

performed all instructions in one cycle, the multicycle processor uses vary-
ing numbers of cycles for the various instructions. However, the multi-
cycle processor does less work in a single cycle and, thus, has a shorter
cycle time.

The multicycle processor requires three cycles for branches, four for
data-processing instructions and stores, and five for loads. The CPI
depends on the relative likelihood that each instruction is used.

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 1

Reset

Memory
Op = 01

Data Reg
Op = 00
Funct5 = 0

LDR
STR

S4: MemWB
ResultSrc = 01

RegW

S6: ExecuteR
ALUSrcA = 0
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

Figure 7.40 Data-processing

422 CHAPTER SEVEN Microarchitecture

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 1

S9: Branch
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0
ResultSrc = 10

Branch

Reset

Memory
Op = 01

Data Reg
Op = 00
Funct5 = 0

Branch
Op = 10

LDR
STR

S4: MemWB
ResultSrc = 01

RegW

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PC+4
MemAdr ALUOut ← Rn + Imm
MemRead Data ← Mem[ALUOut]
MemWB Rd ← Data
MemWrite Mem[ALUOut] ← Rd
ExecuteR ALUOut ← Rn op Rm
ExecuteI ALUOut ← Rn op Imm
ALUWB Rd ← ALUOut
Branch PC ← R15 + offset

S6: ExecuteR
ALUSrcA = 0
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

Figure 7.41 Complete multicycle control FSM

7.4 Multicycle Processor 423

Example 7.5 MULTICYCLE PROCESSOR CPI

The SPECINT2000 benchmark consists of approximately 25% loads, 10% stores,
13% branches, and 52% data-processing instructions.2 Determine the average
CPI for this benchmark.

Solution: The average CPI is the sum over each instruction of the CPI for that
instruction multiplied by the fraction of the time that instruction is used. For this
benchmark, average CPI= (0.13)(3) + (0.52+ 0.10)(4)+ (0.25)(5)= 4.12. This is
better than the worst-case CPI of 5, which would be required if all instructions
took the same time.

Recall that we designed the multicycle processor so that each cycle
involved one ALU operation, memory access, or register file access. Let
us assume that the register file is faster than the memory and that writing
memory is faster than reading memory. Examining the datapath reveals
two possible critical paths that would limit the cycle time:

1. From the PC through the SrcA multiplexer, ALU, and result multi-
plexer to the R15 port of the register file to the A register

2. From ALUOut through the Result and Adr muxes to read memory
into the Data register

Tc2 = tpcq +2tmux +max½tALU + tmux, tmem�+ tsetup (7.4)

The numerical values of these times will depend on the specific implemen-
tation technology.

Example 7.6 PROCESSOR PERFORMANCE COMPARISON

Ben Bitdiddle is wondering whether the multicycle processor would be faster than
the single-cycle processor. For both designs, he plans on using the 16-nm CMOS
manufacturing process with the delays given in Table 7.5. Help him compare each
processor’s execution time for 100 billion instructions from the SPECINT2000
benchmark (see Example 7.5).

Solution: According to Equation 7.4, the cycle time of the multicycle processor
is Tc2= 40+ 2(25)+ 200+ 50= 340 ps. Using the CPI of 4.12 from Example 7.5,
the total execution time is T2= (100 × 109 instructions)(4.12 cycles/instruction)
(340 × 10−12 s/cycle)= 140 seconds. According to Example 7.4, the single-cycle
processor had a total execution time of 84 seconds.

2 Data from Patterson and Hennessy, Computer Organization and Design, 4th Edition,
Morgan Kaufmann, 2011.

424 CHAPTER SEVEN Microarchitecture

One of the original motivations for building a multicycle processor was to avoid
making all instructions take as long as the slowest one. Unfortunately, this exam-
ple shows that the multicycle processor is slower than the single-cycle processor
given the assumptions of CPI and circuit element delays. The fundamental pro-
blem is that even though the slowest instruction, LDR, was broken into five steps,
the multicycle processor cycle time was not nearly improved five-fold. This is
partly because not all of the steps are exactly the same length, and partly because
the 90-ps sequencing overhead of the register clock-to-Q and setup time must
now be paid on every step, not just once for the entire instruction. In general, engi-
neers have learned that it is difficult to exploit the fact that some computations are
faster than others unless the differences are large.

Compared with the single-cycle processor, the multicycle processor is likely to be
less expensive because it shares a single memory for instructions and data and
because it eliminates two adders. It does, however, require five nonarchitectural
registers and additional multiplexers.

7.5 PIPELINED PROCESSOR

Pipelining, introduced in Section 3.6, is a powerful way to improve
the throughput of a digital system. We design a pipelined processor
by subdividing the single-cycle processor into five pipeline stages. Thus,
five instructions can execute simultaneously, one in each stage. Because
each stage has only one-fifth of the entire logic, the clock frequency
is almost five times faster. Hence, the latency of each instruction is
ideally unchanged, but the throughput is ideally five-times better. Micro-
processors execute millions or billions of instructions per second,
so throughput is more important than latency. Pipelining introduces
some overhead, so the throughput will not be quite as high as we might
ideally desire, but pipelining nevertheless gives such great advantage for
so little cost that all modern high-performance microprocessors are
pipelined.

Reading and writing the memory and register file and using the ALU
typically constitute the biggest delays in the processor. We choose five
pipeline stages so that each stage involves exactly one of these slow steps.
Specifically, we call the five stages Fetch, Decode, Execute, Memory, and
Writeback. They are similar to the five steps that the multicycle processor
used to perform LDR. In the Fetch stage, the processor reads the instruc-
tion from instruction memory. In the Decode stage, the processor reads
the source operands from the register file and decodes the instruction to
produce the control signals. In the Execute stage, the processor performs
a computation with the ALU. In the Memory stage, the processor reads or
writes data memory. Finally, in the Writeback stage, the processor writes
the result to the register file, when applicable.

7.5 Pipelined Processor 425

Figure 7.42 shows a timing diagram comparing the single-cycle and
pipelined processors. Time is on the horizontal axis, and instructions
are on the vertical axis. The diagram assumes the logic element delays
from Table 7.5 but ignores the delays of multiplexers and registers. In
the single-cycle processor (Figure 7.42(a)), the first instruction is read
from memory at time 0; next, the operands are read from the register file;
and, then, the ALU executes the necessary computation. Finally, the data
memory may be accessed, and the result is written back to the register file
by 680 ps. The second instruction begins when the first completes. Hence,
in this diagram, the single-cycle processor has an instruction latency of
200+ 100+ 120+ 200+ 60= 680 ps and a throughput of 1 instruction
per 680 ps (1.47 billion instructions per second).

In the pipelined processor (Figure 7.42(b)), the length of a pipeline
stage is set at 200 ps by the slowest stage, the memory access (in the Fetch
or Memory stage). At time 0, the first instruction is fetched from memory.
At 200 ps, the first instruction enters the Decode stage, and a second
instruction is fetched. At 400 ps, the first instruction executes, the second
instruction enters the Decode stage, and a third instruction is fetched.
And so forth, until all the instructions complete. The instruction latency
is 5 × 200 = 1000 ps. The throughput is 1 instruction per 200 ps (5 billion
instructions per second). Because the stages are not perfectly balanced
with equal amounts of logic, the latency is longer for the pipelined

Time (ps)
Instr

1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 15001000

(a)

Instr

1

2

(b)

3

Fetch

Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read/Write

Wr

Reg

Fetch

Instruction

Dec
Read
Reg

Execute

ALU

Memory

Read/Write

Wr

Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read/Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read/Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Wr
Reg

Memory
Read/Write

Figure 7.42 Timing diagrams: (a) single-cycle processor and (b) pipelined processor

426 CHAPTER SEVEN Microarchitecture

processor than for the single-cycle processor. Similarly, the throughput is
not quite five-times as great for a five-stage pipeline as for the single-cycle
processor. Nevertheless, the throughput advantage is substantial.

Figure 7.43 shows an abstracted view of the pipeline in operation in
which each stage is represented pictorially. Each pipeline stage is repre-
sented with its major component—instruction memory (IM), register file
(RF) read, ALU execution, data memory (DM), and register file write-
back—to illustrate the flow of instructions through the pipeline. Reading
across a row shows the clock cycles in which a particular instruction is in
each stage. For example, the SUB instruction is fetched in cycle 3 and exe-
cuted in cycle 5. Reading down a column shows what the various pipeline
stages are doing on a particular cycle. For example, in cycle 6, the ORR
instruction is being fetched from instruction memory, whereas R1 is being
read from the register file, the ALU is computing R12 AND R13, the
data memory is idle, and the register file is writing a sum to R3. Stages
are shaded to indicate when they are used. For example, the data
memory is used by LDR in cycle 4 and by STR in cycle 8. The instruction
memory and ALU are used in every cycle. The register file is written by
every instruction except STR. In the pipelined processor, the register file
is written in the first part of a cycle and read in the second part, as sug-
gested by the shading. This way, data can be written and read back within
a single cycle.

A central challenge in pipelined systems is handling hazards that
occur when the results of one instruction are needed by a subsequent
instruction before the former instruction has completed. For example, if

Time (cycles)

LDR R2, [R0, #40] RF 40

R0
RF

R2
+ DM

RF R10

R9
RF

R3
+ DM

RF R5

R1
RF

R4
- DM

RF R13

R12
RF

R5
& DM

RF 20

R1
RF

R6
+ DM

RF 42

R11
RF

R7
| DM

ADD R3, R9, R10

SUB R4, R1, R5

AND R5, R12, R13

STR R6, [R1, #20]

ORR R7, R11, #42

1 2 3 4 5 6 7 8 9 10

ADD

IM

IM

IM

IM

IM

IM
LDR

SUB

AND

STR

ORR

Figure 7.43 Abstract view of pipeline in operation

7.5 Pipelined Processor 427

the ADD in Figure 7.43 used R2 rather than R10, a hazard would occur
because the R2 register has not been written by the LDR by the time it is
read by the ADD. After designing the pipelined datapath and control, this
section explores forwarding, stalls, and flushes as methods to resolve
hazards. Finally, this section revisits performance analysis considering
sequencing overhead and the impact of hazards.

7 . 5 . 1 Pipelined Datapath

The pipelined datapath is formed by chopping the single-cycle datapath
into five stages separated by pipeline registers.

Figure 7.44(a) shows the single-cycle datapath stretched out to leave
room for the pipeline registers. Figure 7.44(b) shows the pipelined data-
path formed by inserting four pipeline registers to separate the datapath
into five stages. The stages and their boundaries are indicated in blue.
Signals are given a suffix (F, D, E, M, or W) to indicate the stage in which
they reside.

The register file is peculiar because it is read in the Decode stage and
written in the Writeback stage. It is drawn in the Decode stage, but the
write address and data come from the Writeback stage. This feedback will
lead to pipeline hazards, which are discussed in Section 7.5.3. The register
file in the pipelined processor writes on the falling edge of CLK so that it

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

Instr

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

A
LU

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

(a)

(b)

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Figure 7.44 Datapaths: (a) single-cycle and (b) pipelined

428 CHAPTER SEVEN Microarchitecture

can write a result in the first half of a cycle and read that result in the
second half of the cycle for use in a subsequent instruction.

One of the subtle but critical issues in pipelining is that all signals asso-
ciated with a particular instruction must advance through the pipeline in
unison. Figure 7.44(b) has an error related to this issue. Can you find it?

The error is in the register file write logic, which should operate in
the Writeback stage. The data value comes from ResultW, a Writeback
stage signal. But the write address comes from InstrD15:12 (also known
as WA3D), which is a Decode stage signal. In the pipeline diagram of
Figure 7.43, during cycle 5, the result of the LDR instruction would be
incorrectly written to R5 rather than R2.

Figure 7.45 shows a corrected datapath, with the modification in
black. The WA3 signal is now pipelined along through the Execution,
Memory, and Writeback stages, so it remains in sync with the rest of
the instruction. WA3W and ResultW are fed back together to the register
file in the Writeback stage.

The astute reader may note that the PC ' logic is also problematic,
because it might be updated with a Fetch or a Writeback stage signal
(PCPlus4F or ResultW). This control hazard will be fixed in Section 7.5.3.

Figure 7.46 shows another optimization to save a 32-bit adder
and register in the PC logic. Observe in Figure 7.45 that each time the
program counter is incremented, PCPlus4F is simultaneously written to the
PC and the pipeline register between the Fetch and Decode stages. Moreover,
on the subsequent cycle, the value in both of these registers is incremented by
4 again. Thus, PCPlus4F for the instruction in the Fetch stage is logically
equivalent to PCPlus8D for the instruction in the Decode stage. Sending this
signal ahead saves the pipeline register and second adder.3

3 There is a potential problem with this simplification when the PC is written with ResultW
rather than PCPlus4F. However, this case is handled in Section 7.5.3 by flushing the
pipeline, so PCPlus8D becomes a don’t care and the pipeline still operates correctly.

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

InstrD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

PCPlus8D

R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

InstrF

ALUOutM ALUOutW

WA3E WA3M WA3WWA3D

Figure 7.45 Corrected pipelined datapath

7.5 Pipelined Processor 429

7 . 5 . 2 Pipelined Control

The pipelined processor takes the same control signals as the single-cycle
processor and therefore uses the same control unit. The control unit
examines the Op and Funct fields of the instruction in the Decode stage
to produce the control signals, as was described in Section 7.3.2. These
control signals must be pipelined along with the data so that they remain
synchronized with the instruction. The control unit also examines the
Rd field to handle writes to R15 (PC).

The entire pipelined processor with control is shown in Figure 7.47.
RegWrite must be pipelined into the Writeback stage before it feeds back
to the register file, just as WA3 was pipelined in Figure 7.45.

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

R15

3:0

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

In
strF

ALUOutM ALUOutW

WA3E WA3M WA3WWA3D

PCPlus8D

Figure 7.46 Optimized PC logic eliminating a register and adder

E
xtIm

m
E

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory

WD

WE

1

0

PCFPC'

InstrD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15
RA1D

RA2D

0 1

Extend

0

1

0

1

R
e

gS
rcD

CLK

InstrF

CLK

ALUOutM ALUOutW

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o

nd
E

xE

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
lags'

Cond
Unit

Figure 7.47 Pipelined processor with control

430 CHAPTER SEVEN Microarchitecture

7 . 5 . 3 Hazards

In a pipelined system, multiple instructions are handled concurrently.
When one instruction is dependent on the results of another that has
not yet completed, a hazard occurs.

The register file can be read and written in the same cycle. The write
takes place during the first half of the cycle and the read takes place dur-
ing the second half of the cycle, so a register can be written and read back
in the same cycle without introducing a hazard.

Figure 7.48 illustrates hazards that occur when one instruction writes
a register (R1) and subsequent instructions read this register. This is called
a read after write (RAW) hazard. The ADD instruction writes a result
into R1 in the first half of cycle 5. However, the AND instruction reads
R1 on cycle 3, obtaining the wrong value. The ORR instruction reads R1
on cycle 4, again obtaining the wrong value. The SUB instruction reads
R1 in the second half of cycle 5, obtaining the correct value, which was
written in the first half of cycle 5. Subsequent instructions also read
the correct value of R1. The diagram shows that hazards may occur in
this pipeline when an instruction writes a register and either of the two
subsequent instructions reads that register. Without special treatment,
the pipeline will compute the wrong result.

A software solution would be to require the programmer or compi-
ler to insert NOP instructions between the ADD and AND instructions so
that the dependent instruction does not read the result (R1) until it is
available in the register file, as shown in Figure 7.49. Such a software
interlock complicates programming as well as degrading performance,
so it is not ideal.

Time (cycles)

ADD R1, R4, R5 RF R5

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB

Figure 7.48 Abstract pipeline diagram illustrating hazards

7.5 Pipelined Processor 431

On closer inspection, observe from Figure 7.48 that the sum from the
ADD instruction is computed by the ALU in cycle 3 and is not strictly
needed by the AND instruction until the ALU uses it in cycle 4. In principle,
we should be able to forward the result from one instruction to the next
to resolve the RAW hazard without waiting for the result to appear in
the register file and without slowing down the pipeline. In other situations
explored later in this section, we may have to stall the pipeline to give
time for a result to be produced before the subsequent instruction uses
the result. In any event, something must be done to solve hazards so that
the program executes correctly despite the pipelining.

Hazards are classified as data hazards or control hazards. A data
hazard occurs when an instruction tries to read a register that has not
yet been written back by a previous instruction. A control hazard occurs
when the decision of what instruction to fetch next has not been made by
the time the fetch takes place. In the remainder of this section, we enhance
the pipelined processor with a Hazard Unit that detects hazards and
handles them appropriately, so that the processor executes the program
correctly.

Solving Data Hazards with Forwarding

Some data hazards can be solved by forwarding (also called bypassing) a
result from the Memory or Writeback stage to a dependent instruction in

Time (cycles)

ADD R1, R4, R5 RF R5

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB

NOP

NOP

RF RFDMNOP
IM

RF RFDMNOP
IM

9 10

Figure 7.49 Solving data hazard with NOP

432 CHAPTER SEVEN Microarchitecture

the Execute stage. This requires adding multiplexers in front of the ALU
to select the operand from either the register file or the Memory or Write-
back stage. Figure 7.50 illustrates this principle. In cycle 4, R1 is for-
warded from the Memory stage of the ADD instruction to the Execute
stage of the dependent AND instruction. In cycle 5, R1 is forwarded from
the Writeback stage of the ADD instruction to the Execute stage of the
dependent ORR instruction.

Forwarding is necessary when an instruction in the Execute stage has
a source register matching the destination register of an instruction in
the Memory or Writeback stage. Figure 7.51 modifies the pipelined pro-
cessor to support forwarding. It adds a Hazard Unit and two forwarding
multiplexers. The Hazard Unit receives four match signals from the
datapath (abbreviated to Match in Figure 7.51) that indicate whether
the source registers in the Execute stage match the destination registers
in the Memory and Execute stages:

Match_1E_M = (RA1E == WA3M)

Match_1E_W = (RA1E == WA3W)

Match_2E_M = (RA2E == WA3M)

Match_2E_W = (RA2E == WA3W)

The Hazard Unit also receives the RegWrite signals from the Memory
and Writeback stages to know whether the destination register will actu-
ally be written (e.g., the STR and B instructions do not write results to
the register file and, hence, do not need to have their results forwarded).

Time (cycles)

ADD R1, R4, R5 RF R5

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF
R1
R7 RF

R10
– DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
ADD

ORR

SUB

Figure 7.50 Abstract pipeline diagram illustrating forwarding

7.5 Pipelined Processor 433

Note that these signals are connected by name. In other words, rather
than cluttering up the diagram with long wires running from the control
signals at the top to the Hazard Unit at the bottom, the connections are
indicated by a short stub of wire labeled with the control signal name
to which it is connected. The Match signal logic and pipeline registers
for RA1E and RA2E are also left out to limit clutter.

The Hazard Unit computes control signals for the forwarding multi-
plexers to choose operands from the register file or from the results in
the Memory or Writeback stage (ALUOutM or ResultW). It should for-
ward from a stage if that stage will write a destination register and the
destination register matches the source register. If both the Memory and
Writeback stages contain matching destination registers, then the Mem-
ory stage should have priority, because it contains the more recently exe-
cuted instruction. In summary, the function of the forwarding logic for
SrcAE is given here. The forwarding logic for SrcBE (ForwardBE) is iden-
tical except that it checks Match_2E.

E
xtIm

m
E

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register
File

0

1

A RD

Data
Memory

WD

WE

1

0

PCFPC'

In
strD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15
RA1D

RA2D

0 1

Extend

0

1

0

1

R
e

gS
rcD

CLK

In
strF

CLK

ALUOutM ALUOutW

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE
C

o
nd

E
xE

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
lags'

Cond
Unit

00
01
10

00
01
10

Hazard Unit

F
orw

ardA
E

F
orw

ardB
E

R
egW

riteM

M
atch

R
egW

riteW

CLK

Figure 7.51 Pipelined processor with forwarding to solve hazards

434 CHAPTER SEVEN Microarchitecture

if (Match_1E_M • RegWriteM) ForwardAE = 10; // SrcAE = ALUOutM

else if (Match_1E_W • RegWriteW) ForwardAE = 01; // SrcAE = ResultW

else ForwardAE = 00; // SrcAE from regfile

Solving Data Hazards with Stalls

Forwarding is sufficient to solve RAW data hazards when the result is
computed in the Execute stage of an instruction, because its result can
then be forwarded to the Execute stage of the next instruction. Unfortu-
nately, the LDR instruction does not finish reading data until the end of
the Memory stage, so its result cannot be forwarded to the Execute stage
of the next instruction. We say that the LDR instruction has a two-cycle
latency, because a dependent instruction cannot use its result until two
cycles later. Figure 7.52 shows this problem. The LDR instruction receives
data from memory at the end of cycle 4. But the AND instruction needs
that data as a source operand at the beginning of cycle 4. There is no
way to solve this hazard with forwarding.

The alternative solution is to stall the pipeline, holding up operation
until the data is available. Figure 7.53 shows stalling the dependent
instruction (AND) in the Decode stage. AND enters the Decode stage in cycle
3 and stalls there through cycle 4. The subsequent instruction (ORR) must
remain in the Fetch stage during both cycles as well, because the Decode
stage is full.

In cycle 5, the result can be forwarded from the Writeback stage of LDR
to the Execute stage of AND. Also in cycle 5, sourceR1of the ORR instruction is
read directly from the register file, with no need for forwarding.

Note that the Execute stage is unused in cycle 4. Likewise, Memory is
unused in cycle 5 and Writeback is unused in cycle 6. This unused stage
propagating through the pipeline is called a bubble, and it behaves like

Time (cycles)

LDR R1, [R4, #40] RF 40

R4

RF
R1

+ DM

RF R3

R1

RF
R8

& DM

RF R1

R6

RF
R9

| DM

RF R7

R1

RF
R10

– DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
LDR

ORR

SUB

Trouble!

Figure 7.52 Abstract pipeline diagram illustrating trouble forwarding from LDR

7.5 Pipelined Processor 435

a NOP instruction. The bubble is introduced by zeroing out the Execute
stage control signals during a Decode stall so that the bubble performs
no action and changes no architectural state.

In summary, stalling a stage is performed by disabling the pipeline reg-
ister, so that the contents do not change. When a stage is stalled, all pre-
vious stages must also be stalled, so that no subsequent instructions are
lost. The pipeline register directly after the stalled stage must be cleared
(flushed) to prevent bogus information from propagating forward. Stalls
degrade performance, so they should be used only when necessary.

Figure 7.54 modifies the pipelined processor to add stalls for LDR data
dependencies. The Hazard Unit examines the instruction in the Execute
stage. If it is an LDR and its destination register (WA3E) matches either
source operand of the instruction in the Decode stage (RA1D or RA2D),
then that instruction must be stalled in the Decode stage until the source
operand is ready.

Stalls are supported by adding enable inputs (EN) to the Fetch and
Decode pipeline registers and a synchronous reset/clear (CLR) input to
the Execute pipeline register. When an LDR stall occurs, StallD and StallF
are asserted to force the Decode and Fetch stage pipeline registers to hold
their old values. FlushE is also asserted to clear the contents of the Exe-
cute stage pipeline register, introducing a bubble.

The MemtoReg signal is asserted for the LDR instruction. Hence, the
logic to compute the stalls and flushes is

Match_12D_E = (RA1D == WA3E) + (RA2D == WA3E)

LDRstall = Match_12D_E • MemtoRegE

StallF = StallD = FlushE = LDRstall

Time (cycles)

LDR R1, [R4, #40] RF 40

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM
LDR

ORR

SUB

9

RF R3

R1

IM
ORR

Stall

Figure 7.53 Abstract pipeline diagram illustrating stall to solve hazards

436 CHAPTER SEVEN Microarchitecture

Solving Control Hazards

The B instruction presents a control hazard: the pipelined processor does
not know what instruction to fetch next, because the branch decision has
not been made by the time the next instruction is fetched. Writes to R15
(PC) present a similar control hazard.

One mechanism for dealing with the control hazard is to stall the
pipeline until the branch decision is made (i.e., PCSrcW is computed).
Because the decision is made in the Writeback stage, the pipeline would
have to be stalled for four cycles at every branch. This would severely
degrade the system performance if it occurs often.

An alternative is to predict whether the branch will be taken and
begin executing instructions based on the prediction. Once the branch
decision is available, the processor can throw out the instructions if the
prediction was wrong. In the pipeline presented so far (Figure 7.54), the
processor predicts that branches are not taken and simply continues
executing the program in order until PCSrcW is asserted to select the next
PC from ResultW instead. If the branch should have been taken, then the

E
xtIm

m
E

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register
File

0

1

A RD

Data
Memory

WD

WE

1

0

PCFPC'

In
strD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15
RA1D

RA2D

0 1

Extend

0

1

0

1

R
e

gS
rcD

CLK

In
strF

CLK

ALUOutM ALUOutW

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o

nd
E

xE

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
lag

s'
Cond
Unit

00
01
10

00
01
10

Hazard Unit

F
o

rw
a

rd
A

E

F
o

rw
a

rd
B

E

R
e

gW
rite

M

M
a

tch

R
e

gW
riteW

M
em

toR
e

gE

S
tallF

S
tallD

F
lu

shE

E
N

C
L

R

E
N

CLK

Figure 7.54 Pipelined processor with stalls to solve LDR data hazard

7.5 Pipelined Processor 437

four instructions following the branch must be flushed (discarded) by
clearing the pipeline registers for those instructions. These wasted instruc-
tion cycles are called the branch misprediction penalty.

Figure 7.55 shows such a scheme in which a branch from address
0x20 to address 0x64 is taken. The PC is not written until cycle 5,
by which point the AND, ORR, and both SUB instructions at addresses
0x24, 0x28, 0x2C, and 0x30 have already been fetched. These instruc-
tions must be flushed, and the ADD instruction is fetched from
address 0x64 in cycle 6. This is somewhat of an improvement, but flush-
ing so many instructions when the branch is taken still degrades
performance.

We could reduce the branch misprediction penalty if the branch deci-
sion could be made earlier. Observe that the branch decision can be made
in the Execute stage when the destination address has been computed and
CondEx is known. Figure 7.56 shows the pipeline operation with the
early branch decision being made in cycle 3. In cycle 4, the AND and ORR
instructions are flushed and the ADD instruction is fetched. Now the
branch misprediction penalty is reduced to only two instructions rather
than four.

Figure 7.57 modifies the pipelined processor to move the branch deci-
sion earlier and handle control hazards. A branch multiplexer is added
before the PC register to select the branch destination from ALUResultE.
The BranchTakenE signal controlling this multiplexer is asserted on
branches whose condition is satisfied. PCSrcW is now only asserted for
writes to the PC, which still occur in the Writeback stage.

Time (cycles)

B 3C RF RFDM

RF R3

R1
RF& DM

RF R1

R6
RF| DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM
B

ORR

20

24

28

2C

34
...

...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3
RF

R12+ DMIM
ADD

RF R7

R1
RFDMIM

SUB

RF RFDMIM
SUBSUB R11, R1, R830

10

Figure 7.55 Abstract pipeline diagram illustrating flushing when a branch is taken

438 CHAPTER SEVEN Microarchitecture

Time (cycles)

B 3C RF RFDM

RF R3

R1
RFDM

RF RFDM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM
B

ORR

20

24

28

2C

34
...

...

9

64 ADD R12, R3, R4 RF R4

R3
RF

R12+ DMIM
ADD

SUB R11, R1, R830

10

Flush
these

instructions

Figure 7.56 Abstract pipeline diagram illustrating earlier branch decision

E
xtIm

m
E

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register
File

0

1

A RD

Data
Memory

WD

WE

1

0

PCF0

1
PC'

InstrD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControlD
A

LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15
RA1D

RA2D

0 1

Extend

0

1

0

1

R
egS

rcD

CLK

InstrF

CLK

ALUOutM ALUOutW

00
01
10

00
01
10

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o

nd
E

xE

Hazard Unit

S
tallF

S
tallD

F
lu

shE

F
o

rw
a

rd
A

E

F
o

rw
a

rd
B

E

E
N

C
L

R

C
L

R
E

N

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
lush

D

F
lag

s'

Cond
Unit

BranchTakenE

R
e

gW
rite

M

M
a

tch

R
e

gW
riteW

M
em

toR
e

gE

CLK

Figure 7.57 Pipelined processor handling branch control hazard

7.5 Pipelined Processor 439

Finally, we must work out the stall and flush signals to handle
branches and PC writes. It is common to goof this part of a pipelined
processor design because the conditions are rather complicated. When a
branch is taken, the subsequent two instructions must be flushed from
the pipeline registers of the Decode and Execute stages. When a write to
the PC is in the pipeline, the pipeline should be stalled until the write com-
pletes. This is done by stalling the Fetch stage. Recall that stalling one
stage also requires flushing the next to prevent the instruction from being
executed repeatedly. The logic to handle these cases is given here.
PCWrPending is asserted when a PC write is in progress (in the Decode,
Execute, or Memory stage). During this time, the Fetch stage is stalled and
the Decode stage is flushed. When the PC write reaches the Writeback
stage (PCSrcW asserted), StallF is released to allow the write to occur,
but FlushD is still asserted so that the undesired instruction in the Fetch
stage does not advance.

PCWrPendingF = PCSrcD + PCSrcE + PCSrcM;

StallD = LDRstall;

StallF = LDRstall + PCWrPendingF;

FlushE = LDRstall + BranchTakenE;

FlushD = PCWrPendingF + PCSrcW + BranchTakenE;

Branches are very common, and even a two-cycle misprediction penalty
still impacts performance. With a bit more work, the penalty could be
reduced to one cycle for many branches. The destination address
must be computed in the Decode stage as PCBranchD = PCPlus8D +
ExtImmD. BranchTakenD must also be computed in the Decode stage
based on ALUFlagsE generated by the previous instruction. This might
increase the cycle time of the processor if these flags arrive late. These
changes are left as an exercise to the reader (see Exercise 7.36).

Hazard Summary

In summary, RAW data hazards occur when an instruction depends on
the result of another instruction that has not yet been written into the reg-
ister file. The data hazards can be resolved by forwarding if the result is
computed soon enough; otherwise, they require stalling the pipeline until
the result is available. Control hazards occur when the decision of what
instruction to fetch has not been made by the time the next instruction
must be fetched. Control hazards are solved by predicting which instruc-
tion should be fetched and flushing the pipeline if the prediction is later
determined to be wrong or by stalling the pipeline until the decision is
made. Moving the decision as early as possible minimizes the number of
instructions that are flushed on a misprediction. You may have observed

To reduce clutter, the Hazard
Unit connections of PCSrcD,
PCSrcE, PCSrcM, and
BranchTakenE from the
datapath are not shown in
Figures 7.57 and 7.58.

440 CHAPTER SEVEN Microarchitecture

by now that one of the challenges of designing a pipelined processor is to
understand all the possible interactions between instructions and to dis-
cover all the hazards that may exist. Figure 7.58 shows the complete pipe-
lined processor handling all of the hazards.

7 . 5 . 4 Performance Analysis

The pipelined processor ideally would have a CPI of 1, because a new
instruction is issued every cycle. However, a stall or a flush wastes a cycle,
so the CPI is slightly higher and depends on the specific program being
executed.

Example 7.7 PIPELINED PROCESSOR CPI

The SPECINT2000 benchmark considered in Example 7.5 consists of approxi-
mately 25% loads, 10% stores, 13% branches, and 52% data-processing instruc-
tions. Assume that 40% of the loads are immediately followed by an instruction

E
xtIm

m
E

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

Register
File

0

1

A RD

Data
Memory

WD

WE

1
0

PCF0
1

PC'

In
strD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD

MemtoRegD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControlD

A
LU

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15
RA1D

RA2D

0 1

Extend

0

1

0

1

R
e

gS
rcD

CLK

In
strF

CLK

ALUOutM ALUOutW

00
01
10

00
01
10

WA3E WA3M WA3W

CLK CLK

MemWriteE

MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM

MemtoRegM

RegWriteM

MemtoRegW

RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
o

nd
E

xE

Hazard Unit

S
tallF

S
tallD

F
lu

shE

F
o

rw
a

rd
A

E

F
o

rw
a

rd
B

E

E
N

C
L

R

C
L

R
E

N

1

0

PCSrcD PCSrcE PCSrcM PCSrcW

F
lush

D

F
lag

s'
Cond
Unit

BranchTakenE

R
e

gW
rite

M

M
atch

R
e

gW
riteW

M
em

toR
e

gE

CLK

Figure 7.58 Pipelined processor with full hazard handling

7.5 Pipelined Processor 441

that uses the result, requiring a stall, and that 50% of the branches are taken (mis-
predicted), requiring a flush. Ignore other hazards. Compute the average CPI of
the pipelined processor.

Solution: The average CPI is the sum over each instruction of the CPI for that
instruction multiplied by the fraction of time that instruction is used. Loads take
one clock cycle when there is no dependency and two cycles when the processor
must stall for a dependency, so they have a CPI of (0.6)(1)+ (0.4)(2)= 1.4.
Branches take one clock cycle when they are predicted properly and three when
they are not, so they have a CPI of (0.5)(1)+ (0.5)(3)= 2.0. All other instructions
have a CPI of 1. Hence, for this benchmark, average CPI= (0.25)(1.4) + (0.1)(1)+
(0.13)(2.0) + (0.52)(1) = 1.23.

We can determine the cycle time by considering the critical path in each
of the five pipeline stages shown in Figure 7.58. Recall that the register file
is written in the first half of the Writeback cycle and read in the second half
of the Decode cycle. Therefore, the cycle time of the Decode andWriteback
stages is twice the time necessary to do the half-cycle of work.

Tc3 = max

tpcq + tmem + tsetup Fetch
2ðtRFread + tsetupÞ Decode
tpcq +2tmux + tALU + tsetup Execute
tpcq + tmem + tsetup Memory
2ðtpcq + tmux + tRFsetupÞ Writeback

2
66664

3
77775 (7.5)

Example 7.8 PROCESSOR PERFORMANCE COMPARISON

Ben Bitdiddle needs to compare the pipelined processor performance with that of
the single-cycle and multicycle processors considered in Example 7.6. The logic
delays were given in Table 7.5. Help Ben compare the execution time of 100 bil-
lion instructions from the SPECINT2000 benchmark for each processor.

Solution: According to Equation 7.5, the cycle time of the pipelined processor
is Tc3=max[40+ 200+ 50, 2(100+ 50), 40+ 2(25) + 120+ 50, 40+ 200+ 50,
2(40+ 25+ 60)]= 300 ps. According to Equation 7.1, the total execution time
is T3= (100 × 109 instructions)(1.23 cycles / instruction)(300 × 10−12 s /cycle) =
36.9 seconds. This compares with 84 seconds for the single-cycle processor and
140 seconds for the multicycle processor.

The pipelined processor is substantially faster than the others.
However, its advantage over the single-cycle processor is nowhere near
the five-fold speed-up one might hope to get from a five-stage pipeline.
The pipeline hazards introduce a small CPI penalty. More significantly,
the sequencing overhead (clk-to-Q and setup times) of the registers applies
to every pipeline stage, not just once to the overall datapath. Sequencing

442 CHAPTER SEVEN Microarchitecture

overhead limits the benefits one can hope to achieve from pipelining.
The pipelined processor is similar in hardware requirements to the single-
cycle processor, but it adds eight 32-bit pipeline registers, along with multi-
plexers, smaller pipeline registers, and control logic to resolve hazards.

7.6 HDL REPRESENTATION*

This section presents HDL code for the single-cycle processor supporting
the instructions discussed in this chapter. The code illustrates good coding
practices for a moderately complex system. HDL code for the multicycle
processor and pipelined processor are left to Exercises 7.25 and 7.40.

In this section, the instruction and data memories are separated from
the datapath and connected by address and data busses. In practice, most
processors pull instructions and data from separate caches. However, to
handle literal pools, a more complete processor must also be able to read
data from the instruction memory. Chapter 8 will revisit memory systems,
including the interaction of the caches with main memory.

The processor is composed of a datapath and a controller. The con-
troller, in turn, is composed of the Decoder and the Conditional Logic.
Figure 7.59 shows a block diagram of the single-cycle processor inter-
faced to external memories.

The HDL code is partitioned into several sections. Section 7.6.1 pro-
vides HDL for the single-cycle processor datapath and controller. Section
7.6.2 presents the generic building blocks, such as registers and multiplex-
ers, which are used by any microarchitecture. Section 7.6.3 introduces the
testbench and external memories. The HDL is available in electronic form
on this book’s website (see the Preface).

Controller

Datapath

PC

Instr
DataAdr

WriteData

ReadData

CLK

Reset

Processor External Memory

Im
m

S
rc

M
em

W
rite

M
em

toR
eg

A
LU

S
rc

A
LU

C
ontrol

R
egW

rite

P
C

S
rcA

LU
F

lags

A

RD

Instruction
Memory

A

RD

Data
Memory

WD

WE

CLK

ALUResult

Instr

R
egS

rc

CLK

Reset

Figure 7.59 Single-cycle
processor interfaced to external
memory

7.6 HDL Representation 443

7 . 6 . 1 Single-Cycle Processor

The main modules of the single-cycle processor module are given in the
following HDL examples.

HDL Example 7.1 SINGLE-CYCLE PROCESSOR

SystemVerilog

module arm(input logic clk, reset,
output logic [31:0] PC,
input logic [31:0] Instr,
output logic MemWrite,
output logic [31:0] ALUResult, WriteData,
input logic [31:0] ReadData);

logic [3:0] ALUFlags;
logic RegWrite,

ALUSrc, MemtoReg, PCSrc;
logic [1:0] RegSrc, ImmSrc, ALUControl;

controller c(clk, reset, Instr[31:12], ALUFlags,
RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl,
MemWrite, MemtoReg, PCSrc);

datapath dp(clk, reset,
RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl,
MemtoReg, PCSrc,
ALUFlags, PC, Instr,
ALUResult, WriteData, ReadData);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity arm is -- single cycle processor

port(clk, reset: in STD_LOGIC;
PC: out STD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR(31 downto 0);
MemWrite: out STD_LOGIC;
ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of arm is
component controller
port(clk, reset: in STD_LOGIC;

Instr: in STD_LOGIC_VECTOR(31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);
RegSrc: out STD_LOGIC_VECTOR(1 downto 0);
RegWrite: out STD_LOGIC;
ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);
ALUSrc: out STD_LOGIC;
ALUControl: out STD_LOGIC_VECTOR(1 downto 0);
MemWrite: out STD_LOGIC;
MemtoReg: out STD_LOGIC;
PCSrc: out STD_LOGIC);

end component;
component datapath

port(clk, reset: in STD_LOGIC;
RegSrc: in STD_LOGIC_VECTOR(1 downto 0);
RegWrite: in STD_LOGIC;
ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);
ALUSrc: in STD_LOGIC;
ALUControl: in STD_LOGIC_VECTOR(1 downto 0);
MemtoReg: in STD_LOGIC;
PCSrc: in STD_LOGIC;
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
PC: bufferSTD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR(31 downto 0);
ALUResult, WriteData:buffer STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end component;
signal RegWrite, ALUSrc, MemtoReg, PCSrc: STD_LOGIC;
signal RegSrc, ImmSrc, ALUControl: STD_LOGIC_VECTOR

(1 downto 0);
signal ALUFlags: STD_LOGIC_VECTOR(3 downto 0);

begin
cont: controller port map(clk, reset, Instr(31 downto 12),

ALUFlags, RegSrc, RegWrite,
ImmSrc, ALUSrc, ALUControl,
MemWrite, MemtoReg, PCSrc);

dp: datapath port map(clk, reset, RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl, MemtoReg, PCSrc,
ALUFlags, PC, Instr, ALUResult,
WriteData, ReadData);

end;

444 CHAPTER SEVEN Microarchitecture

HDL Example 7.2 CONTROLLER

SystemVerilog

module controller(input logic clk, reset,
input logic [31:12] Instr,
input logic [3:0] ALUFlags,
output logic [1:0] RegSrc,
output logic RegWrite,
output logic [1:0] ImmSrc,
output logic ALUSrc,
output logic [1:0] ALUControl,
output logic MemWrite, MemtoReg,
output logic PCSrc);

logic [1:0] FlagW;
logic PCS, RegW, MemW;

decoder dec(Instr[27:26], Instr[25:20], Instr[15:12],
FlagW, PCS, RegW, MemW,
MemtoReg, ALUSrc, ImmSrc, RegSrc, ALUControl);

condlogic cl(clk, reset, Instr[31:28], ALUFlags,
FlagW, PCS, RegW, MemW,
PCSrc, RegWrite, MemWrite);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity controller is -- single cycle control

port(clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR(31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);
RegSrc: out STD_LOGIC_VECTOR(1 downto 0);
RegWrite: out STD_LOGIC;
ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);
ALUSrc: out STD_LOGIC;
ALUControl: out STD_LOGIC_VECTOR(1 downto 0);
MemWrite: out STD_LOGIC;
MemtoReg: out STD_LOGIC;
PCSrc: out STD_LOGIC);

end;

architecture struct of controller is
component decoder

port(Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR(5 downto 0);
Rd: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1 downto 0);
PCS, RegW, MemW: out STD_LOGIC;
MemtoReg, ALUSrc: out STD_LOGIC;
ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1 downto 0);
ALUControl: out STD_LOGIC_VECTOR(1 downto 0));

end component;
component condlogic

port(clk, reset: in STD_LOGIC;
Cond: in STD_LOGIC_VECTOR(3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: in STD_LOGIC_VECTOR(1 downto 0);
PCS, RegW, MemW: in STD_LOGIC;
PCSrc, RegWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC);

end component;
signal FlagW: STD_LOGIC_VECTOR(1 downto 0);
signal PCS, RegW, MemW: STD_LOGIC;

begin
dec: decoder port map(Instr(27 downto 26), Instr(25 downto 20),

Instr(15 downto 12), FlagW, PCS,
RegW, MemW, MemtoReg, ALUSrc, ImmSrc,
RegSrc, ALUControl);

cl: condlogic port map(clk, reset, Instr(31 downto 28),
ALUFlags, FlagW, PCS, RegW, MemW,
PCSrc, RegWrite, MemWrite);

end;

7.6 HDL Representation 445

HDL Example 7.3 DECODER

SystemVerilog

module decoder(input logic [1:0] Op,
input logic [5:0] Funct,
input logic [3:0] Rd,
output logic [1:0] FlagW,
output logic PCS, RegW, MemW,
output logic MemtoReg, ALUSrc,
output logic [1:0] ImmSrc, RegSrc, ALUControl);

logic [9:0] controls;
logic Branch, ALUOp;

// Main Decoder
always_comb

casex(Op)
// Data-processing immediate

2'b00: if (Funct[5]) controls = 10'b0000101001;
// Data-processing register

else controls = 10'b0000001001;
// LDR

2'b01: if (Funct[0]) controls = 10'b0001111000;
// STR

else controls = 10'b1001110100;
// B

2'b10: controls = 10'b0110100010;
// Unimplemented

default: controls = 10'bx;
endcase

assign {RegSrc, ImmSrc, ALUSrc, MemtoReg,
RegW, MemW, Branch, ALUOp} = controls;

// ALU Decoder
always_comb
if (ALUOp) begin // which DP Instr?

case(Funct[4:1])
4'b0100: ALUControl = 2'b00; // ADD
4'b0010: ALUControl = 2'b01; // SUB
4'b0000: ALUControl = 2'b10; // AND
4'b1100: ALUControl = 2'b11; // ORR
default: ALUControl = 2'bx; // unimplemented

endcase

// update flags if S bit is set (C & V only for arith)
FlagW[1] = Funct[0];
FlagW[0] = Funct[0] &

(ALUControl == 2'b00 | ALUControl == 2'b01);
end else begin

ALUControl = 2'b00; // add for non-DP instructions
FlagW = 2'b00; // don't update Flags

end

// PC Logic
assign PCS = ((Rd == 4'b1111) & RegW) | Branch;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity decoder is -- main control decoder

port(Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR(5 downto 0);
Rd: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1 downto 0);
PCS, RegW, MemW: out STD_LOGIC;
MemtoReg, ALUSrc: out STD_LOGIC;
ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1 downto 0);
ALUControl: out STD_LOGIC_VECTOR(1 downto 0));

end;
architecture behave of decoder is

signal controls: STD_LOGIC_VECTOR(9 downto 0);
signal ALUOp, Branch: STD_LOGIC;
signal op2: STD_LOGIC_VECTOR(3 downto 0);

begin
op2 <= (Op, Funct(5), Funct(0));
process(all) begin -- Main Decoder

case? (op2) is
when "000-" => controls <= "0000001001";
when "001-" => controls <= "0000101001";
when "01-0" => controls <= "1001110100";
when "01-1" => controls <= "0001111000";
when "10--" => controls <= "0110100010";
when others => controls <= "----------";

end case?;
end process;

(RegSrc, ImmSrc, ALUSrc, MemtoReg, RegW, MemW,
Branch, ALUOp) <= controls;

process(all) begin -- ALU Decoder
if (ALUOp) then

case Funct(4 downto 1) is
when "0100" => ALUControl <= "00"; -- ADD
when "0010" => ALUControl <= "01"; -- SUB
when "0000" => ALUControl <= "10"; -- AND
when "1100" => ALUControl <= "11"; -- ORR
when others => ALUControl <= "--"; -- unimplemented

end case;
FlagW(1) <= Funct(0);
FlagW(0) <= Funct(0) and (not ALUControl(1));

else
ALUControl <= "00";
FlagW <= "00";

end if;
end process;

PCS <= ((and Rd) and RegW) or Branch;
end;

446 CHAPTER SEVEN Microarchitecture

HDL Example 7.4 CONDITIONAL LOGIC

SystemVerilog

module condlogic(input logic clk, reset,
input logic [3:0] Cond,
input logic [3:0] ALUFlags,
input logic [1:0] FlagW,
input logic PCS, RegW, MemW,
output logic PCSrc, RegWrite,

MemWrite);

logic [1:0] FlagWrite;
logic [3:0] Flags;
logic CondEx;

flopenr #(2)flagreg1(clk, reset, FlagWrite[1],
ALUFlags[3:2], Flags[3:2]);

flopenr #(2)flagreg0(clk, reset, FlagWrite[0],
ALUFlags[1:0], Flags[1:0]);

// write controls are conditional
condcheck cc(Cond, Flags, CondEx);
assign FlagWrite = FlagW & {2{CondEx}};
assign RegWrite = RegW & CondEx;
assign MemWrite = MemW & CondEx;
assign PCSrc = PCS & CondEx;

endmodule

module condcheck(input logic [3:0] Cond,
input logic [3:0] Flags,
output logic CondEx);

logic neg, zero, carry, overflow, ge;

assign {neg, zero, carry, overflow} = Flags;
assign ge = (neg == overflow);

always_comb
case(Cond)

4'b0000: CondEx = zero; // EQ
4'b0001: CondEx = ~zero; // NE
4'b0010: CondEx = carry; // CS
4'b0011: CondEx = ~carry; // CC
4'b0100: CondEx = neg; // MI
4'b0101: CondEx = ~neg; // PL
4'b0110: CondEx = overflow; // VS
4'b0111: CondEx = ~overflow; // VC
4'b1000: CondEx = carry & ~zero; // HI
4'b1001: CondEx = ~(carry & ~zero); // LS
4'b1010: CondEx = ge; // GE
4'b1011: CondEx = ~ge; // LT
4'b1100: CondEx = ~zero & ge; // GT
4'b1101: CondEx = ~(~zero & ge); // LE
4'b1110: CondEx = 1'b1; // Always
default: CondEx = 1'bx; // undefined

endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity condlogic is -- Conditional logic

port(clk, reset: in STD_LOGIC;
Cond: in STD_LOGIC_VECTOR(3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: in STD_LOGIC_VECTOR(1 downto 0);
PCS, RegW, MemW: in STD_LOGIC;
PCSrc, RegWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC);

end;

architecture behave of condlogic is
component condcheck
port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

Flags: in STD_LOGIC_VECTOR(3 downto 0);
CondEx: out STD_LOGIC);

end component;
component flopenr generic(width: integer);
port(clk, reset, en: in STD_LOGIC;

d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR (width-1 downto 0));

end component;
signal FlagWrite: STD_LOGIC_VECTOR(1 downto 0);
signal Flags: STD_LOGIC_VECTOR(3 downto 0);
signal CondEx: STD_LOGIC;

begin
flagreg1: flopenr generic map(2)

port map(clk, reset, FlagWrite(1),
ALUFlags(3 downto 2), Flags(3 downto 2));

flagreg0: flopenr generic map(2)
port map(clk, reset, FlagWrite(0),

ALUFlags(1 downto 0), Flags(1 downto 0));
cc: condcheck port map(Cond, Flags, CondEx);

FlagWrite <= FlagW and (CondEx, CondEx);
RegWrite <= RegW and CondEx;
MemWrite <= MemW and CondEx;
PCSrc <= PCS and CondEx;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity condcheck is

port(Cond: in STD_LOGIC_VECTOR(3 downto 0);
Flags: in STD_LOGIC_VECTOR(3 downto 0);
CondEx: out STD_LOGIC);

end;

architecture behave of condcheck is
signal neg, zero, carry, overflow, ge: STD_LOGIC;

begin
(neg, zero, carry, overflow) <= Flags;
ge <= (neg xnor overflow);

process(all) begin -- Condition checking
case Cond is

when "0000" => CondEx <= zero;
when "0001" => CondEx <= not zero;
when "0010" => CondEx <= carry;
when "0011" => CondEx <= not carry;
when "0100" => CondEx <= neg;
when "0101" => CondEx <= not neg;
when "0110" => CondEx <= overflow;

7.6 HDL Representation 447

HDL Example 7.5 DATAPATH

SystemVerilog

module datapath(input logic clk, reset,
input logic [1:0] RegSrc,
input logic RegWrite,
input logic [1:0] ImmSrc,
input logic ALUSrc,
input logic [1:0] ALUControl,
input logic MemtoReg,
input logic PCSrc,
output logic [3:0] ALUFlags,
output logic [31:0] PC,
input logic [31:0] Instr,
output logic [31:0] ALUResult, WriteData,
input logic [31:0] ReadData);

logic [31:0] PCNext, PCPlus4, PCPlus8;
logic [31:0] ExtImm, SrcA, SrcB, Result;
logic [3:0] RA1, RA2;

// next PC logic
mux2 #(32) pcmux(PCPlus4, Result, PCSrc, PCNext);
flopr #(32) pcreg(clk, reset, PCNext, PC);
adder #(32) pcadd1(PC, 32'b100, PCPlus4);
adder #(32) pcadd2(PCPlus4, 32'b100, PCPlus8);

// register file logic
mux2 #(4) ra1mux(Instr[19:16], 4'b1111, RegSrc[0], RA1);
mux2 #(4) ra2mux(Instr[3:0], Instr[15:12], RegSrc[1], RA2);
regfile rf(clk, RegWrite, RA1, RA2,

Instr[15:12], Result, PCPlus8,
SrcA, WriteData);

mux2 #(32) resmux(ALUResult, ReadData, MemtoReg, Result);
extend ext(Instr[23:0], ImmSrc, ExtImm);

// ALU logic
mux2 #(32) srcbmux(WriteData, ExtImm, ALUSrc, SrcB);
alu alu(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity datapath is

port(clk, reset: in STD_LOGIC;
RegSrc: in STD_LOGIC_VECTOR(1 downto 0);
RegWrite: in STD_LOGIC;
ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);
ALUSrc: in STD_LOGIC;
ALUControl: in STD_LOGIC_VECTOR(1 downto 0);
MemtoReg: in STD_LOGIC;
PCSrc: in STD_LOGIC;
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
PC: bufferSTD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR(31 downto 0);
ALUResult, WriteData:buffer STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of datapath is
component alu
port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

ALUControl: in STD_LOGIC_VECTOR(1 downto 0);
Result: buffer STD_LOGIC_VECTOR(31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end component;
component regfile
port(clk: in STD_LOGIC;

we3: in STD_LOGIC;
ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);
rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end component;
component adder
port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

y: out STD_LOGIC_VECTOR(31 downto 0));
end component;
component extend
port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);
ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

end component;

when "0111" => CondEx <= not overflow;
when "1000" => CondEx <= carry and (not zero);
when "1001" => CondEx <= not(carry and (not zero));
when "1010" => CondEx <= ge;
when "1011" => CondEx <= not ge;
when "1100" => CondEx <= (not zero) and ge;
when "1101" => CondEx <= not ((not zero) and ge);
when "1110" => CondEx <= '1';
when others => CondEx <= '-';

end case;
end process;

end;

448 CHAPTER SEVEN Microarchitecture

7 . 6 . 2 Generic Building Blocks

This section contains generic building blocks that may be useful in
any digital system, including a register file, adder, flip-flops, and
a 2:1 multiplexer. The HDL for the ALU is left to Exercises 5.11
and 5.12.

component flopr generic(width: integer);
port(clk, reset: in STD_LOGIC;

d: in STD_LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

end component;
component mux2 generic(width: integer);
port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));

end component;
signal PCNext, PCPlus4,

PCPlus8: STD_LOGIC_VECTOR(31 downto 0);
signal ExtImm, Result: STD_LOGIC_VECTOR(31 downto 0);
signal SrcA, SrcB: STD_LOGIC_VECTOR(31 downto 0);
signal RA1, RA2: STD_LOGIC_VECTOR(3 downto 0);

begin
-- next PC logic
pcmux: mux2 generic map(32)

port map(PCPlus4, Result, PCSrc, PCNext);
pcreg: flopr generic map(32) port map(clk, reset, PCNext, PC);
pcadd1: adder port map(PC, X"00000004", PCPlus4);
pcadd2: adder port map(PCPlus4, X"00000004", PCPlus8);

-- register file logic
ra1mux: mux2 generic map (4)

port map(Instr(19 downto 16), "1111", RegSrc(0), RA1);
ra2mux: mux2 generic map (4) port map(Instr(3 downto 0),

Instr(15 downto 12), RegSrc(1), RA2);
rf: regfile port map(clk, RegWrite, RA1, RA2,

Instr(15 downto 12), Result,
PCPlus8, SrcA, WriteData);

resmux: mux2 generic map(32)
port map(ALUResult, ReadData, MemtoReg, Result);

ext: extend port map(Instr(23 downto 0), ImmSrc, ExtImm);

-- ALU logic
srcbmux: mux2 generic map(32)

port map(WriteData, ExtImm, ALUSrc, SrcB);
i_alu: alu port map(SrcA, SrcB, ALUControl, ALUResult,

ALUFlags);
end;

7.6 HDL Representation 449

HDL Example 7.7 ADDER

SystemVerilog

module adder #(parameter WIDTH= 8)
(input logic [WIDTH-1:0] a, b,
output logic [WIDTH-1:0] y);

assign y = a + b;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity adder is -- adder

port(a, b: in STD_LOGIC_VECTOR(31 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of adder is
begin

y <= a + b;
end;

HDL Example 7.6 REGISTER FILE

SystemVerilog

module regfile(input logic clk,
input logic we3,
input logic [3:0] ra1, ra2, wa3,
input logic [31:0] wd3, r15,
output logic [31:0] rd1, rd2);

logic [31:0] rf[14:0];

// three ported register file
// read two ports combinationally
// write third port on rising edge of clock
// register 15 reads PC+ 8 instead

always_ff @(posedge clk)
if (we3) rf[wa3] <= wd3;

assign rd1 = (ra1 == 4'b1111) ? r15 : rf[ra1];
assign rd2 = (ra2 == 4'b1111) ? r15 : rf[ra2];

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity regfile is -- three-port register file

port(clk: in STD_LOGIC;
we3: in STD_LOGIC;
ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);
rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is
type ramtype is array (31 downto 0) of

STD_LOGIC_VECTOR(31 downto 0);
signal mem: ramtype;

begin
process(clk) begin
if rising_edge(clk) then

if we3 = '1' then mem(to_integer(wa3)) <= wd3;
end if;

end if;
end process;
process(all) begin

if (to_integer(ra1) = 15) then rd1 <= r15;
else rd1 <= mem(to_integer(ra1));
end if;
if (to_integer(ra2) = 15) then rd2 <= r15;
else rd2 <= mem(to_integer(ra2));
end if;

end process;
end;

450 CHAPTER SEVEN Microarchitecture

HDL Example 7.8 IMMEDIATE EXTENSION

SystemVerilog

module extend(input logic [23:0] Instr,
input logic [1:0] ImmSrc,
output logic [31:0] ExtImm);

always_comb
case(ImmSrc)

// 8-bit unsigned immediate
2'b00: ExtImm = {24'b0, Instr[7:0]};

// 12-bit unsigned immediate
2'b01: ExtImm = {20'b0, Instr[11:0]};

// 24-bit two's complement shifted branch
2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};
default: ExtImm = 32'bx; // undefined

endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity extend is

port(Instr: in STD_LOGIC_VECTOR(23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);
ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of extend is
begin

process(all) begin
case ImmSrc is

when "00" => ExtImm <= (X"000000", Instr(7 downto 0));
when "01" => ExtImm <= (X"00000", Instr(11 downto 0));
when "10" => ExtImm <= (Instr(23), Instr(23),

Instr(23), Instr(23),
Instr(23), Instr(23),
Instr(23 downto 0), "00");

when others => ExtImm <= X"--------";
end case;

end process;
end;

HDL Example 7.9 RESETTABLE FLIP-FLOP

SystemVerilog

module flopr #(parameter WIDTH = 8)
(input logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else q <= d;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopr is -- flip-flop with synchronous reset

generic(width: integer);
port(clk, reset: in STD_LOGIC;

d: in STD_LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopr is
begin

process(clk, reset) begin
if reset then q <= (others => '0');
elsif rising_edge(clk) then

q <= d;
end if;

end process;
end;

7.6 HDL Representation 451

7 . 6 . 3 Testbench

The testbench loads a program into the memories. The program in
Figure 7.60 exercises all of the instructions by performing a computation
that should produce the correct result only if all of the instructions are
functioning correctly. Specifically, the program will write the value 7 to
address 100 if it runs correctly, but it is unlikely to do so if the hardware
is buggy. This is an example of ad hoc testing.

HDL Example 7.11 2:1 MULTIPLEXER

SystemVerilog

module mux2 #(parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, d1,
input logic s,
output logic [WIDTH-1:0] y);

assign y = s ? d1 : d0;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is -- two-input multiplexer

generic(width: integer);
port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux2 is
begin

y <= d1 when s else d0;
end;

HDL Example 7.10 RESETTABLE FLIP-FLOP WITH ENABLE

SystemVerilog

module flopenr #(parameter WIDTH = 8)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else if (en) q <= d;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopenr is -- flip-flop with enable and synchronous reset

generic(width: integer);
port(clk, reset, en: in STD_LOGIC;

d: in STD_LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopenr is
begin

process(clk, reset) begin
if reset then q <= (others => '0');
elsif rising_edge(clk) then

if en then
q <= d;

end if;
end if;

end process;
end;

452 CHAPTER SEVEN Microarchitecture

The machine code is stored in a hexadecimal file called memfile.dat,
which is loaded by the testbench during simulation. The file consists of the
machine code for the instructions, one instruction per line. The testbench,
top-level ARM module, and external memory HDL code are given in the
following examples. The memories in this example hold 64 words each.

ADDR PROGRAM ; COMMENTS BINARY MACHINE CODE HEX CODE
00 MAIN SUB R0, R15, R15 ; R0 = 0 1110 000 0010 0 1111 0000 0000 0000 1111 E04F000F
04 ADD R2, R0, #5 ; R2 = 5 1110 001 0100 0 0000 0010 0000 0000 0101 E2802005
08 ADD R3, R0, #12 ; R3 = 12 1110 001 0100 0 0000 0011 0000 0000 1100 E280300C
0C SUB R7, R3, #9 ; R7 = 3 1110 001 0010 0 0011 0111 0000 0000 1001 E2437009
10 ORR R4, R7, R2 ; R4 = 3 OR 5 = 7 1110 000 1100 0 0111 0100 0000 0000 0010 E1874002
14 AND R5, R3, R4 ; R5 = 12 AND 7 = 4 1110 000 0000 0 0011 0101 0000 0000 0100 E0035004
18 ADD R5, R5, R4 ; R5 = 4 + 7 = 11 1110 000 0100 0 0101 0101 0000 0000 0100 E0855004
1C SUBS R8, R5, R7 ; R8 = 11 - 3 = 8, set Flags 1110 000 0010 1 0101 1000 0000 0000 0111 E0558007
20 BEQ END ; shouldn't be taken 0000 1010 0000 0000 0000 0000 0000 1100 0A00000C
24 SUBS R8, R3, R4 ; R8 = 12 - 7 = 5 1110 000 0010 1 0011 1000 0000 0000 0100 E0538004
28 BGE AROUND ; should be taken 1010 1010 0000 0000 0000 0000 0000 0000 AA000000
2C ADD R5, R0, #0 ; should be ski pped 1110 001 0100 0 0000 0101 0000 0000 0000 E2805000
30 AROUND SUBS R8, R7, R2 ; R8 = 3 - 5 = -2, set Flags 1110 000 0010 1 0111 1000 0000 0000 0010 E0578002
34 ADDLT R7, R5, #1 ; R7 = 11 + 1 = 12 1011 001 0100 0 0101 0111 0000 0000 0001 B2857001
38 SUB R7, R7, R2 ; R7 = 12 - 5 = 7 1110 000 0010 0 0111 0111 0000 0000 0010 E0477002
3C STR R7, [R3, #84] ; mem[12+84] = 7 1110 010 1100 0 0011 0111 0000 0101 0100 E5837054
40 LDR R2, [R0, #96] ; R2 = mem[96] = 7 1110 010 1100 1 0000 0010 0000 0110 0000 E5902060
44 ADD R15, R15, R0 ; PC = PC+8 (skips next) 1110 000 0100 0 1111 1111 0000 0000 0000 E08FF000
48 ADD R2, R0, #14 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200E
4C B END ; always taken 1110 1010 0000 0000 0000 0000 0000 0001 EA000001
50 ADD R2, R0, #13 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200D
54 ADD R2, R0, #10 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200A
58 END STR R2, [R0, #100] ; mem[100] = 7 1110 010 1100 0 0000 0010 0000 0101 0100 E5802064

Figure 7.60 Assembly and machine code for test program

HDL Example 7.12 TESTBENCH

SystemVerilog

module testbench();
logic clk;
logic reset;
logic [31:0] WriteData, DataAdr;
logic MemWrite;

// instantiate device to be tested
top dut(clk, reset, WriteData, DataAdr, MemWrite);

// initialize test
initial
begin

reset <= 1; # 22; reset <= 0;
end

// generate clock to sequence tests
always
begin

clk <= 1; # 5; clk <= 0; # 5;

end

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;
entity testbench is
end;

architecture test of testbench is
component top

port(clk, reset: in STD_LOGIC;
WriteData, DatAadr: out STD_LOGIC_VECTOR(31 downto 0);
MemWrite: out STD_LOGIC);

end component;
signal WriteData, DataAdr: STD_LOGIC_VECTOR(31 downto 0);
signal clk, reset, MemWrite: STD_LOGIC;

begin
-- instantiate device to be tested
dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

-- generate clock with 10 ns period
process begin

clk <= '1';
wait for 5 ns;
clk <= '0';
wait for 5 ns;

end process;

7.6 HDL Representation 453

// check that 7 gets written to address 0x64
// at end of program
always @(negedge clk)
begin

if(MemWrite) begin
if(DataAdr === 100 & WriteData === 7) begin

$display("Simulation succeeded");
$stop;

end else if (DataAdr !== 96) begin
$display("Simulation failed");
$stop;

end
end

end
endmodule

-- generate reset for first two clock cycles
process begin

reset <= '1';
wait for 22 ns;
reset <= '0';
wait;

end process;

-- check that 7 gets written to address 0x64
-- at end of program
process (clk) begin

if (clk'event and clk = '0' and MemWrite = '1') then
if (to_integer(DataAdr) = 100 and

to_integer(WriteData) = 7) then
report "NO ERRORS: Simulation succeeded" severity
failure;

elsif (DataAdr /= 96) then
report "Simulation failed" severity failure;

end if;
end if;

end process;
end;

HDL Example 7.13 TOP-LEVEL MODULE

SystemVerilog

module top(input logic clk, reset,
output logic [31:0] WriteData, DataAdr,
output logic MemWrite);

logic [31:0] PC, Instr, ReadData;

// instantiate processor and memories
arm arm(clk, reset, PC, Instr, MemWrite, DataAdr,

WriteData, ReadData);
imem imem(PC, Instr);
dmem dmem(clk, MemWrite, DataAdr, WriteData, ReadData);

endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;
entity top is -- top-level design for testing

port(clk, reset: in STD_LOGIC;
WriteData,DataAdr: buffer STD_LOGIC_VECTOR(31downto0);
MemWrite: buffer STD_LOGIC);

end;

architecture test of top is
component arm

port(clk, reset: in STD_LOGIC;
PC: out STD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR(31 downto 0);
MemWrite: out STD_LOGIC;
ALUResult, WriteData:out STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end component;
component imem
port(a: in STD_LOGIC_VECTOR(31 downto 0);

rd: out STD_LOGIC_VECTOR(31 downto 0));
end component;
component dmem
port(clk, we: in STD_LOGIC;

a, wd: in STD_LOGIC_VECTOR(31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));

end component;
signal PC, Instr,

ReadData: STD_LOGIC_VECTOR(31 downto 0);
begin

-- instantiate processor and memories
i_arm: arm port map(clk, reset, PC, Instr, MemWrite, DataAdr,

WriteData, ReadData);
i_imem: imem port map(PC, Instr);
i_dmem: dmem port map(clk, MemWrite, DataAdr,

WriteData, ReadData);
end;

454 CHAPTER SEVEN Microarchitecture

HDL Example 7.14 DATA MEMORY

SystemVerilog

module dmem(input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);

logic [31:0] RAM[63:0];

assign rd = RAM[a[31:2]]; // word aligned

always_ff @(posedge clk)
if (we) RAM[a[31:2]] <= wd;

endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity dmem is -- data memory

port(clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR(31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of dmem is
begin

process is
type ramtype is array (63 downto 0) of

STD_LOGIC_VECTOR(31 downto 0);
variable mem: ramtype;

begin -- read or write memory
loop

if clk'event and clk = '1' then
if (we = '1') then

mem(to_integer(a(7 downto 2))) := wd;
end if;

end if;
rd <= mem(to_integer(a(7 downto 2)));
wait on clk, a;

end loop;
end process;

end;

HDL Example 7.15 INSTRUCTION MEMORY

SystemVerilog

module imem(input logic [31:0] a,
output logic [31:0] rd);

logic [31:0] RAM[63:0];

initial
$readmemh("memfile.dat",RAM);

assign rd = RAM[a[31:2]]; // word aligned
endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity imem is -- instruction memory

port(a: in STD_LOGIC_VECTOR(31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));

end;
architecture behave of imem is -- instruction memory
begin

process is
file mem_file: TEXT;
variable L: line;
variable ch: character;
variable i, index, result: integer;
type ramtype is array (63 downto 0) of

STD_LOGIC_VECTOR(31 downto 0);
variable mem: ramtype;

begin
-- initialize memory from file
for i in 0 to 63 loop -- set all contents low

mem(i) := (others => '0');
end loop;

7.6 HDL Representation 455

7.7 ADVANCED MICROARCHITECTURE*

High-performance microprocessors use a wide variety of techniques to run
programs faster. Recall that the time required to run a program is propor-
tional to the period of the clock and to the number of clock cycles per
instruction (CPI). Thus, to increase performance, we would like to speed-
up the clock and/or reduce the CPI. This section surveys some existing
speed-up techniques. The implementation details become quite complex,
so we focus on the concepts. Hennessy & Patterson’s Computer Architec-
ture text is a definitive reference if you want to fully understand the details.

Advances in integrated circuit manufacturing have steadily reduced
transistor sizes. Smaller transistors are faster and generally consume less
power. Thus, even if the microarchitecture does not change, the clock
frequency can increase because all the gates are faster. Moreover, smaller
transistors enable placing more transistors on a chip. Microarchitects use
the additional transistors to build more complicated processors or to put
more processors on a chip. Unfortunately, power consumption increases
with the number of transistors and the speed at which they operate
(see Section 1.8). Power consumption is now an essential concern. Micro-
processor designers have a challenging task juggling the trade-offs among
speed, power, and cost for chips with billions of transistors in some of
the most complex systems that humans have ever built.

index := 0;
FILE_OPEN(mem_file, "memfile.dat", READ_MODE);
while not endfile(mem_file) loop

readline(mem_file, L);
result := 0;
for i in 1 to 8 loop

read(L, ch);
if '0' <= ch and ch <= '9' then

result := character'pos(ch) - character'pos('0');
elsif 'a' <= ch and ch <= 'f' then

result:=character'pos(ch)-character'pos('a')+10;
elsif 'A' <= ch and ch <= 'F' then

result:=character'pos(ch)-character'pos('A')+10;
elsereport"Formaterroronline"&integer'image(index)

severity error;
end if;
mem(index)(35-i*4 downto 32-i*4) :=

to_std_logic_vector(result,4);
end loop;
index := index + 1;

end loop;

-- read memory
loop

rd <= mem(to_integer(a(7 downto 2)));
wait on a;

end loop;
end process;

end;

456 CHAPTER SEVEN Microarchitecture

7 . 7 . 1 Deep Pipelines

Aside from advances in manufacturing, the easiest way to speed up the
clock is to chop the pipeline into more stages. Each stage contains less
logic, so it can run faster. This chapter has considered a classic five-stage
pipeline, but 10–20 stages are now commonly used.

The maximum number of pipeline stages is limited by pipeline
hazards, sequencing overhead, and cost. Longer pipelines introduce more
dependencies. Some of the dependencies can be solved by forwarding but
others require stalls, which increase the CPI. The pipeline registers
between each stage have sequencing overhead from their setup time and
clk-to-Q delay (as well as clock skew). This sequencing overhead makes
adding more pipeline stages give diminishing returns. Finally, adding
more stages increases the cost because of the extra pipeline registers and
hardware required to handle hazards.

Example 7.9

Consider building a pipelined processor by chopping up the single-cycle processor
into N stages. The single-cycle processor has a propagation delay of 740 ps through
the combinational logic. The sequencing overhead of a register is 90 ps. Assume that
the combinational delay can be arbitrarily divided into any number of stages and that
pipeline hazard logic does not increase the delay. The five-stage pipeline in Example
7.7 has a CPI of 1.23. Assume that each additional stage increases the CPI by 0.1
because of branch mispredictions and other pipeline hazards. How many pipeline
stages should be used to make the processor execute programs as fast as possible?

Solution: The cycle time for an N-stage pipeline is Tc= (740/N+ 90) ps. The CPI
is 1.23+ 0.1(N–5). The time per instruction, or instruction time, is the product of
the cycle time and the CPI. Figure 7.61 plots the cycle time and instruction time
versus the number of stages. The instruction time has a minimum of 279 ps at
N= 8 stages. This minimum is only slightly better than the 293 ps per instruction
achieved with a five-stage pipeline.

300

250

200

150

5 6 7 8
N: # of pipeline stages

Tc

Instruction time

T
im

e
(p

s)

9 10 11 12

Figure 7.61 Cycle time and
instruction time vs. the number of
pipeline stages

In the late 1990s and early
2000s, microprocessors were
marketed largely based on
clock frequency (1/Tc). This
pushed microprocessors to use
very deep pipelines (20–31
stages on the Pentium 4) to
maximize the clock frequency,
even if the benefits for overall
performance were questionable.
Power is proportional to clock
frequency and also increases
with the number of pipeline
registers, so now that power
consumption is so important,
pipeline depths are decreasing.

7.7 Advanced Microarchitecture 457

7 . 7 . 2 Micro-Operations

Recall our design principles of “regularity supports simplicity” and
“make the common case fast.” Pure reduced instruction set computer
(RISC) architectures such as MIPS contain only simple instructions,
typically those that can be executed in a single cycle on a simple,
fast datapath with a three-ported register file, single ALU, and single
data memory access like the ones we have developed in this chapter.
Complex instruction set computer (CISC) architectures generally
include instructions requiring more registers, more additions, or more
than one memory access per instruction. For example, the x86 instruc-
tion ADD [ESP], [EDX + 80 + EDI*2] involves reading the three regis-
ters, adding the base, displacement, and scaled index, reading two
memory locations, summing their values, and writing the result
back to memory. A microprocessor that could perform all of these func-
tions at once would be unnecessarily slow on more common, simpler
instructions.

Computer architects make the common case fast by defining a set
of simple micro-operations (also known as micro-ops or μops) that
can be executed on simple datapaths. Each real instruction is decoded
into one or more micro-ops. For example, if we defined μops resembling
basic ARM instructions and some temporary registers T1 and T2 for
holding intermediate results, then the x86 instruction could become
seven μops:

ADD T1, [EDX + 80] ; T1 <− EDX + 80
LSL T2, EDI, 2 ; T2 <− EDI*2
ADD T1, T2, T2 ; T1 <− EDX + 80 + EDI*2
LDR T1, [T1] ; T1 <− MEM[EDX + 80 + EDI*2]
LDR T2, [ESP] ; T2 <− MEM[ESP]
ADD T1, T2, T1 ; T1 <− MEM[ESP] + MEM[EDX + 80 + EDI*2]
STR T1, [ESP] ; MEM[ESP]<− MEM[ESP] + MEM[EDX + 80 + EDI*2]

Although most ARM instructions are simple, some are decomposed into
multiple micro-ops as well. For example, loads with postindexed addres-
sing (such as LDR R1, [R2], #4) require a second write port on the regis-
ter file. Data-processing instructions with register-shifted register
addressing (such as ORR R3, R4, R5, LSL R6) require a third read port
on the register file. Instead of providing a larger five-port register file,

458 CHAPTER SEVEN Microarchitecture

the ARM datapath may decode these complex instructions into pairs of
simpler instructions:

Complex Op Micro-op Sequence
LDR R1, [R2], #4 LDR R1, [R2]

ADD R2, R2, #4

ORR R3, R4, R5 LSL R6 LSL T1, R5, R6
ORR R3, R4, T1

Although the programmer could have written the simpler instruc-
tions directly and the program may have run just as fast, a single complex
instruction takes less memory than the pair of simpler instructions. Read-
ing instructions from external memory can consume significant power,
so the complex instruction also can save power. The ARM instruction
set is so successful in part because of the architects’ judicious choice of
instructions that give better code density than pure RISC instructions sets
such as MIPS, yet more efficient decoding than CISC instruction sets such
as x86.

7 . 7 . 3 Branch Prediction

An ideal pipelined processor would have a CPI of 1.0. The branch mispre-
diction penalty is a major reason for increased CPI. As pipelines get
deeper, branches are resolved later in the pipeline. Thus, the branch mis-
prediction penalty gets larger because all the instructions issued after the
mispredicted branch must be flushed. To address this problem, most pipe-
lined processors use a branch predictor to guess whether the branch
should be taken. Recall that our pipeline from Section 7.5.3 simply pre-
dicted that branches are never taken.

Some branches occur when a program reaches the end of a loop and
branches back to repeat the loop (e.g., in a for or while loop). Loops tend
to be executed many times, so these backward branches are usually taken.
The simplest form of branch prediction checks the direction of the branch
and predicts that backward branches should be taken. This is called static
branch prediction, because it does not depend on the history of the
program.

Forward branches are difficult to predict without knowing more
about the specific program. Therefore, most processors use dynamic
branch predictors, which use the history of program execution to guess
whether a branch should be taken. Dynamic branch predictors maintain
a table of the last several hundred (or thousand) branch instructions that
the processor has executed. The table, called a branch target buffer,
includes the destination of the branch and a history of whether the branch
was taken.

Microarchitects make the
decision of whether to provide
hardware to implement a
complex operation directly or
break it into micro-op
sequences. They make similar
decisions about other options
described later in this section.
These choices lead to different
points in the performance-
power-cost design space.

7.7 Advanced Microarchitecture 459

To see the operation of dynamic branch predictors, consider the fol-
lowing loop from Code Example 6.17. The loop repeats 10 times, and
the BGE out of the loop is taken only on the last iteration.

MOV R1, #0
MOV R0, #0

FOR
CMP R0, #10
BGE DONE
ADD R1, R1, R0
ADD R0, R0, #1
B FOR

DONE

A one-bit dynamic branch predictor remembers whether the branch
was taken the last time and predicts that it will do the same thing the
next time. While the loop is repeating, it remembers that the BGE was
not taken last time and predicts that it should not be taken next time. This
is a correct prediction until the last branch of the loop, when the branch
does get taken. Unfortunately, if the loop is run again, the branch predic-
tor remembers that the last branch was taken. Therefore, it incorrectly
predicts that the branch should be taken when the loop is first run again.
In summary, a 1-bit branch predictor mispredicts the first and last
branches of a loop.

A two-bit dynamic branch predictor solves this problem by having
four states: strongly taken, weakly taken, weakly not taken, and strongly
not taken, as shown in Figure 7.62. When the loop is repeating, it enters
the “strongly not taken” state and predicts that the branch should not be
taken next time. This is correct until the last branch of the loop, which is
taken and moves the predictor to the “weakly not taken” state. When the
loop is first run again, the branch predictor correctly predicts that the
branch should not be taken and re-enters the “strongly not taken” state.
In summary, a two-bit branch predictor mispredicts only the last branch
of a loop.

Strongly
taken

Predict
taken

Weakly
taken

Predict
taken

Weakly
not taken

predict
not taken

Strongly
not taken

Predict
not taken

taken taken taken

takentakentaken

taken

taken

Figure 7.62 Two-bit branch predictor state transition diagram

460 CHAPTER SEVEN Microarchitecture

The branch predictor operates in the Fetch stage of the pipeline so
that it can determine which instruction to execute on the next cycle.
When it predicts that the branch should be taken, the processor fetches
the next instruction from the branch destination stored in the branch
target buffer.

As one can imagine, branch predictors may be used to track even
more history of the program to increase the accuracy of predictions.
Good branch predictors achieve better than 90% accuracy on typical
programs.

7 . 7 . 4 Superscalar Processor

A superscalar processor contains multiple copies of the datapath hard-
ware to execute multiple instructions simultaneously. Figure 7.63 shows
a block diagram of a two-way superscalar processor that fetches and exe-
cutes two instructions per cycle. The datapath fetches two instructions at
a time from the instruction memory. It has a six-ported register file to
read four source operands and write two results back in each cycle. It also
contains two ALUs and a two-ported data memory to execute the two
instructions at the same time.

Figure 7.64 shows a pipeline diagram illustrating the two-way super-
scalar processor executing two instructions on each cycle. For this pro-
gram, the processor has a CPI of 0.5. Designers commonly refer to the
reciprocal of the CPI as the instructions per cycle, or IPC. This processor
has an IPC of 2 on this program.

Executing many instructions simultaneously is difficult because of
dependencies. For example, Figure 7.65 shows a pipeline diagram run-
ning a program with data dependencies. The dependencies in the code
are shown in blue. The ADD instruction is dependent on R8, which is pro-
duced by the LDR instruction, so it cannot be issued at the same time as
LDR. The ADD instruction stalls for yet another cycle so that LDR can for-
ward R8 to ADD in cycle 5. The other dependencies (between SUB and

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction
memory

Register
file Data

memory

A
LU

s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Figure 7.63 Superscalar datapath

A scalar processor acts on one
piece of data at a time.
A vector processor acts on
several pieces of data with a
single instruction.
A superscalar processor issues
several instructions at a time,
each of which operates on one
piece of data.

Our ARMpipelined processor
is a scalar processor. Vector
processors were popular for
supercomputers in the 1980s and
1990s because they efficiently
handled the long vectors of
data common in scientific
computations, and they are
heavily used now in graphics
processing units (GPUs).
Modern high-performance
microprocessors are superscalar,
because issuing several
independent instructions is more
flexible than processing vectors.

However, modern processors
also include hardware to handle
short vectors of data that are
common in multimedia and
graphics applications. These are
called single instruction multiple
data (SIMD) units and are
discussed in Section 6.7.5.

7.7 Advanced Microarchitecture 461

AND based on R8, and between ORR and STR based on R11) are handled
by forwarding results produced in one cycle to be consumed in the next.
This program requires five cycles to issue six instructions, for an IPC
of 1.2.

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

R0

RF

R8
+

DMIM

LDR

ADD

LDR R8, [R0,#40]

ADD R9, R1,R2

SUB R10, R1, R3

AND R11, R3, R4

ORR R12, R1, R5

STR R5,[R0,#80]

R9
R2

R1

+

RF
R3

R1

RF

R10
–

DMIM

SUB

AND R11
R4

R3

&

RF
R5

R1

RF

R12
|

DMIM

ORR

STR
80

R0
+ R5

Figure 7.64 Abstract view of a superscalar pipeline in operation

Stall

1 2 3 4 5 6 7 8

RF
40

R0

RF

R8
+

DMIM

LDRLDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3

AND R10, R4, R8

STR R7, [R11, #80]

RF
R1

R8
ADD

RF
R1

R8

RF

R9
+

DM

RF
R8

R4

RF

R10
&

DMIM

AND

IM
ORR

AND

SUB

|R6

R5
R11

RF
80

R11

RF
+

DM

STR

IM

R7

9

R3

R2

R3

R2
-

R8

ORRORR R11, R5, R6

IM

Time (cycles)

Figure 7.65 Program with data dependencies

462 CHAPTER SEVEN Microarchitecture

Recall that parallelism comes in temporal and spatial forms. Pipelin-
ing is a case of temporal parallelism. Multiple execution units is a case
of spatial parallelism. Superscalar processors exploit both forms of paral-
lelism to squeeze out performance far exceeding that of our single-cycle
and multicycle processors.

Commercial processors may be three-, four-, or even six-way super-
scalar. They must handle control hazards such as branches as well as data
hazards. Unfortunately, real programs have many dependencies, so wide
superscalar processors rarely fully utilize all of the execution units. More-
over, the large number of execution units and complex forwarding net-
works consume vast amounts of circuitry and power.

7 . 7 . 5 Out-of-Order Processor

To cope with the problem of dependencies, an out-of-order processor looks
ahead across many instructions to issue, or begin executing, independent
instructions as rapidly as possible. The instructions can issue in a different
order than that written by the programmer, as long as dependencies are
honored so that the program produces the intended result.

Consider running the same program from Figure 7.65 on a two-way
superscalar out-of-order processor. The processor can issue up to two
instructions per cycle from anywhere in the program, as long as depen-
dencies are observed. Figure 7.66 shows the data dependencies and the

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

R0

RF

R8
+

DMIM

LDRLDR R8, [R0, #40]

ADD R9, R8, R1

SUB R8, R2, R3

AND R10, R4, R8

STR R7, [R11, #80]

ORR
|R6

R5
R11

RF
80

R11

RF
+

DM

STR R7

ORR R11, R5, R6

IM

RF
R1

R8

RF

R9
+

DMIM

ADD

SUB
–R3

R2
R8

two cycle latency
between load and
use of R8

RAW

WAR

RAW

RF
R8

R4

RF
&

DM

AND

IM

R10

RAW

Figure 7.66 Out-of-order execution of a program with dependencies

7.7 Advanced Microarchitecture 463

operation of the processor. The classifications of dependencies as
RAW and WAR will be discussed soon. The constraints on issuing
instructions are:

▶ Cycle 1
– The LDR instruction issues.
– The ADD, SUB, and AND instructions are dependent on LDR by way

of R8, so they cannot issue yet. However, the ORR instruction is
independent, so it also issues.

▶ Cycle 2
– Remember that there is a two-cycle latency between issuing an LDR

instruction and a dependent instruction, so ADD cannot issue yet
because of theR8dependence.SUBwritesR8, so it cannot issue before
ADD, lest ADD receive the wrong value of R8. AND is dependent on SUB.

– Only the STR instruction issues.

▶ Cycle 3
– On cycle 3, R8 is available, so the ADD issues. SUB issues simulta-

neously, because it will not write R8 until after ADD consumes R8.

▶ Cycle 4
– The AND instruction issues. R8 is forwarded from SUB to AND.

The out-of-order processor issues the six instructions in four cycles, for an
IPC of 1.5.

The dependence of ADD on LDR by way of R8 is a read after write
(RAW) hazard. ADD must not read R8 until after LDR has written it. This
is the type of dependency we are accustomed to handling in the pipelined
processor. It inherently limits the speed at which the program can run,
even if infinitely many execution units are available. Similarly, the depen-
dence of STR on ORR by way of R11 and of AND on SUB by way of R8 are
RAW dependencies.

The dependence between SUB and ADD by way of R8 is called a write
after read (WAR) hazard or an antidependence. SUB must not write R8
before ADD reads R8, so that ADD receives the correct value according to
the original order of the program. WAR hazards could not occur in the
simple pipeline, but they may happen in an out-of-order processor if the
dependent instruction (in this case, SUB) is moved too early.

A WAR hazard is not essential to the operation of the program. It is
merely an artifact of the programmer’s choice to use the same register for
two unrelated instructions. If the SUB instruction had written R12 instead
of R8, then the dependency would disappear and SUB could be issued
before ADD. The ARM architecture only has 16 registers, so sometimes
the programmer is forced to reuse a register and introduce a hazard just
because all the other registers are in use.

464 CHAPTER SEVEN Microarchitecture

A third type of hazard, not shown in the program, is called a write
after write (WAW) hazard or an output dependence. A WAW hazard
occurs if an instruction attempts to write a register after a subsequent
instruction has already written it. The hazard would result in the wrong
value being written to the register. For example, in the following code,
LDR and ADD both write R8. The final value in R8 should come from
ADD according to the order of the program. If an out-of-order processor
attempted to execute ADD first, then a WAW hazard would occur.

LDR R8, [R3]
ADD R8, R1, R2

WAW hazards are not essential either; again, they are artifacts caused by
the programmer's using the same destination register for two unrelated
instructions. If the ADD instruction were issued first, then the program
could eliminate the WAW hazard by discarding the result of the LDR
instead of writing it to R8. This is called squashing the LDR.4

Out-of-order processors use a table to keep track of instructions wait-
ing to issue. The table, sometimes called a scoreboard, contains informa-
tion about the dependencies. The size of the table determines how many
instructions can be considered for issue. On each cycle, the processor
examines the table and issues as many instructions as it can, limited by
the dependencies and by the number of execution units (e.g., ALUs, mem-
ory ports) that are available.

The instruction level parallelism (ILP) is the number of instructions
that can be executed simultaneously for a particular program
and microarchitecture. Theoretical studies have shown that the
ILP can be quite large for out-of-order microarchitectures with
perfect branch predictors and enormous numbers of execution units.
However, practical processors seldom achieve an ILP greater than two
or three, even with six-way superscalar datapaths with out-of-order
execution.

7 . 7 . 6 Register Renaming

Out-of-order processors use a technique called register renaming
to eliminate WAR and WAW hazards. Register renaming adds some
nonarchitectural renaming registers to the processor. For example, a
processor might add 20 renaming registers, called T0–T19. The

4 You might wonder why the LDR needs to be issued at all. The reason is that out-of-order
processors must guarantee that all of the same exceptions occur that would have occurred if
the program had been executed in its original order. The LDR potentially may produce a
Data Abort exception, so it must be issued to check for the exception, even though the result
can be discarded.

7.7 Advanced Microarchitecture 465

programmer cannot use these registers directly, because they are not
part of the architecture. However, the processor is free to use them to
eliminate hazards.

For example, in the previous section, a WAR hazard occurred
between the SUB and ADD instructions based on reusing R8. The out-of-
order processor could rename R8 to T0 for the SUB instruction. Then,
SUB could be executed sooner, because T0 has no dependency on the
ADD instruction. The processor keeps a table of which registers were
renamed so that it can consistently rename registers in subsequent depen-
dent instructions. In this example, R8 must also be renamed to T0 in the
AND instruction, because it refers to the result of SUB.

Figure 7.67 shows the same program from Figure 7.65 executing on
an out-of-order processor with register renaming. R8 is renamed to T0
in SUB and AND to eliminate the WAR hazard. The constraints on issuing
instructions are:

▶ Cycle 1
– The LDR instruction issues.
– The ADD instruction is dependent on LDR by way of R8, so it

cannot issue yet. However, the SUB instruction is independent
now that its destination has been renamed to T0, so SUB also
issues.

▶ Cycle 2
– Remember that there is a two-cycle latency between issuing an

LDR instruction and a dependent instruction, so ADD cannot issue
yet because of the R8 dependence.

Time (cycles)

1 2 3 4 5 6 7

RF
40

R0

RF

R8
+

DMIM

LDRLDR R8, [R0, #40]

ADD R9, R8, R1

SUB T0, R2, R3

AND R10, R4, T0

STR R7, [R11, #80]

SUB
–R3

R2
T0

RF
T0

R4

RF
&

DM

AND

R7

ORR R11, R5, R6
IM

RF
R1

R8

RF

R9
+

DMIM

ADD

STR
+80

R11

RAW

R6

R5
|ORR

2-cycle RAW

RAW

R10

R11

Figure 7.67 Out-of-order execution of a program using register renaming

466 CHAPTER SEVEN Microarchitecture

– The AND instruction is dependent on SUB, so it can issue. T0 is
forwarded from SUB to AND.

– The ORR instruction is independent, so it also issues.

▶ Cycle 3
– On cycle 3, R8 is available, so the ADD issues.
– R11 is also available, so STR issues.

The out-of-order processor with register renaming issues the six
instructions in three cycles, for an IPC of 2.

7 . 7 . 7 Multithreading

Because the ILP of real programs tends to be fairly low, adding more execu-
tion units to a superscalar or out-of-order processor gives diminishing
returns. Another problem, discussed in Chapter 8, is that memory is much
slower than the processor. Most loads and stores access a smaller and
faster memory, called a cache. However, when the instructions or data
are not available in the cache, the processor may stall for 100 or more
cycles while retrieving the information from the main memory. Multi-
threading is a technique that helps keep a processor with many execution
units busy even if the ILP of a program is low or the program is stalled wait-
ing for memory.

To explain multithreading, we need to define a few new terms.
A program running on a computer is called a process. Computers can
run multiple processes simultaneously; for example, you can play music
on a PC while surfing the web and running a virus checker. Each process
consists of one or more threads that also run simultaneously. For example,
a word processor may have one thread handling the user typing, a second
thread spell-checking the document while the user works, and a third
thread printing the document. In this way, the user does not have to wait,
for example, for a document to finish printing before being able to type
again. The degree to which a process can be split into multiple threads that
can run simultaneously defines its level of thread level parallelism (TLP).

In a conventional processor, the threads only give the illusion of running
simultaneously. The threads actually take turns being executed on the pro-
cessor under control of the OS. When one thread’s turn ends, the OS saves
its architectural state, loads the architectural state of the next thread, and
starts executing that next thread. This procedure is called context switching.
As long as the processor switches through all the threads fast enough,
the user perceives all of the threads as running at the same time.

A multithreaded processor contains more than one copy of its archi-
tectural state, so that more than one thread can be active at a time.
For example, if we extended a processor to have four program counters
and 64 registers, four threads could be available at one time. If one thread

7.7 Advanced Microarchitecture 467

stalls while waiting for data from main memory, then the processor could
context switch to another thread without any delay, because the program
counter and registers are already available. Moreover, if one thread lacks
sufficient parallelism to keep all the execution units busy in a superscalar
design, then another thread could issue instructions to the idle units.

Multithreading does not improve the performance of an individual
thread, because it does not increase the ILP. However, it does improve
the overall throughput of the processor, because multiple threads can
use processor resources that would have been idle when executing a single
thread. Multithreading is also relatively inexpensive to implement,
because it replicates only the PC and register file, not the execution units
and memories.

7 . 7 . 8 Multiprocessors

With contributions from Matthew Watkins
Modern processors have enormous numbers of transistors available.

Using them to increase the pipeline depth or to add more execution units
to a superscalar processor gives little performance benefit and is wasteful
of power. Around the year 2005, computer architects made a major shift
to building multiple copies of the processor on the same chip; these copies
are called cores.

A multiprocessor system consists of multiple processors and a method
for communication between the processors. Three common classes of
multiprocessors include symmetric (or homogeneous) multiprocessors,
heterogeneous multiprocessors, and clusters.

Symmetric Multiprocessors

Symmetric multiprocessors include two or more identical processors shar-
ing a single main memory. The multiple processors may be separate chips
or multiple cores on the same chip.

Multiprocessors can be used to run more threads simultaneously or to
run a particular thread faster. Running more threads simultaneously is easy;
the threads are simply divided up among the processors. Unfortunately,
typical PC users need to run only a small number of threads at any given
time. Running a particular thread faster is much more challenging. The
programmer must divide the existing thread into multiple threads to execute
on each processor. This becomes tricky when the processors need to commu-
nicate with each other. One of the major challenges for computer designers
and programmers is to effectively use large numbers of processor cores.

Symmetric multiprocessors have a number of advantages. They are
relatively simple to design because the processor can be designed once
and then replicated multiple times to increase performance. Programming
for and executing code on a symmetric multiprocessor is also relatively

468 CHAPTER SEVEN Microarchitecture

straightforward because any program can run on any processor in the
system and achieve approximately the same performance.

Heterogeneous Multiprocessors

Unfortunately, continuing to add more and more symmetric cores is not
guaranteed to provide continued performance improvement. As of 2015,
consumer applications used few threads at any given time, and a typical
consumer might be expected to have a couple of applications actually
computing simultaneously. Although this is enough to keep dual-core and
quad-core systems busy, unless programs start incorporating significantly
more parallelism, continuing to add more cores beyond this point will
provide diminishing benefits. As an added issue, because general-purpose
processors are designed to provide good average performance, they are
generally not the most power-efficient option for performing a given opera-
tion. This energy inefficiency is especially important in highly power-
constrained systems such as mobile phones.

Heterogeneous multiprocessors aim to address these issues by incor-
porating different types of cores and/or specialized hardware in a single
system. Each application uses those resources that provide the best perfor-
mance, or power-performance ratio, for that application. Because transis-
tors are fairly plentiful these days, the fact that not every application will
make use of every piece of hardware is of lesser concern. Heterogeneous
systems can take a number of forms. A heterogeneous system can incor-
porate cores with different microarchitectures that have different power,
performance, and area trade-offs.

One heterogeneous strategy popularized by ARM is big.LITTLE, in
which a system contains both energy-efficient and high-performance
cores. “LITTLE” cores such as the Cortex-A53 are single-issue or dual-
issue in-order processors with good energy efficiency that handle routine
tasks. “big” cores such as the Cortex-A57 are more complex superscalar
out-of-order cores delivering high performance for peak loads.

Another heterogeneous strategy is accelerators, in which a system
contains special-purpose hardware optimized for performance or energy
efficiency on specific types of tasks. For example, a mobile system-on-chip
(SoC) presently may contain dedicated accelerators for graphics proces-
sing, video, wireless communication, real-time tasks, and cryptography.
These accelerators can be 10–100x more efficient than general-purpose
processors for the same tasks. Digital signal processors are another class
of accelerators. These processors have a specialized instruction set opti-
mized for math-intensive tasks.

Heterogeneous systems are not without their drawbacks. They
add complexity in terms of both designing the different heterogeneous
elements and the additional programming effort to decide when and
how to make use of the varying resources. Symmetric and heterogeneous

Scientists searching for signs
of extraterrestrial intelligence
use the world’s largest
clustered multiprocessors to
analyze radio telescope data
for patterns that might be
signs of life in other solar
systems. The cluster,
operational since 1999,
consists of personal computers
owned by more than 6 million
volunteers around the world.

When a computer in the
cluster is idle, it fetches a piece
of the data from a centralized
server, analyzes the data, and
sends the results back to the
server. You can volunteer
your computer’s idle time
for the cluster by visiting
setiathome.berkeley.edu.

7.7 Advanced Microarchitecture 469

systems both have their places in modern systems. Symmetric multi-
processors are good for situations like large data centers that have lots
of thread level parallelism available. Heterogeneous systems are good
for cases that have more varying or special-purpose workloads.
Clusters

In clustered multiprocessors, each processor has its own local memory
system. One type of cluster is a group of personal computers connected
together on the network running software to jointly solve a large pro-
blem. Another type of cluster that has become very important is the data
center, in which racks of computers and disks are networked together and
share power and cooling. Major Internet companies including Google,
Amazon, and Facebook have driven the rapid development of data cen-
ters to support millions of users around the world.

7.8 REAL-WORLD PERSPECTIVE: EVOLUTION OF ARM
MICROARCHITECTURE*

This section traces the development of the ARM architecture and micro-
architecture since its inception in 1985. Table 7.7 summarizes the
highlights, showing 10x improvement in IPC and 250x increase in

DMIPS (Dhrystone millions of
instructions per second)
measures performance.

Table 7.7 Evolution of ARM processors

Microarchitecture Year Architecture
Pipeline
Depth

DMIPS/
MHz

Representative
Frequency
(MHz) L1 Cache

Relative
Size

ARM1 1985 v1 3 0.33 8 N/A 0.1

ARM6 1992 v3 3 0.65 30 4 KB unified 0.6

ARM7 1994 v4T 3 0.9 100 0–8 KB unified 1

ARM9E 1999 v5TE 5 1.1 300 0–16 KB I+D 3

ARM11 2002 v6 8 1.25 700 4–64 KB I+D 30

Cortex-A9 2009 v7 8 2.5 1000 16–64 KB I+D 100

Cortex-A7 2011 v7 8 1.9 1500 8–64 KB I+D 40

Cortex-A15 2011 v7 15 3.5 2000 32 KB I+D 240

Cortex-M0 + 2012 v7M 2 0.93 60–250 None 0.3

Cortex-A53 2012 v8 8 2.3 1500 8–64 KB I+D 50

Cortex-A57 2012 v8 15 4.1 2000 48 KB I + 32 KB D 300

470 CHAPTER SEVEN Microarchitecture

frequency over three decades and eight revisions of the architecture.
Frequency, area, and power will vary with manufacturing process and
the goals, schedule, and capabilities of the design team. The representative
frequencies are quoted for a fabrication process at the time of product
introduction, so much of the frequency gain comes from transistors rather
than microarchitecture. The relative size is normalized by the transistor fea-
ture size and can vary widely depending on cache size and other factors.

Figure 7.68 shows a die photograph of the ARM1 processor, which
contained 25,000 transistors in a three-stage pipeline. If you count care-
fully, you can observe the 32 bits of the datapath at the bottom. The reg-
ister file is on the left and the ALU is on the right. At the very left is the
program counter; observe that the two least significant bits at the bottom
are empty (tied to 0) and the six at the top are different because they are
used for status bits. The controller sits on top of the datapath. Some of the
rectangular blocks are PLAs implementing control logic. The rectangles
around the edge are I/O pads, with tiny gold bond wires visible leading
out of the picture.

Figure 7.68 ARM1 die photograph
(Reproduced with permission from ARM. © 1985 ARM Ltd.)

7.8 Real-World Perspective: Evolution of ARM Microarchitecture 471

In 1990, Acorn spun off the processor design team to establish a new
company, Advanced RISC Machines (later named ARM Holdings),
which began licensing the ARMv3 architecture. The ARMv3 architecture
moved the status bits from the PC to the Current Program Status Register
and extended the PC to 32 bits. Apple bought a major stake in ARM and
used the ARM 610 in the Newton computer, the world’s first Personal
Digital Assistant (PDA) and one of the first commercial applications of
handwriting recognition. Newton proved to be ahead of its time, but it
laid the foundation for more successful PDAs and later for smart phones
and tablets.

ARM achieved huge success with the ARM7 line in 1994, especially the
ARM7TDMI, which became one of the mostly widely used RISC processors
in embedded systems over the next 15 years. The ARM7TDMI used the
ARMv4T instruction set, which introduced the Thumb instruction set for
better code density and defined halfword and signed byte load and store
instructions. TDMI stood for Thumb, JTAG Debug, fast Multiply, and In-
Circuit Debug. The various debug features help programmers write code
on the hardware and test it from a PC using a simple cable, an important
advance at the time. ARM7 used a simple three-stage pipeline with Fetch,
Decode, and Execute stages. The processor had a unified cache containing
both instructions and data. Because the cache in a pipelined processor is
usually busy every cycle fetching instructions, ARM7 stalled memory
instructions in the Execute stage to make time for the cache to access the
data. Figure 7.69 shows a block diagram of the processor. Rather than man-
ufacturing a chip directly, ARM licensed the processor to other companies
that put them into their larger system-on-chip (SoC). Customers could buy
the processor as a hard macro (a complete and efficient but inflexible layout
that could be dropped directly into a chip) or as a soft macro (Verilog code
that could be synthesized by the customer). The ARM7 was used in a vast
number of products, including mobile phones, the Apple iPod, Lego Mind-
storms NXT, Nintendo game machines, and automobiles. Since then, nearly
all mobile phones have been built around ARM processors.

The ARM9E line improved on ARM7 with a five-stage pipeline simi-
lar to the one described in this chapter, separate instruction and data
caches, and new Thumb and digital signal processing instructions in the
ARMv5TE architecture. Figure 7.70 shows a block diagram of the
ARM9 containing many of the same components as we encountered in
this chapter but adding the multiplier and shifter. The IA/ID/DA/DD sig-
nals are the Instruction and Data Address and Data busses to the memory
system, and the IAreg is the PC. The next-generation ARM11 extended
the pipeline further to eight stages to boost frequency and defined
Thumb2 and SIMD instructions.

The ARMv7 instruction set added Advanced SIMD instructions oper-
ating on double- and quad-word registers. It also defined a v7-M variant

Sophie Wilson and Steve
Furber together designed the
ARM1.

Sophie Wilson (1957–) was
born in Yorkshire, England, and
studied Computer Science at
the University of Cambridge.
She designed the operating
system and wrote the BBC Basic
Interpreter for Acorn Computer,
and then codesigned the ARM1
and subsequent processors
through the ARM7. By 1999, she
designed the Firepath SIMD
digital signal processor and spun
it off as a new company, which
Broadcom acquired in 2001. She
is presently a Senior Director at
Broadcom Corporation and a
Fellow of the Royal Society, the
Royal Academy of Engineering,
the British Computer Society, and
the Women’s Engineering
Society.

(Photograph © Sophie Wilson.
Reproduced with permission.)

472 CHAPTER SEVEN Microarchitecture

supporting only Thumb instructions. ARM introduced the Cortex-A and
Cortex-M families of processors. The Cortex-A family of high-perfor-
mance processors are now used in virtually all smart phones and tablets.
The Cortex-M family, running the Thumb instruction set, are tiny and
inexpensive microcontrollers used in embedded systems. For example,
the Cortex-M0+ uses a two-stage pipeline and only 12,000 gates, com-
pared with hundreds of thousands in an A-series processor. It costs well
under a dollar as a stand-alone chip, or under a penny when integrated

Steve Furber (1953–) was born in
Manchester, England, and
received a PhD in aerodynamics
from the University of
Cambridge. He joined Acorn
Computer, where he codesigned
the BBCMicro and ARM1
microprocessor for Acorn
Computer. In 1990, he joined the
faculty of the University of
Manchester, where his research
has focused on asynchronous
computing and neural systems.

(Photograph © 2012 The
University of Manchester.
Reproduced with permission.)

ALE
A[31:0]

ABE
Scan control

Instruction
decoder and
logic control

DBGRQI
BREAKPTI
DBGACK
ECLK
nEXEC
ISYNC
BL[3:0]
APE
MCLK
nWAIT
nRW
MAS[1:0]
nIRQ
nFIQ
nRESET
ABORT
nTRANS
nMREQ
nOPC
SEQ
LOCK

nCPI
CPA
CPB
nM[4:0]
TBE
TBIT
HIGHZ

Address register

Address
incrementer

Register bank
(31 × 32-bit registers)

(6 status registers)

32 × 8
Multiplier

Barrel shifter

32-bit ALU

Write data register
Instruction pipeline
read data register

thumb instruction controller

nENIN
DBE

nENOUT

D[31:0]

A
LU

 b
us

A
 b

us

B
 b

us
In

cr
em

en
te

r
bu

s

P
C

 b
us

Figure 7.69 ARM7 block diagram
(Reproduced with permission
from ARM. © 1998 ARM Ltd.)

7.8 Real-World Perspective: Evolution of ARM Microarchitecture 473

on a larger SoC. The power consumption is roughly 3 μW/MHz, so the
processor powered by a watch battery could run continuously for nearly
a year at 10 MHz.

Higher-end ARMv7 processors captured the cell phone and tablet
markets. The Cortex-A9 was widely used in mobile phones, often as part
of a dual-core SoC containing two Cortex-A9 processors, a graphics
accelerator, a cellular modem, and other peripherals. Figure 7.71 shows
a block diagram of the Cortex-A9. The processor decodes two instruc-
tions per cycle, performs register renaming, and issues them to out-of-
order execution units.

Energy efficiency and performance are both critical for mobile
devices, so ARM has been promoting the big.LITTLE architecture
combining several high-performance “big” cores for peak workloads
with energy-efficient “LITTLE” cores that handle most routine processes.
For example, the Samsung Exynos 5 Octa in the Galaxy S5 phone
contains four Cortex-A15 big cores running up to 2.1 GHz and four
Cortex-A7 LITTLE cores running at up to 1.5 GHz. Figure 7.72 shows
pipeline diagrams for the two types of cores. The Cortex-A7 is an in-order
processor that can decode and issue up to one memory instruction and

LAScan LAreg

IINC

C[..]

DINFWD[..]

B[..]

A[..]

PSRRD[..]

Amux

Bmux

Cmux

Shift

SHIFTER

MUL ALU

DINC

Byte/
Word
Repl

DD[..]

DA[..]

DDIN[]

DDScan

DAScan

DAregAData[..]

BData[..]

uALUCut[..]

Imm

IDScan

Instruction
Pipeline

Instruction Decode and Datapath control logicID[..]

Vectors

PSR

REGBANK
+PC

DIN[..] Byte Rot
/Sign. Ex.

RESULT([..]

LA[..]

Figure 7.70 ARM9 block diagram
(Reproduced with permission from the ARM9TDMI Technical Reference Manual. © 1999 ARM Ltd.)

474 CHAPTER SEVEN Microarchitecture

CoreSight
DebugAccess Port

Profiling Monitor Block

Dual-instruction
Decode stage Branch

Monitor

Register
Rename stage

Virtual to
physical

register pool

Out of order
multi-issue with

speculation
ALU/MUL

ALU

FPU/NEON

Address

Memory System
Auto-prefetcher

Data Cache

MMU

µTLB Program
Trace
Unit

OoO
Write
back
stage

Load-Store Unit

Store Buffer
Quad-slot with forwarding

In
st

ru
ct

io
n

qu
eu

e
an

d
D

is
pa

tc
h

Instruction prefetch stage

Fast-loop
mode

Instruction
cache

Branch prediction

Global History Buffer

BR-Target Addr Cache

Return Stack

In
st

ru
ct

io
n

qu
eu

e

P
re

di
ct

io
n

qu
eu

e

Figure 7.71 Cortex-A9 block diagram
(This image has been sourced by the authors and does not imply ARM endorsement.)

Lowest

Operating
Point Fetch

Decode

Integer

Multiply

Floating-Point/NEON

Dual Issue

Load/Store

Fetch
Decode, Rename &

Dispatch

Queue Issue Writeback
Integer

Integer

Multiply

Branch

Load

Store

Floating-Point/NEON

Loop Cache

Queue

Writeback

Figure 7.72 Cortex-A7 and -A15
block diagrams
(This image has been sourced by
the authors and does not imply
ARM endorsement.)

one other instruction each cycle. The Cortex-A15 is a much more com-
plex out-of-order processor that can decode up to three instructions each
cycle. The pipeline length almost doubles to handle the complexity and
boost clock speed, so a more accurate branch predictor is necessary to
compensate for the larger branch misprediction penalty. The Cortex-
A15 delivers approximately 2.5x the performance of the Cortex-A7, but
at 6x the power. Smart phones can only run the big cores briefly before
the chip will begin to overheat and throttle itself back.

The ARMv8 architecture is a streamlined 64-bit architecture. ARM’s
Cortex-A53 and -A57 have pipelines similar to the Cortex-A7 and -A15,
respectively, but boost the registers and datapaths to 64 bits to handle
ARMv8. Apple popularized the 64-bit architecture in 2013, when it intro-
duced its own implementation in the iPhone and iPad.

7.9 SUMMARY

This chapter has described three ways to build processors, each with dif-
ferent performance and cost trade-offs. We find this topic almost magical:
how can such a seemingly complicated device as a microprocessor actu-
ally be simple enough to fit in a half-page schematic? Moreover, the inner
workings, so mysterious to the uninitiated, are actually reasonably
straightforward.

The microarchitectures have drawn together almost every topic cov-
ered in the text so far. Piecing together the microarchitecture puzzle illus-
trates the principles introduced in previous chapters, including the design
of combinational and sequential circuits (covered in Chapters 2 and 3),
the application of many of the building blocks (described in Chapter 5),
and the implementation of the ARM architecture (introduced in Chapter
6). The microarchitectures can be described in a few pages of HDL using
the techniques from Chapter 4.

Building the microarchitectures has also heavily used our techniques
for managing complexity. The microarchitectural abstraction forms the
link between the logic and architecture abstractions, forming the crux of
this book on digital design and computer architecture. We also use the
abstractions of block diagrams and HDL to succinctly describe the
arrangement of components. The microarchitectures exploit regularity
and modularity, reusing a library of common building blocks such as
ALUs, memories, multiplexers, and registers. Hierarchy is used in numer-
ous ways. The microarchitectures are partitioned into the datapath and
control units. Each of these units is built from logic blocks, which can
be built from gates, which in turn can be built from transistors using
the techniques developed in the first five chapters.

476 CHAPTER SEVEN Microarchitecture

This chapter has compared single-cycle, multicycle, and pipelined
microarchitectures for the ARM processor. All three microarchitectures
implement the same subset of the ARM instruction set and have the same
architectural state. The single-cycle processor is the most straightforward
and has a CPI of 1.

The multicycle processor uses a variable number of shorter steps to
execute instructions. It thus can reuse the ALU, rather than requiring sev-
eral adders. However, it does require several nonarchitectural registers to
store results between steps. The multicycle design in principle could be
faster, because not all instructions must be equally long. In practice, it is
generally slower, because it is limited by the slowest steps and by the
sequencing overhead in each step.

The pipelined processor divides the single-cycle processor into five
relatively fast pipeline stages. It adds pipeline registers between the stages
to separate the five instructions that are simultaneously executing. It nom-
inally has a CPI of 1, but hazards force stalls or flushes that increase the
CPI slightly. Hazard resolution also costs some extra hardware and
design complexity. The clock period ideally could be five times shorter
than that of the single-cycle processor. In practice, it is not that short,
because it is limited by the slowest stage and by the sequencing overhead
in each stage. Nevertheless, pipelining provides substantial performance
benefits. All modern high-performance microprocessors use pipelining
today.

Although the microarchitectures in this chapter implement only a
subset of the ARM architecture, we have seen that supporting more
instructions involves straightforward enhancements of the datapath and
controller.

A major limitation of this chapter is that we have assumed an ideal
memory system that is fast and large enough to store the entire program
and data. In reality, large fast memories are prohibitively expensive. The
next chapter shows how to get most of the benefits of a large fast memory
with a small fast memory that holds the most commonly used information
and one or more larger but slower memories holding the rest of the
information.

7.9 Summary 477

Exercises

Exercise 7.1 Suppose that one of the following control signals in the single-cycle
ARM processor has a stuck-at-0 fault, meaning that the signal is always 0,
regardless of its intended value. What instructions would malfunction? Why?

(a) RegW

(b) ALUOp

(c) MemW

Exercise 7.2 Repeat Exercise 7.1, assuming that the signal has a stuck-at-1 fault.

Exercise 7.3 Modify the single-cycle ARM processor to implement one of the
following instructions. See Appendix B for a definition of the instructions. Mark
up a copy of Figure 7.13 to indicate the changes to the datapath. Name any new
control signals. Mark up a copy of Tables 7.2 and 7.3 to show the changes to the
Main Decoder and ALU Decoder. Describe any other changes that are required.

(a) TST

(b) LSL

(c) CMN

(d) ADC

Exercise 7.4 Repeat Exercise 7.3 for the following ARM instructions.

(a) EOR

(b) LSR

(c) TEQ

(d) RSB

Exercise 7.5 ARM includes LDR with post-indexing, which updates the base
register after completing the load. LDR Rd,[Rn],Rm is equivalent to the following
two instructions:

LDR Rd,[Rn]

ADD Rn,Rn,Rm

Repeat Exercise 7.3 for LDR with post-indexing. Is it possible to add the
instruction without modifying the register file?

478 CHAPTER SEVEN Microarchitecture

Exercise 7.6 ARM includes LDR with pre-indexing, which updates the base
register after completing the load. LDR Rd,[Rn,Rm]! is equivalent to the following
two instructions:

LDR Rd,[Rn, Rm]
ADD Rn,Rn,Rm

Repeat Exercise 7.3 for LDR with pre-indexing. Is it possible to add the instruction
without modifying the register file?

Exercise 7.7 Your friend is a crack circuit designer. She has offered to redesign one of
the units in the single-cycle ARM processor to have half the delay. Using the delays
from Table 7.5, which unit should she work on to obtain the greatest speedup of the
overall processor, and what would the cycle time of the improved machine be?

Exercise 7.8 Consider the delays given in Table 7.5. Ben Bitdiddle builds a prefix
adder that reduces the ALU delay by 20 ps. If the other element delays stay the
same, find the new cycle time of the single-cycle ARM processor and determine
how long it takes to execute a benchmark with 100 billion instructions.

Exercise 7.9 Modify the HDL code for the single-cycle ARM processor, given in
Section 7.6.1, to handle one of the new instructions from Exercise 7.3. Enhance
the testbench, given in Section 7.6.3, to test the new instruction.

Exercise 7.10 Repeat Exercise 7.9 for the new instructions from Exercise 7.4.

Exercise 7.11 Suppose one of the following control signals in the multicycle ARM
processor has a stuck-at-0 fault, meaning that the signal is always 0, regardless of
its intended value. What instructions would malfunction? Why?

(a) RegSrc1

(b) AdrSrc

(c) NextPC

Exercise 7.12 Repeat Exercise 7.11, assuming that the signal has a stuck-at-1 fault.

Exercise 7.13 Modify the multicycle ARM processor to implement one of the
following instructions. See Appendix B for a definition of the instructions. Mark
up a copy of Figure 7.30 to indicate the changes to the datapath. Name any new
control signals. Mark up a copy of Figure 7.41 to show the changes to the
controller FSM. Describe any other changes that are required.

(a) ASR

(b) TST

(c) SBC

(d) ROR

Exercises 479

Exercise 7.14 Repeat Exercise 7.13 for the following ARM instructions.

(a) BL

(b) LDR (with positive or negative immediate offset)

(c) LDRB (with positive immediate offset only)

(d) BIC

Exercise 7.15 Repeat Exercise 7.5 for the multicycle ARM processor. Show the
changes to the multicycle datapath and control FSM. Is it possible to add the
instruction without modifying the register file?

Exercise 7.16 Repeat Exercise 7.6 for the multicycle ARM processor. Show the
changes to the multicycle datapath and control FSM. Is it possible to add the
instruction without modifying the register file?

Exercise 7.17 Repeat Excercise 7.7 for the multicycle ARM processor. Assume the
instruction mix of Example 7.5.

Exercise 7.18 Repeat Exercise 7.8 for the multicycle ARM processor. Assume the
instruction mix of Example 7.5.

Exercise 7.19 Your friend, the crack circuit designer, has offered to redesign
one of the units in the multicycle ARM processor to be much faster. Using the
delays from Table 7.5, which unit should she work on to obtain the greatest
speedup of the overall processor? How fast should it be? (Making it faster than
necessary is a waste of your friend’s effort.) What is the cycle time of the improved
processor?

Exercise 7.20 Goliath Corp claims to have a patent on a three-ported register
file. Rather than fighting Goliath in court, Ben Bitdiddle designs a new register file
that has only a single read/write port (like the combined instruction and data
memory). Redesign the ARM multicycle datapath and controller to use his new
register file.

Exercise 7.21 Suppose the multicycle ARM processor has the component delays
given in Table 7.5. Alyssa P. Hacker designs a new register file that has 40% less
power but twice as much delay. Should she switch to the slower but lower power
register file for her multicycle processor design?

Exercise 7.22 What is the CPI of the redesigned multicycle ARM processor from
Exercise 7.20? Use the instruction mix from Example 7.5.

480 CHAPTER SEVEN Microarchitecture

Exercise 7.23 How many cycles are required to run the following program on the
multicycle ARM processor? What is the CPI of this program?

MOV R0, #5 ; result = 5
MOV R1, #0 ; R1 = 0

L1
CMP R0, R1
BEQ DONE ; if result > 0, loop
SUB R0, R0, #1 ; result = result-1
B L1

DONE

Exercise 7.24 Repeat Exercise 7.23 for the following program.

MOV R0, #0 ; i = 0
MOV R1, #0 ; sum = 0
MOV R2, #10 ; R2 = 10

LOOP
CMP R2, R0 ; R2 == R0?
BEQ L2
ADD R1, R1, R0 ; sum = sum + i
ADD R0, R0, #1 ; increment i
B
LOOP

L2

Exercise 7.25 Write HDL code for the multicycle ARM processor. The processor
should be compatible with the following top-level module. The mem module is
used to hold both instructions and data. Test your processor using the testbench
from Section 7.6.3.

module top(input logic clk, reset,
output logic [31:0] WriteData, Adr,
output logic MemWrite);

logic [31:0] ReadData;

// instantiate processor and shared memory
arm arm(clk, reset, MemWrite, Adr,

WriteData, ReadData);
mem mem(clk, MemWrite, Adr, WriteData, ReadData);

endmodule

module mem(input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);

logic [31:0] RAM[63:0];
initial

$readmemh("memfile.dat",RAM);

Exercises 481

assign rd = RAM[a[31:2]]; // word aligned

always_ff @(posedge clk)
if (we) RAM[a[31:2]] <= wd;

endmodule

Exercise 7.26 Extend your HDL code for the multicycle ARM processor from
Exercise 7.25 to handle one of the new instructions from Exercise 7.14. Enhance
the testbench to test the new instruction.

Exercise 7.27 Repeat Exercise 7.26 for one of the new instructions from
Exercise 7.13.

Exercise 7.28 The pipelined ARM processor is running the following code
snippet. Which registers are being written, and which are being read on the fifth
cycle? Recall that the pipelined ARM processor has a Hazard Unit.

MOV R1, #42
SUB R0, R1, #5
LDR R3, [R0, #18]
STR R4, [R1, #63]
ORR R2, R0, R3

Exercise 7.29 Repeat Exercise 7.28 for the following ARM code snippet.

ADD R0, R4, R5
SUB R1, R6, R7
AND R2, R0, R1
ORR R3, R2, R5
LSL R4, R2, R3

Exercise 7.30 Using a diagram similar to Figure 7.53, show the forwarding and
stalls needed to execute the following instructions on the pipelined ARM
processor.

ADD R0, R4, R9
SUB R0, R0, R2
LDR R1, [R0, #60]
AND R2, R1, R0

Exercise 7.31 Repeat Exercise 7.30 for the following instructions.

ADD R0, R11, R5
LDR R2, [R1, #45]
SUB R5, R0, R2
AND R5, R2, R5

Exercise 7.32 How many cycles are required for the pipelined ARM processor to
issue all of the instructions for the program in Exercise 7.24? What is the CPI of
the processor on this program?

482 CHAPTER SEVEN Microarchitecture

Exercise 7.33 Repeat Exercise 7.32 for the instructions of the program in
Exercise 7.23.

Exercise 7.34 Explain how to extend the pipelined ARM processor to handle the
EOR instruction.

Exercise 7.35 Explain how to extend the pipelined processor to handle the CMN
instruction.

Exercise 7.36 Section 7.5.3 points out that the pipelined processor performance
might be better if branches take place during the Decode stage rather than the
Execute stage. Show how to modify the pipelined processor from Figure 7.58 to
branch in the Decode stage. How do the stall, flush, and forwarding signals
change? Redo Examples 7.7 and 7.8 to find the new CPI, cycle time, and overall
time to execute the program.

Exercise 7.37 Your friend, the crack circuit designer, has offered to redesign one
of the units in the pipelined ARM processor to be much faster. Using the delays
from Table 7.5, which unit should she work on to obtain the greatest speedup of
the overall processor? How fast should it be? (Making it faster than necessary is a
waste of your friend’s effort.) What is the cycle time of the improved processor?

Exercise 7.38 Consider the delays from Table 7.5. Now suppose that the ALU
were 20% faster. Would the cycle time of the pipelined ARM processor change?
What if the ALU were 20% slower?

Exercise 7.39 Suppose the ARM pipelined processor is divided into 10 stages of
400 ps each, including sequencing overhead. Assume the instruction mix of
Example 7.7. Also assume that 50% of the loads are immediately followed by an
instruction that uses the result, requiring six stalls, and that 30% of the branches
are mispredicted. The target address of a branch instruction is not computed until
the end of the second stage. Calculate the average CPI and execution time of
computing 100 billion instructions from the SPECINT2000 benchmark for this
10-stage pipelined processor.

Exercise 7.40 Write HDL code for the pipelined ARM processor. The processor
should be compatible with the top-level module from HDL Example 7.13. It
should support the seven instructions described in this chapter: ADD, SUB, AND, ORR
(with register and immediate addressing modes but no shifts), LDR, STR
(with positive immediate offset), and B. Test your design using the testbench from
HDL Example 7.12.

Exercise 7.41 Design the Hazard Unit shown in Figure 7.58 for the pipelined
ARM processor. Use an HDL to implement your design. Sketch the hardware that
a synthesis tool might generate from your HDL.

Exercises 483

Interview Questions

The following exercises present questions that have been asked at interviews for
digital design jobs.

Question 7.1 Explain the advantages of pipelined microprocessors?

Question 7.2 If additional pipeline stages allow a processor to go faster, why don’t
processors have 100 pipeline stages?

Question 7.3 Describe what a hazard is in a microprocessor and explain ways
in which it can be resolved. What are the pros and cons of each way?

Question 7.4 Describe the concept of a superscalar processor and its pros
and cons?

484 CHAPTER SEVEN Microarchitecture

	Outline placeholder
	7.1 Introduction
	7.1.1 Architectural State and Instruction Set
	7.1.2 Design Process
	7.1.3 Microarchitectures

	7.2 Performance Analysis
	7.3 Single-Cycle Processor
	7.3.1 Single-Cycle Datapath
	LINK9780128000564000078s9045
	LDR
	STR

	LINK9780128000564000078s0045
	LINK9780128000564000078s0050
	LINK9780128000564000078s9055
	7.3.2 Single-Cycle Control
	7.3.3 More Instructions
	7.3.4 Performance Analysis

	7.4 Multicycle Processor
	7.4.1 Multicycle Datapath
	LDR
	STR
	Data-Processing Instructions with Immediate Addressing

	LINK9780128000564000078s0085
	B

	7.4.2 Multicycle Control
	7.4.3 Performance Analysis

	7.5 Pipelined Processor
	7.5.1 Pipelined Datapath
	7.5.2 Pipelined Control
	7.5.3 Hazards
	LINK9780128000564000078s0120
	LINK9780128000564000078s0125
	LINK9780128000564000078s0130
	LINK9780128000564000078s0135

	7.5.4 Performance Analysis

	7.6 HDL Representation*
	7.6.1 Single-Cycle Processor
	7.6.2 Generic Building Blocks
	7.6.3 Testbench

	7.7 Advanced Microarchitecture*
	7.7.1 Deep Pipelines
	7.7.2 Micro-Operations
	7.7.3 Branch Prediction
	7.7.4 Superscalar Processor
	7.7.5 Out-of-Order Processor
	7.7.6 Register Renaming
	7.7.7 Multithreading
	7.7.8 Multiprocessors
	LINK9780128000564000078s0215
	LINK9780128000564000078s0220
	LINK9780128000564000078s0225

	7.8 Real-World Perspective: Evolution of ARM Microarchitecture*
	7.9 Summary
	Exercises
	Interview Questions

