

6Architecture

6.1 INTRODUCTION

The previous chapters introduced digital design principles and building
blocks. In this chapter, we jump up a few levels of abstraction to define
the architecture of a computer. The architecture is the programmer’s view
of a computer. It is defined by the instruction set (language) and operand
locations (registers and memory). Many different architectures exist, such
as ARM, x86, MIPS, SPARC, and PowerPC.

The first step in understanding any computer architecture is to learn
its language. The words in a computer’s language are called instructions.
The computer’s vocabulary is called the instruction set. All programs run-
ning on a computer use the same instruction set. Even complex software
applications, such as word processing and spreadsheet applications, are
eventually compiled into a series of simple instructions such as add, sub-
tract, and branch. Computer instructions indicate both the operation to
perform and the operands to use. The operands may come from
memory, from registers, or from the instruction itself.

Computer hardware understands only 1’s and 0’s, so instructions are
encoded as binary numbers in a format called machine language. Just as
we use letters to encode human language, computers use binary numbers
to encode machine language. The ARM architecture represents each instruc-
tion as a 32-bit word. Microprocessors are digital systems that read and
execute machine language instructions. However, humans consider reading
machine language to be tedious, so we prefer to represent the instructions
in a symbolic format called assembly language.

The instruction sets of different architectures are more like different
dialects than different languages. Almost all architectures define basic
instructions, such as add, subtract, and branch, that operate on memory
or registers. Once you have learned one instruction set, understanding
others is fairly straightforward.

6.1 Introduction

6.2 Assembly Language

6.3 Programming

6.4 Machine Language

6.5 Lights, Camera, Action:
Compiling, Assembling, and
Loading*

6.6 Odds and Ends*

6.7 Evolution of ARM
Architecture

6.8 Another Perspective: x86
Architecture

6.9 Summary

Exercises

Interview Questions

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

295

The “ARM architecture” we
describe is ARM version 4
(ARMv4), which forms the
core of the instruction set.
Section 6.7 summarizes new
features in versions 5–8 of the
architecture. The ARM
Architecture Reference
Manual (ARM), available
online, is the authoritative
definition of the architecture.

A computer architecture does not define the underlying hardware
implementation. Often, many different hardware implementations of a
single architecture exist. For example, Intel and Advanced Micro Devices
(AMD) both sell various microprocessors belonging to the same x86
architecture. They all can run the same programs, but they use different
underlying hardware and therefore offer trade-offs in performance, price,
and power. Some microprocessors are optimized for high-performance
servers, whereas others are optimized for long battery life in laptop com-
puters. The specific arrangement of registers, memories, ALUs, and other
building blocks to form a microprocessor is called the microarchitecture
and will be the subject of Chapter 7. Often, many different microarchitec-
tures exist for a single architecture.

In this text, we introduce the ARM architecture. This architecture was
first developed in the 1980s by Acorn Computer Group, which spun off
Advanced RISC Machines Ltd., now known as ARM. Over 10 billion
ARM processors are sold every year. Almost all cell phones and tablets
contain multiple ARM processors. The architecture is used in everything
from pinball machines to cameras to robots to cars to rack-mounted
servers. ARM is unusual in that it does not sell processors directly, but rather
licenses other companies to build its processors, often as part of a larger sys-
tem-on-chip. For example, Samsung, Altera, Apple, and Qualcomm all build
ARM processors, either using microarchitectures purchased from ARM or
microarchitectures developed internally under license from ARM. We
choose to focus on ARM because it is a commercial leader and because the
architecture is clean, with few idiosyncrasies. We start by introducing assem-
bly language instructions, operand locations, and common programming
constructs, such as branches, loops, array manipulations, and function calls.
We then describe how the assembly language translates into machine lan-
guage and show how a program is loaded into memory and executed.

Throughout the chapter, we motivate the design of the ARM archi-
tecture using four principles articulated by David Patterson and John
Hennessy in their text Computer Organization and Design: (1) regularity
supports simplicity; (2) make the common case fast; (3) smaller is faster;
and (4) good design demands good compromises.

6.2 ASSEMBLY LANGUAGE

Assembly language is the human-readable representation of the compu-
ter’s native language. Each assembly language instruction specifies both
the operation to perform and the operands on which to operate. We
introduce simple arithmetic instructions and show how these operations
are written in assembly language. We then define the ARM instruction
operands: registers, memory, and constants.

This chapter assumes that you already have some familiarity
with a high-level programming language such as C, C++, or Java.

296 CHAPTER SIX Architecture

(These languages are practically identical for most of the examples in this
chapter, but where they differ, we will use C.) Appendix C provides an
introduction to C for those with little or no prior programming
experience.

6 . 2 . 1 Instructions

The most common operation computers perform is addition. Code
Example 6.1 shows code for adding variables b and c and writing the
result to a. The code is shown on the left in a high-level language (using
the syntax of C, C++, and Java) and then rewritten on the right in ARM
assembly language. Note that statements in a C program end with a
semicolon.

The first part of the assembly instruction, ADD, is called themnemonic and
indicates what operation to perform. The operation is performed on b and c,
the source operands, and the result is written to a, the destination operand.

Code Example 6.2 shows that subtraction is similar to addition. The
instruction format is the same as the ADD instruction except for the opera-
tion specification, SUB. This consistent instruction format is an example of
the first design principle:

Design Principle 1: Regularity supports simplicity.

Instructions with a consistent number of operands—in this case, two
sources and one destination—are easier to encode and handle in hard-
ware. More complex high-level code translates into multiple ARM
instructions, as shown in Code Example 6.3.

In the high-level language examples, single-line comments begin with
// and continue until the end of the line. Multiline comments begin with
/* and end with */. In ARM assembly language, only single-line comments

We used Keil’s ARM
Microcontroller Development
Kit (MDK-ARM) to compile,
assemble, and simulate the
example assembly code in this
chapter. The MDK-ARM is a
free development tool that
comes with a complete ARM
compiler. Labs available on
this textbook’s companion site
(see Preface) show how to
install and use this tool to
write, compile, simulate, and
debug both C and assembly
programs.

Code Example 6.1 ADDITION

High-Level Code

a = b + c;

ARM Assembly Code

ADD a, b, c

Code Example 6.2 SUBTRACTION

High-Level Code

a = b − c;

ARM Assembly Code

SUB a, b, c

Mnemonic (pronounced
ni-mon-ik) comes from the
Greek word μιμνΕσκεστηαι, to
remember. The assembly
language mnemonic is easier
to remember than a machine
language pattern of 0’s and 1’s
representing the same
operation.

6.2 Assembly Language 297

are used. They begin with a semicolon (;) and continue until the end of
the line. The assembly language program in Code Example 6.3 requires a
temporary variable t to store the intermediate result. Using multiple
assembly language instructions to perform more complex operations is an
example of the second design principle of computer architecture:

Design Principle 2: Make the common case fast.

The ARM instruction set makes the common case fast by including
only simple, commonly used instructions. The number of instructions is
kept small so that the hardware required to decode the instruction and
its operands can be simple, small, and fast. More elaborate operations
that are less common are performed using sequences of multiple simple
instructions. Thus, ARM is a reduced instruction set computer (RISC)
architecture. Architectures with many complex instructions, such as
Intel’s x86 architecture, are complex instruction set computers (CISC).
For example, x86 defines a “string move” instruction that copies a string
(a series of characters) from one part of memory to another. Such an
operation requires many, possibly even hundreds, of simple instructions
in a RISC machine. However, the cost of implementing complex instruc-
tions in a CISC architecture is added hardware and overhead that slows
down the simple instructions.

A RISC architecture minimizes the hardware complexity and the neces-
sary instruction encoding by keeping the set of distinct instructions small.
For example, an instruction set with 64 simple instructions would need
log264= 6 bits to encode the operation. An instruction set with 256 com-
plex instructions would need log2256= 8 bits of encoding per instruction.
In a CISCmachine, even though the complex instructions may be used only
rarely, they add overhead to all instructions, even the simple ones.

6 . 2 . 2 Operands: Registers, Memory, and Constants

An instruction operates on operands. In Code Example 6.1, the variables
a, b, and c are all operands. But computers operate on 1’s and 0’s, not
variable names. The instructions need a physical location from which to
retrieve the binary data. Operands can be stored in registers or memory,
or they may be constants stored in the instruction itself. Computers use

Code Example 6.3 MORE COMPLEX CODE

High-Level Code

a = b + c − d; // single-line comment
/* multiple-line

comment */

ARM Assembly Code

ADD t, b, c ; t = b + c
SUB a, t, d ; a = t − d

298 CHAPTER SIX Architecture

various locations to hold operands in order to optimize for speed and
data capacity. Operands stored as constants or in registers are accessed
quickly, but they hold only a small amount of data. Additional data must
be accessed from memory, which is large but slow. ARM (prior to
ARMv8) is called a 32-bit architecture because it operates on 32-bit data.

Registers
Instructions need to access operands quickly so that they can run fast. But
operands stored in memory take a long time to retrieve. Therefore, most
architectures specify a small number of registers that hold commonly used
operands. The ARM architecture uses 16 registers, called the register set
or register file. The fewer the registers, the faster they can be accessed.
This leads to the third design principle:

Design Principle 3: Smaller is faster.

Looking up information from a small number of relevant books on
your desk is a lot faster than searching for the information in the stacks
at a library. Likewise, reading data from a small register file is faster than
reading it from a large memory. A register file is typically built from a
small SRAM array (see Section 5.5.3).

Code Example 6.4 shows the ADD instruction with register operands.
ARM register names are preceded by the letter 'R'. The variables a, b, and
c are arbitrarily placed in R0, R1, and R2. The name R1 is pronounced
“register 1” or “R1” or “register R1”. The instruction adds the 32-bit
values contained in R1 (b) and R2 (c) and writes the 32-bit result to R0
(a). Code Example 6.5 shows ARM assembly code using a register, R4,
to store the intermediate calculation of b + c:

Version 8 of the ARM
architecture has been extended
to 64 bits, but we will focus on
the 32-bit version in this book.

Code Example 6.4 REGISTER OPERANDS

High-Level Code

a = b + c;

ARM Assembly Code

; R0 = a, R1 = b, R2 = c
ADD R0, R1, R2 ; a = b + c

Code Example 6.5 TEMPORARY REGISTERS

High-Level Code

a = b + c − d;

ARM Assembly Code

; R0 = a, R1 = b, R2 = c, R3 = d; R4 = t
ADD R4, R1, R2 ; t = b + c
SUB R0, R4, R3 ; a = t − d

6.2 Assembly Language 299

Example 6.1 TRANSLATING HIGH-LEVEL CODE TO ASSEMBLY
LANGUAGE

Translate the following high-level code into ARM assembly language. Assume
variables a–c are held in registers R0–R2 and f–j are in R3–R7.

a = b − c;
f = (g + h) − (i + j);

Solution: The program uses four assembly language instructions.

; ARM assembly code
; R0 = a, R1 = b, R2 = c, R3 = f, R4 = g, R5 = h, R6 = i, R7 = j

SUB R0, R1, R2 ; a = b − c
ADD R8, R4, R5 ; R8 = g + h
ADD R9, R6, R7 ; R9 = i + j
SUB R3, R8, R9 ; f = (g + h) − (i + j)

The Register Set
Table 6.1 lists the name and use for each of the 16 ARM registers. R0–R12
are used for storing variables; R0–R3 also have special uses during proce-
dure calls. R13–R15 are also called SP, LR, and PC, and they will be
described later in this chapter.

Constants/Immediates
In addition to register operations, ARM instructions can use constant or
immediate operands. These constants are called immediates, because their
values are immediately available from the instruction and do not require a
register or memory access. Code Example 6.6 shows the ADD instruction
adding an immediate to a register. In assembly code, the immediate is pre-
ceded by the # symbol and can be written in decimal or hexadecimal.
Hexadecimal constants in ARM assembly language start with 0x, as they

Table 6.1 ARM register set

Name Use

R0 Argument / return value / temporary variable

R1–R3 Argument / temporary variables

R4–R11 Saved variables

R12 Temporary variable

R13 (SP) Stack Pointer

R14 (LR) Link Register

R15 (PC) Program Counter

300 CHAPTER SIX Architecture

do in C. Immediates are unsigned 8- to 12-bit numbers with a peculiar
encoding described in Section 6.4.

The move instruction (MOV) is a useful way to initialize register values.
Code Example 6.7 initializes the variables i and x to 0 and 4080, respec-
tively. MOV can also take a register source operand. For example, MOV
R1, R7 copies the contents of register R7 into R1.

Memory
If registers were the only storage space for operands, we would be confined
to simple programs with no more than 15 variables. However, data can
also be stored in memory. Whereas the register file is small and fast, mem-
ory is larger and slower. For this reason, frequently used variables are kept
in registers. In the ARM architecture, instructions operate exclusively on
registers, so data stored in memory must be moved to a register before it
can be processed. By using a combination of memory and registers, a pro-
gram can access a large amount of data fairly quickly. Recall from Section
5.5 that memories are organized as an array of data words. The ARM
architecture uses 32-bit memory addresses and 32-bit data words.

ARM uses a byte-addressable memory. That is, each byte in memory
has a unique address, as shown in Figure 6.1(a). A 32-bit word consists of
four 8-bit bytes, so each word address is a multiple of 4. The most signif-
icant byte (MSB) is on the left and the least significant byte (LSB) is on the
right. Both the 32-bit word address and the data value in Figure 6.1(b) are
given in hexadecimal. For example, data word 0xF2F1AC07 is stored at
memory address 4. By convention, memory is drawn with low memory
addresses toward the bottom and high memory addresses toward the top.

ARM provides the load register instruction, LDR, to read a data word
from memory into a register. Code Example 6.8 loads memory word 2 into
a (R7). In C, the number inside the brackets is the index or word number,

Code Example 6.6 IMMEDIATE OPERANDS

High-Level Code

a = a + 4;
b = a − 12;

ARM Assembly Code

; R7 = a, R8 = b
ADD R7, R7, #4 ; a = a + 4
SUB R8, R7, #0xC ; b = a − 12

Code Example 6.7 INITIALIZING VALUES USING IMMEDIATES

High-Level Code
i = 0;
x = 4080;

ARM Assembly Code
; R4 = i, R5 = x
MOV R4, #0 ; i = 0
MOV R5, #0xFF0 ; x = 4080

6.2 Assembly Language 301

which we discuss further in Section 6.3.6. The LDR instruction specifies the
memory address using a base register (R5) and an offset (8). Recall that
each data word is 4 bytes, so word number 1 is at address 4, word number
2 is at address 8, and so on. The word address is four times the word num-
ber. The memory address is formed by adding the contents of the base reg-
ister (R5) and the offset. ARM offers several modes for accessing memory,
as will be discussed in Section 6.3.6.

After the load register instruction (LDR) is executed inCode Example 6.8,
R7 holds the value 0x01EE2842, which is the data value stored at memory
address 8 in Figure 6.1.

ARM uses the store register instruction, STR, to write a data word
from a register into memory. Code Example 6.9 writes the value 42 from
register R9 into memory word 5.

Byte-addressable memories are organized in a big-endian or little-
endian fashion, as shown in Figure 6.2. In both formats, a 32-bit word’s
most significant byte (MSB) is on the left and the least significant byte
(LSB) is on the right. Word addresses are the same in both formats and
refer to the same four bytes. Only the addresses of bytes within a word

Word address Data

0000000C

00000008

00000004

00000000

Width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word number

(b)(a)

Figure 6.1 ARM byte-addressable
memory showing: (a) byte address
and (b) data

Code Example 6.8 READING MEMORY

High-Level Code

a = mem[2];

ARM Assembly Code

; R7 = a
MOV R5, #0 ; base address = 0
LDR R7, [R5, #8] ; R7 <= data at memory address (R5+8)

ARMv4 requires word-aligned
addresses for LDR and STR, that
is, a word address that is divisible
by four. Since ARMv6, this
alignment restriction can be
removed by setting a bit in the
ARM system control register,
but performance of unaligned
loads is usually worse. Some
architectures, such as x86, allow
non-word-aligned data reads and
writes, but others, such as MIPS,
require strict alignment for
simplicity. Of course, byte
addresses for load byte and
store byte, LDRB and STRB
(discussed in Section 6.3.6), need
not be word aligned.

A read from the base address
(i.e., index 0) is a special case
that requires no offset in the
assembly code. For example, a
memory read from the base
address held in R5 is written
as LDR R3, [R5].

Code Example 6.9 WRITING MEMORY

High-Level Code

mem[5] = 42;

ARM Assembly Code

MOV R1, #0 ; base address = 0
MOV R9, #42
STR R9, [R1, #0x14] ; value stored at memory address (R1+20) = 42

302 CHAPTER SIX Architecture

differ. In big-endian machines, bytes are numbered starting with 0 at the
big (most significant) end. In little-endian machines, bytes are numbered
starting with 0 at the little (least significant) end.

IBM’s PowerPC (formerly found in Macintosh computers) uses big-
endian addressing. Intel’s x86 architecture (found in PCs) uses little-
endian addressing. ARM prefers little-endian but provides support in
some versions for bi-endian data addressing, which allows data loads
and stores in either format. The choice of endianness is completely arbi-
trary but leads to hassles when sharing data between big-endian and
little-endian computers. In examples in this text, we use little-endian
format whenever byte ordering matters.

6.3 PROGRAMMING

Software languages such as C or Java are called high-level programming
languages because they are written at a more abstract level than assembly
language. Many high-level languages use common software constructs
such as arithmetic and logical operations, conditional execution, if/else
statements, for and while loops, array indexing, and function calls. See
Appendix C for more examples of these constructs in C. In this section,
we explore how to translate these high-level constructs into ARM assem-
bly code.

6 . 3 . 1 Data-processing Instructions

The ARM architecture defines a variety of data-processing instruction
(often called logical and arithmetic instructions in other architectures).
We introduce these instructions briefly here because they are necessary
to implement higher-level constructs. Appendix B provides a summary
of ARM instructions.

Logical Instructions
ARM logical operations include AND, ORR (OR), EOR (XOR), and BIC
(bit clear). These each operate bitwise on two sources and write the result

0 1 2 3

MSB LSB

4 5 6 7

8 9 A B

C D E F

Byte
Address

Byte
Address

3 2 1 00

7 6 5 44

B A 9 88

F E D CC

Word
Address

Big-Endian Little-Endian

MSB LSB

Figure 6.2 Big-endian and
little-endian memory addressing

The terms big-endian and little-
endian come from Jonathan
Swift’s Gulliver’s Travels, first
published in 1726 under the
pseudonym of Isaac
Bickerstaff. In his stories, the
Lilliputian king required his
citizens (the Little-Endians) to
break their eggs on the little
end. The Big-Endians were
rebels who broke their eggs on
the big end.

These terms were first
applied to computer
architectures by Danny Cohen
in his paper “On Holy Wars
and a Plea for Peace”
published on April Fools Day,
1980 (USC/ISI IEN 137).
(Photo courtesy of The
Brotherton Collection, Leeds
University Library.)

6.3 Programming 303

to a destination register. The first source is always a register and the
second source is either an immediate or another register. Another logical
operation, MVN (MoVe and Not), performs a bitwise NOT on the second
source (an immediate or register) and writes the result to the destination
register. Figure 6.3 shows examples of these operations on the two source
values 0x46A1F1B7 and 0xFFFF0000. The figure shows the values stored
in the destination register after the instruction executes.

The bit clear (BIC) instruction is useful for masking bits (i.e., forcing
unwanted bits to 0). BIC R6, R1, R2 computes R1 AND NOT R2. In
other words, BIC clears the bits that are asserted in R2. In this case, the
top two bytes of R1 are cleared or masked, and the unmasked bottom
two bytes of R1, 0xF1B7, are placed in R6. Any subset of register bits
can be masked.

The ORR instruction is useful for combining bitfields from two regis-
ters. For example, 0x347A0000 ORR 0x000072FC = 0x347A72FC.

Shift Instructions
Shift instructions shift the value in a register left or right, dropping bits off
the end. The rotate instruction rotates the value in a register right by up to
31 bits. We refer to both shift and rotate generically as shift operations.
ARM shift operations are LSL (logical shift left), LSR (logical shift right),
ASR (arithmetic shift right), and ROR (rotate right). There is no ROL
instruction because left rotation can be performed with a right rotation
by a complementary amount.

As discussed in Section 5.2.5, left shifts always fill the least significant
bits with 0’s. However, right shifts can be either logical (0’s shift into the
most significant bits) or arithmetic (the sign bit shifts into the most signifi-
cant bits). The amount by which to shift can be an immediate or a register.

Figure 6.4 shows the assembly code and resulting register values for LSL,
LSR, ASR, and ROR when shifting by an immediate value. R5 is shifted by the
immediate amount, and the result is placed in the destination register.

R1

Source registers

ResultAssembly code

R2

R3

R4

R5

R6

R7

AND R2

ORR

EOR

BIC

MVN

1111 1111 1111 1111

1111 1111 1111 1111

0000 0000 0000 0000

0100 0110 1010 0001 1111 0001 1011 0111

1011 0111

1011 0111

1011 0111

0100 0110 1010 0001

1111 1111 1111 1111 1111 0001

1011 1001 0101 1110 1111 0001

1111 00010000 0000

0000 0000 0000 0000

0000 0000

0000 0000 0000 0000

R2

R2

R2

R1,

R1,

R1,

R1,

R2

R3,

R4,

R5,

R6,

R7,

Figure 6.3 Logical operations

304 CHAPTER SIX Architecture

Shifting a value left byN is equivalent tomultiplying it by 2N. Likewise, arith-
metically shifting a value right by N is equivalent to dividing it by 2N, as
discussed in Section 5.2.5. Logical shifts are also used to extract or assemble
bitfields.

Figure 6.5 shows the assembly code and resulting register values for
shift operations where the shift amount is held in a register, R6. This
instruction uses the register-shifted register addressing mode, where one
register (R8) is shifted by the amount (20) held in a second register (R6).

Multiply Instructions*
Multiplication is somewhat different from other arithmetic operations.
Multiplying two 32-bit numbers produces a 64-bit product. The ARM
architecture provides multiply instructions that result in a 32-bit or
64-bit product. Multiply (MUL) multiplies two 32-bit numbers and pro-
duces a 32-bit result. MUL R1, R2, R3 multiplies the values in R2 and
R3 and places the least significant bits of the product in R1; the most
significant 32 bits of the product are discarded. This instruction is useful
for multiplying small numbers whose result fits in 32 bits. UMULL
(unsigned multiply long) and SMULL (signed multiply long) multiply
two 32-bit numbers and produce a 64-bit product. For example, UMULL
R1, R2, R3, R4 performs an unsigned multiply of R3 and R4. The least
significant 32 bits of the product is placed in R1 and the most signifi-
cant 32 bits are placed in R2.

R5

Source register

ResultAssembly Code

LSL R0, R5, #7

LSR R1, R5, #17

ASR R2, R5, #3

ROR R3, R5, #21

1111 1111 0001 1100 0001 0000 1110 0111

1000 1110 0000 1000 0111 0011 1000 0000

0000 0000 0111 1111 1000 1110

1111 1111 1110 0011 1000 0010 0001 1100

1110 0000 1000 0111 0011 1111 1111 1000

R0

R1

R2

R3

0000 0000

Figure 6.4 Shift instructions with
immediate shift amounts

R8

Source registers

ResultAssembly code

LSL R4, R8, R6

ROR R5, R8, R6

0000 1000 0001 1100 0001 0110 1110 0111

0110 1110 0111 0000 0000 0000 0000 0000

1000 0001

R4

R5

R6 0000 0000 0000 0000 0000 0000 0001 0100

0111 00000110 11101100 0001

Figure 6.5 Shift instructions with
register shift amounts

6.3 Programming 305

Each of these instructions also has a multiply-accumulate variant,
MLA, SMLAL, and UMLAL, that adds the product to a running 32- or 64-
bit sum. These instructions can boost the math performance in applica-
tions such as matrix multiplication and signal processing consisting of
repeated multiplies and adds.

6 . 3 . 2 Condition Flags

Programs would be boring if they could only run in the same order every
time. ARM instructions optionally set condition flags based on whether
the result is negative, zero, etc. Subsequent instructions then execute con-
ditionally, depending on the state of those condition flags. The ARM con-
dition flags, also called status flags, are negative (N), zero (Z), carry (C),
and overflow (V), as listed in Table 6.2. These flags are set by the ALU
(see Section 5.2.4) and are held in the top 4 bits of the 32-bit Current Pro-
gram Status Register (CPSR), as shown in Figure 6.6.

The most common way to set the status bits is with the compare (CMP)
instruction, which subtracts the second source operand from the first and
sets the condition flags based on the result. For example, if the numbers
are equal, the result will be zero and the Z flag is set. If the first number
is an unsigned value that is higher than or the same as the second, the sub-
traction will produce a carry out and the C flag is set.

Subsequent instructions can conditionally execute depending on the
state of the flags. The instruction mnemonic is followed by a condition
mnemonic that indicates when to execute. Table 6.3 lists the 4-bit condi-
tion field (cond), the condition mnemonic, name, and the state of the con-
dition flags that result in instruction execution (CondEx). For example,
suppose a program performs CMP R4, R5, and then ADDEQ R1, R2, R3.
The compare sets the Z flag if R4 and R5 are equal, and the ADDEQ
executes only if the Z flag is set. The cond field will be used in machine
language encodings in Section 6.4.

The least significant five
bits of the CPSR are mode
bits and will be described in
Section 6.6.3.

Table 6.2 Condition flags

Flag Name Description

N Negative Instruction result is negative, i.e., bit 31 of the
result is 1

Z Zero Instruction result is zero

C Carry Instruction causes a carry out

V oVerflow Instruction causes an overflow

N Z C V M[4:0]. . .

CPSR

4 bits 5 bits

31 30 29 28 01234

Figure 6.6 Current Program
Status Register (CPSR)

Other useful instructions for
comparing two values are CMN,
TST, and TEQ. Each instruction
performs an operation, updates
the condition flags, and
discards the result. CMN
(compare negative) compares
the first source to the negative
of the second source by
adding the two sources. As
will be shown in Section 6.4,
ARM instructions only
encode positive immediates.
So, CMN R2, #20 is used
instead of CMP R2, #-20.
TST (test) ANDs the source
operands. It is useful for
checking if some portion of the
register is zero or nonzero. For
example, TST R2, #0xFF
would set the Z flag if the low
byte of R2 is 0. TEQ (test if
equal) checks for equivalence
by XOR-ing the sources. Thus,
the Z flag is set when they are
equal and theN flag is set when
the signs are different.

306 CHAPTER SIX Architecture

Other data-processing instructions will set the condition flags when the
instruction mnemonic is followed by “S.” For example, SUBS R2, R3, R7
will subtract R7 from R3, put the result in R2, and set the condition flags.
Table B.5 in Appendix B summarizes which condition flags are influenced
by each instruction. All data-processing instructions will affect the N and
Z flags based on whether the result is zero or has the most significant bit
set. ADDS and SUBS also influence V and C, and shifts influence C.

Code Example 6.10 shows instructions that execute conditionally.
The first instruction, CMP R2, R3, executes unconditionally and sets the
condition flags. The remaining instructions execute conditionally, depending
on the values of the condition flags. Suppose R2 and R3 contain the
values 0x80000000 and 0x00000001. The compare computes R2 –R3=
0x80000000 – 0x00000001= 0x80000000+ 0xFFFFFFFF= 0x7FFFFFFF
with a carry out (C= 1). The sources had opposite signs and the sign
of the result differs from the sign of the first source, so the result
overflows (V= 1). The remaining flags (N and Z) are 0. ANDHS executes

Table 6.3 Condition mnemonics

cond Mnemonic Name CondEx

0000 EQ Equal Z

0001 NE Not equal Z

0010 CS/HS Carry set / unsigned higher or same C

0011 CC/LO Carry clear / unsigned lower C

0100 MI Minus / negative N

0101 PL Plus / positive or zero N

0110 VS Overflow / overflow set V

0111 VC No overflow / overflow clear V

1000 HI Unsigned higher ZC

1001 LS Unsigned lower or same Z OR C

1010 GE Signed greater than or equal N⊕V

1011 LT Signed less than N⊕V

1100 GT Signed greater than ZðN⊕V Þ
1101 LE Signed less than or equal Z OR ðN⊕VÞ
1110 AL (or none) Always / unconditional Ignored

Condition mnemonics differ
for signed and unsigned
comparison. For example,
ARM provides two forms of
greater than or equal
comparison: HS (CS) is used
for unsigned numbers and GE
for signed. For unsigned
numbers, A – B will produce a
carry out (C) when A ≥ B. For
signed numbers, A – B will
make N and V either both 0 or
both 1 when A ≥ B. Figure 6.7
highlights the difference
between HS and GE
comparisons with two
examples using 4-bit numbers
for ease of interpretation.

(a)

1001

1110

A – B:

A – B:

+

10111

NZCV = 00112

HS: TRUE
GE: FALSE

A = 10012

B = 00102

A = 01012

B = 11012

(b)

Unsigned

A = 9

B = 2

Unsigned

A = 5

B = 13

Signed

Signed

A = –7

B = 2

A = 5

B = –3

0101

0011+

1000

NZCV = 10012

HS: FALSE
GE: TRUE

Figure 6.7 Signed vs. unsigned
comparison: HS vs. GE

6.3 Programming 307

because C= 1. EORLT executes because N is 0 and V is 1 (see Table 6.3).
Intuitively, ANDHS and EORLT execute because R2 ≥ R3 (unsigned) and R2
<R3 (signed), respectively. ADDEQ and ORRMI do not execute because the
result of R2 – R3 is not zero (i.e., R2 ≠ R3) or negative.

6 . 3 . 3 Branching

An advantage of a computer over a calculator is its ability to make deci-
sions. A computer performs different tasks depending on the input. For
example, if/else statements, switch/case statements, while loops, and for
loops all conditionally execute code depending on some test.

One way to make decisions is to use conditional execution to ignore
certain instructions. This works well for simple if statements where a
small number of instructions are ignored, but it is wasteful for if state-
ments with many instructions in the body, and it is insufficient to handle
loops. Thus, ARM and most other architectures use branch instructions
to skip over sections of code or repeat code.

A program usually executes in sequence, with the program counter
(PC) incrementing by 4 after each instruction to point to the next instruc-
tion. (Recall that instructions are 4 bytes long and ARM is a byte-
addressed architecture.) Branch instructions change the program counter.
ARM includes two types of branches: a simple branch (B) and branch and
link (BL). BL is used for function calls and is discussed in Section 6.3.7.
Like other ARM instructions, branches can be unconditional or condi-
tional. Branches are also called jumps in some architectures.

Code Example 6.11 shows unconditional branching using the
branch instruction B. When the code reaches the B TARGET instruction,
the branch is taken. That is, the next instruction executed is the SUB
instruction just after the label called TARGET.

Assembly code uses labels to indicate instruction locations in the pro-
gram. When the assembly code is translated into machine code, these
labels are translated into instruction addresses (see Section 6.4.3). ARM
assembly labels cannot be reserved words, such as instruction mnemonics.
Most programmers indent their instructions but not the labels, to help

Code Example 6.10 CONDITIONAL EXECUTION

ARM Assembly Code

CMP R2, R3

ADDEQ R4, R5, #78

ANDHS R7, R8, R9

ORRMI R10, R11, R12

EORLT R12, R7, R10

308 CHAPTER SIX Architecture

make labels stand out. The ARM compiler makes this a requirement:
labels must not be indented, and instructions must be preceded by white
space. Some compilers, including GCC, require a colon after the label.

Branch instructions can execute conditionally based on the condi-
tion mnemonics listed in Table 6.3. Code Example 6.12 illustrates the
use of BEQ, branching dependent on equality (Z = 1). When the code
reaches the BEQ instruction, the Z condition flag is 0 (i.e., R0 ≠ R1), so
the branch is not taken. That is, the next instruction executed is the
ORR instruction.

6 . 3 . 4 Conditional Statements

if, if/else, and switch/case statements are conditional statements com-
monly used in high-level languages. They each conditionally execute a
block of code consisting of one or more statements. This section shows
how to translate these high-level constructs into ARM assembly language.

if Statements
An if statement executes a block of code, the if block, only when a condi-
tion is met. Code Example 6.13 shows how to translate an if statement
into ARM assembly code.

Code Example 6.11 UNCONDITIONAL BRANCHING

ARM Assembly Code
ADD R1, R2, #17 ; R1 = R2 + 17
B TARGET ; branch to TARGET
ORR R1, R1, R3 ; not executed
AND R3, R1, #0xFF ; not executed

TARGET
SUB R1, R1, #78 ; R1 = R1 − 78

Code Example 6.12 CONDITIONAL BRANCHING

ARM Assembly Code

MOV R0, #4 ; R0 = 4
ADD R1, R0, R0 ; R1 = R0 + R0 = 8
CMP R0, R1 ; set flags based on R0−R1 = −4. NZCV = 1000
BEQ THERE ; branch not taken (Z != 1)
ORR R1, R1, #1 ; R1 = R1 OR 1 = 9

THERE
ADD R1, R1, #78 ; R1 = R1 + 78 = 87

6.3 Programming 309

The assembly code for the if statement tests the opposite condition of the
one in the high-level code. InCode Example 6.13, the high-level code tests for
apples == oranges. The assembly code tests for apples != oranges
using BNE to skip the if block if the condition is not satisfied. Otherwise,
apples == oranges, the branch is not taken, and the if block is executed.

Because any instruction can be conditionally executed, the ARM
assembly code for Code Example 6.13 could also be written more com-
pactly as shown below.

CMP R0, R1 ; apples == oranges ?
ADDEQ R2, R3, #1 ; f = i + 1 on equality (i.e., Z = 1)
SUB R2, R2, R3 ; f = f − i

This solution with conditional execution is shorter and also faster
because it involves one fewer instruction. Moreover, we will see in Section
7.5.3 that branches sometimes introduce extra delay, whereas conditional
execution is always fast. This example shows the power of conditional
execution in the ARM architecture.

In general, when a block of code has a single instruction, it is better to
use conditional execution rather than branch around it. As the block
becomes longer, the branch becomes valuable because it avoids wasting
time fetching instructions that will not be executed.

if/else Statements
if/else statements execute one of two blocks of code depending on a
condition. When the condition in the if statement is met, the if block is
executed. Otherwise, the else block is executed. Code Example 6.14
shows an example if/else statement.

Like if statements, if/else assembly code tests the opposite condition
of the one in the high-level code. In Code Example 6.14, the high-level
code tests for apples == oranges, and the assembly code tests for
apples != oranges. If that opposite condition is TRUE, BNE skips the
if block and executes the else block. Otherwise, the if block executes
and finishes with an unconditional branch (B) past the else block.

Code Example 6.13 IF STATEMENT

High-Level Code
if (apples == oranges)

f = i + 1;

f = f − i;

ARM Assembly Code
; R0 = apples, R1 = oranges, R2 = f, R3 = i
CMP R0, R1 ; apples == oranges ?
BNE L1 ; if not equal, skip if block
ADD R2, R3, #1 ; if block: f = i + 1

L1
SUB R2, R2, R3 ; f = f − i

Recall that != is an inequality
comparison and == is an
equality comparison in the
high-level code.

310 CHAPTER SIX Architecture

Again, because any instruction can conditionally execute and because
the instructions within the if block do not change the condition flags, the
ARM assembly code for Code Example 6.14 could also be written much
more succinctly as:

CMP R0, R1 ; apples == oranges?
ADDEQ R2, R3, #1 ; f = i + 1 on equality (i.e., Z = 1)
SUBNE R2, R2, R3 ; f = f − i on not equal (i.e., Z = 0)

switch/case Statements*
switch/case statements execute one of several blocks of code depending
on the conditions. If no conditions are met, the default block is executed.
A case statement is equivalent to a series of nested if/else statements.
Code Example 6.15 shows two high-level code snippets with the same

Code Example 6.14 IF/ELSE STATEMENT

High-Level Code
if (apples == oranges)

f = i + 1;

else
f = f − i;

ARM Assembly Code
; R0 = apples, R1 = oranges, R2 = f, R3 = i
CMP R0, R1 ; apples == oranges?
BNE L1 ; if not equal, skip if block
ADD R2, R3, #1 ; if block: f = i + 1
B L2 ; skip else block

L1
SUB R2, R2, R3 ; else block: f = f − i

L2

Code Example 6.15 SWITCH/CASE STATEMENT

High-Level Code
switch (button) {

case 1: amt = 20; break;

case 2: amt = 50; break;

case 3: amt = 100; break;

default: amt = 0;
}
// equivalent function using
// if/else statements

if (button == 1)amt = 20;
else if (button == 2)amt = 50;
else if (button == 3) amt = 100;
else amt = 0;

ARM Assembly Code
; R0 = button, R1 = amt
CMP R0, #1 ; is button 1 ?
MOVEQ R1, #20 ; amt = 20 if button is 1
BEQ DONE ; break

CMP R0, #2 ; is button 2 ?
MOVEQ R1, #50 ; amt = 50 if button is 2
BEQ DONE ; break

CMP R0, #3 ; is button 3?
MOVEQ R1, #100 ; amt = 100 if button is 3
BEQ DONE ; break

MOV R1, #0 ; default amt = 0
DONE

6.3 Programming 311

The int data type in C refers
to a word of data representing
a two’s complement integer.
ARM uses 32-bit words, so an
int represents a number in
the range [−231, 231 − 1].

functionality: they calculate whether to dispense $20, $50, or $100 from an
ATM (automatic teller machine) depending on the button pressed. The
ARMassembly implementation is the same for both high-level code snippets.

6 . 3 . 5 Getting Loopy

Loops repeatedly execute a block of code depending on a condition. while
loops and for loops are common loop constructs used by high-level lan-
guages. This section shows how to translate them into ARM assembly
language, taking advantage of conditional branching.

while Loops
while loops repeatedly execute a block of code until a condition is not
met. The while loop in Code Example 6.16 determines the value of x such
that 2x= 128. It executes seven times, until pow= 128.

Like if/else statements, the assembly code for while loops tests the
opposite condition of the one in the high-level code. If that opposite con-
dition is TRUE (in this case, R0 == 128), the while loop is finished. If not
(R0 ≠128), the branch isn't taken and the loop body executes.

In Code Example 6.16, the while loop compares pow to 128 and exits the
loop if it is equal. Otherwise it doubles pow (using a left shift), increments x,
and branches back to the start of the while loop.

for Loops
It is very common to initialize a variable before a while loop, check that
variable in the loop condition, and change that variable each time
through the while loop. for loops are a convenient shorthand that com-
bines the initialization, condition check, and variable change in one place.
The format of the for loop is:

for (initialization; condition; loop operation)
statement

Code Example 6.16 WHILE LOOP

High-Level Code
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

ARM Assembly Code
; R0 = pow, R1 = x
MOV R0, #1 ; pow = 1
MOV R1, #0 ; x = 0

WHILE
CMP R0, #128 ; pow != 128 ?
BEQ DONE ; if pow == 128, exit loop
LSL R0, R0, #1 ; pow = pow * 2
ADD R1, R1, #1 ; x = x + 1
B WHILE ; repeat loop

DONE

312 CHAPTER SIX Architecture

The initialization code executes before the for loop begins. The condi-
tion is tested at the beginning of each loop. If the condition is not met, the
loop exits. The loop operation executes at the end of each loop.

Code Example 6.17 adds the numbers from 0 to 9. The loop variable,
in this case i, is initialized to 0 and is incremented at the end of each loop
iteration. The for loop executes as long as i is less than 10. Note
that this example also illustrates relative comparisons. The loop checks
the< condition to continue, so the assembly code checks the opposite
condition, >=, to exit the loop.

Loops are especially useful for accessing large amounts of similar
data stored in memory, which is discussed next.

6 . 3 . 6 Memory

For ease of storage and access, similar data can be grouped together into
an array. An array stores its contents at sequential data addresses in mem-
ory. Each array element is identified by a number called its index. The
number of elements in the array is called the length of the array.

Figure 6.8 shows a 200-element array of scores stored in memory.
Code Example 6.18 is a grade inflation algorithm that adds 10 points
to each of the scores. Note that the code for initializing the scores array
is not shown. The index into the array is a variable (i) rather than a con-
stant, so we must multiply it by 4 before adding it to the base address.

ARM can scale (multiply) the index, add it to the base address, and
load from memory in a single instruction. Instead of the LSL and LDR
instruction sequence in Code Example 6.18, we can use a single instruction:

LDR R3, [R0, R1, LSL #2]

R1 is scaled (shifted left by two) then added to the base address (R0).
Thus, the memory address is R0 + (R1 × 4).

Code Example 6.17 FOR LOOP

High-Level Code
int i;
int sum = 0;

for (i = 0; i < 10; i = i + 1) {
sum = sum + i;

}

ARM Assembly Code
; R0 = i, R1 = sum

MOV R1, #0 ; sum = 0
MOV R0, #0 ; i = 0 loop initialization

FOR
CMP R0, #10 ; i < 10 ? check condition
BGE DONE ; if (i >= 10) exit loop
ADD R1, R1, R0 ; sum = sum + i loop body
ADD R0, R0, #1 ; i = i + 1 loop operation
B FOR ; repeat loop

DONE

1400031C scores[199]

14000318

14000004

14000000

scores[198]

scores[1]

scores[0]

Main memory

Address Data

Figure 6.8 Memory holding
scores[200] starting at base
address 0x14000000

6.3 Programming 313

In addition to scaling the index register, ARM provides offset, pre-
indexed, and post-indexed addressing to enable dense and efficient code
for array accesses and function calls. Table 6.4 gives examples of each
indexing mode. In each case, the base register is R1 and the offset is
R2. The offset can be subtracted by writing –R2. The offset may also be
an immediate in the range of 0–4095 that can be added (e.g., #20) or sub-
tracted (e.g., #−20).

Offset addressing calculates the address as the base register ± the off-
set; the base register is unchanged. Pre-indexed addressing calculates the
address as the base register ± the offset and updates the base register to
this new address. Post-indexed addressing calculates the address as the
base register only and then, after accessing memory, the base register is
updated to the base register ± the offset. We have seen many examples
of offset indexing mode. Code Example 6.19 shows the for loop from
Code Example 6.18 rewritten to use post-indexing, eliminating the ADD
to increment i.

Code Example 6.18 ACCESSING ARRAYS USING A FOR LOOP

High-Level Code
int i;
int scores[200];
...

for (i = 0; i < 200; i = i + 1)

scores[i] = scores[i] + 10;

ARM Assembly Code
; R0 = array base address, R1 = i
; initialization code ...

MOV R0, #0x14000000 ; R0 = base address
MOV R1, #0 ; i = 0

LOOP
CMP R1, #200 ; i < 200?
BGE L3 ; if i ≥ 200, exit loop
LSL R2, R1, #2 ; R2 = i * 4
LDR R3, [R0, R2] ; R3 = scores[i]
ADD R3, R3, #10 ; R3 = scores[i] + 10
STR R3, [R0, R2] ; scores[i] = scores[i] + 10
ADD R1, R1, #1 ; i = i + 1
B LOOP ; repeat loop

L3

Table 6.4 ARM indexing modes

Mode ARM Assembly Address Base Register

Offset LDR R0, [R1, R2] R1 + R2 Unchanged

Pre-index LDR R0, [R1, R2]! R1 + R2 R1 = R1 + R2

Post-index LDR R0, [R1], R2 R1 R1 = R1 + R2

314 CHAPTER SIX Architecture

Bytes and Characters
Numbers in the range [−128, 127] can be stored in a single byte rather
than an entire word. Because there are much fewer than 256 characters
on an English language keyboard, English characters are often repre-
sented by bytes. The C language uses the type char to represent a byte
or character.

Early computers lacked a standard mapping between bytes and
English characters, so exchanging text between computers was
difficult. In 1963, the American Standards Association published
the American Standard Code for Information Interchange (ASCII),
which assigns each text character a unique byte value. Table 6.5
shows these character encodings for printable characters. The ASCII
values are given in hexadecimal. Lowercase and uppercase letters differ
by 0x20 (32).

ARM provides load byte (LDRB), load signed byte (LDRSB), and store
byte (STRB) to access individual bytes in memory. LDRB zero-extends the
byte, whereas LDRSB sign-extends the byte to fill the entire 32-bit register.
STRB stores the least significant byte of the 32-bit register into the speci-
fied byte address in memory. All three are illustrated in Figure 6.9, with

Code Example 6.19 FOR LOOP USING POST-INDEXING

High-Level Code
int i;
int scores[200];
...

for (i = 0; i < 200; i = i + 1)
scores[i] = scores[i] + 10;

ARM Assembly Code
; R0 = array base address
; initialization code ...

MOV R0, #0x14000000 ; R0 = base address
ADD R1, R0, #800 ; R1 = base address + (200*4)

LOOP
CMP R0, R1 ; reached end of array?
BGE L3 ; if yes, exit loop
LDR R2, [R0] ; R2 = scores[i]
ADD R2, R2, #10 ; R2 = scores[i] + 10
STR R2, [R0], #4 ; scores[i] = scores[i] + 10

; then R0 = R0 + 4
B LOOP ; repeat loop
L3

Other programming languages,
such as Java, use different
character encodings, most
notably Unicode. Unicode uses
16 bits to represent each
character, so it supports accents,
umlauts, and Asian languages.
For more information, see
www.unicode.org.

Byte Address

03428CF7Data

3 2 1 0 R1 00 8C LDRB R1, [R4, #2]0000

Registers

R2 FF 8C LDRSB R2, [R4, #2]FFFF

R3 9B STRB R3, [R4, #3]xx xx xx

Memory

Figure 6.9 Instructions for loading
and storing bytes

LDRH, LDRSH, and STRH are
similar, but access 16-bit
halfwords.

6.3 Programming 315

http://www.unicode.org

the base address R4 being 0. LDRB loads the byte at memory address 2
into the least significant byte of R1 and fills the remaining register bits
with 0. LDRSB loads this byte into R2 and sign-extends the byte into the
upper 24 bits of the register. STRB stores the least significant byte of R3
(0x9B) into memory byte 3; it replaces 0xF7 with 0x9B. The more signif-
icant bytes of R3 are ignored.

A series of characters is called a string. Strings have a variable length,
so programming languages must provide a way to determine the length
or end of the string. In C, the null character (0x00) signifies the end
of a string. For example, Figure 6.10 shows the string “Hello!” (0x48
65 6C 6C 6F 21 00) stored in memory. The string is seven bytes long

ASCII codes developed from
earlier forms of character
encoding. Beginning in 1838,
telegraph machines used
Morse code, a series of dots (.)
and dashes (–), to represent
characters. For example, the
letters A, B, C, and D were
represented as – , – … , – . – . ,
and – ‥ , respectively. The
number of dots and dashes
varied with each letter. For
efficiency, common letters
used shorter codes.

In 1874, Jean-Maurice-
Emile Baudot invented a 5-bit
code called the Baudot code.
For example, A, B, C, and D
were represented as 00011,
11001, 01110, and 01001.

However, the 32 possible
encodings of this 5-bit code were
not sufficient for all the English
characters, but 8-bit encoding
was. Thus, as electronic
communication became
prevalent, 8-bit ASCII encoding
emerged as the standard.

Table 6.5 ASCII encodings

Char # Char # Char # Char # Char # Char

20 space 30 0 40 @ 50 P 60 ` 70 p

21 ! 31 1 41 A 51 Q 61 a 71 q

22 " 32 2 42 B 52 R 62 b 72 r

23 # 33 3 43 C 53 S 63 c 73 s

24 $ 34 4 44 D 54 T 64 d 74 t

25 % 35 5 45 E 55 U 65 e 75 u

26 & 36 6 46 F 56 V 66 f 76 v

27 ‘ 37 7 47 G 57 W 67 g 77 w

28 (38 8 48 H 58 X 68 h 78 x

29) 39 9 49 I 59 Y 69 i 79 y

2A * 3A : 4A J 5A Z 6A j 7A z

2B + 3B ; 4B K 5B [6B k 7B {

2C , 3C < 4C L 5C \ 6C l 7C |

2D − 3D = 4D M 5D] 6D m 7D }

2E . 3E > 4E N 5E ^ 6E n 7E ~

2F / 3F ? 4F O 5F _ 6F o

316 CHAPTER SIX Architecture

and extends from address 0x1522FFF0 to 0x1522FFF6. The first charac-
ter of the string (H= 0x48) is stored at the lowest byte address
(0x1522FFF0).

6 . 3 . 7 Function Calls

High-level languages support functions (also called procedures or subrou-
tines) to reuse common code and to make a program more modular and
readable. Functions have inputs, called arguments, and an output, called
the return value. Functions should calculate the return value and cause
no other unintended side effects.

When one function calls another, the calling function, the caller,
and the called function, the callee, must agree on where to put the argu-
ments and the return value. In ARM, the caller conventionally places up
to four arguments in registers R0–R3 before making the function call,

Example 6.2 USING LDRB AND STRB TO ACCESS A CHARACTER ARRAY

The following high-level code converts a 10-entry array of characters from lower-
case to uppercase by subtracting 32 from each array entry. Translate it into ARM
assembly language. Remember that the address difference between array elements
is now 1 byte, not 4 bytes. Assume that R0 already holds the base address of
chararray.

// high-level code
// chararray[10] declared and initialized earlier
int i;

for (i = 0; i < 10; i = i + 1)
chararray[i] = chararray[i] − 32;

Solution:
; ARM assembly code
; R0 = base address of chararray (initialized earlier), R1 = i

MOV R1, #0 ; i = 0
LOOP CMP R1, #10 ; i < 10 ?

BGE DONE ; if (i >=10), exit loop
LDRB R2, [R0, R1] ; R2 = mem[R0+R1] = chararray[i]
SUB R2, R2, #32 ; R2 = chararray[i] − 32
STRB R2, [R0, R1] ; chararray[i] = R2
ADD R1, R1, #1 ; i = i + 1
B LOOP ; repeat loop

DONE

Word address

1522FFF4

1522FFF0

Data

4865

6F21

6C6C

00

Memory

Byte 3 Byte 0

Figure 6.10 The string “Hello!”
stored in memory

6.3 Programming 317

and the callee places the return value in register R0 before finishing. By
following this convention, both functions know where to find the argu-
ments and return value, even if the caller and callee were written by differ-
ent people.

The callee must not interfere with the behavior of the caller. This
means that the callee must know where to return to after it completes
and it must not trample on any registers or memory needed by the caller.
The caller stores the return address in the link register LR at the same time
it jumps to the callee using the branch and link instruction (BL). The callee
must not overwrite any architectural state or memory that the caller
is depending on. Specifically, the callee must leave the saved registers
(R4–R11, and LR) and the stack, a portion of memory used for tempor-
ary variables, unmodified.

This section shows how to call and return from a function. It shows
how functions access input arguments and the return value and how they
use the stack to store temporary variables.

Function Calls and Returns
ARM uses the branch and link instruction (BL) to call a function
and moves the link register to the PC (MOV PC, LR) to return from
a function. Code Example 6.20 shows the main function calling
the simple function. main is the caller, and simple is the callee. The
simple function is called with no input arguments and generates no
return value; it just returns to the caller. In Code Example 6.20, instruc-
tion addresses are given to the left of each ARM instruction in
hexadecimal.

BL (branch and link) and MOV PC, LR are the two essential
instructions needed for a function call and return. BL performs two
tasks: it stores the return address of the next instruction (the instruction

Code Example 6.20 simple FUNCTION CALL

High-Level Code
int main() {

simple();
...

}

// void means the function returns no value
void simple() {

return;
}

ARM Assembly Code
0x00008000 MAIN ...
... ...

0x00008020 BL SIMPLE ; call the simple function
...

0x0000902C SIMPLE MOV PC, LR ; return

318 CHAPTER SIX Architecture

after BL) in the link register (LR), and it branches to the target
instruction.

In Code Example 6.20, the main function calls the simple function
by executing the branch and link instruction (BL). BL branches to the
SIMPLE label and stores 0x00008024 in LR. The simple function returns
immediately by executing the instruction MOV PC, LR, copying the return
address from the LR back to the PC. The main function then continues
executing at this address (0x00008024).

Input Arguments and Return Values
The simple function in Code Example 6.20 receives no input from the
calling function (main) and returns no output. By ARM convention, func-
tions use R0–R3 for input arguments and R0 for the return value. In
Code Example 6.21, the function diffofsums is called with four argu-
ments and returns one result. result is a local variable, which we choose
to keep in R4.

According to ARM convention, the calling function, main, places
the function arguments from left to right into the input registers,
R0–R3. The called function, diffofsums, stores the return value in the
return register, R0. When a function with more than four arguments is
called, the additional input arguments are placed on the stack, which
we discuss next.

Code Example 6.21 has some
subtle errors. Code Examples
6.22–6.25 show improved
versions of the program.

Remember that PC and LR are
alternative names for R15 and
R14, respectively. ARM is
unusual in that PC is part of
the register set, so a function
return can be done with a MOV
instruction. Many other
instruction sets keep the PC in
a special register and use a
special return or jump
instruction to return from
functions.

These days, ARM compilers
do a function return using
BX LR. The BX branch and
exchange instruction is like a
branch, but it also can transition
between the standard ARM
instruction set and the Thumb
instruction set described in
Section 6.7.1. This chapter
doesn’t use the Thumb or
BX instructions and thus sticks
with the ARMv4 MOV PC, LR
method.

We will see in Chapter 7
that treating the PC as an
ordinary register complicates
the implementation of the
processor.

Code Example 6.21 FUNCTION CALL WITH ARGUMENTS AND
RETURN VALUES

High-Level Code
int main() {

int y;
. . .
y = diffofsums(2, 3, 4, 5);
. . .

}

int diffofsums(int f, int g, int h, int i) {
int result;

result = (f + g) − (h + i);
return result;

}

ARM Assembly Code
; R4 = y
MAIN

. . .
MOV R0, #2 ; argument 0 = 2
MOV R1, #3 ; argument 1 = 3
MOV R2, #4 ; argument 2 = 4
MOV R3, #5 ; argument 3 = 5
BL DIFFOFSUMS ; call function
MOV R4, R0 ; y = returned value
. . .

; R4 = result
DIFFOFSUMS

ADD R8, R0, R1 ; R8 = f + g
ADD R9, R2, R3 ; R9 = h + i
SUB R4, R8, R9 ; result = (f + g) − (h + i)
MOV R0, R4 ; put return value in R0
MOV PC, LR ; return to caller

6.3 Programming 319

The Stack
The stack is memory that is used to save information within a function.
The stack expands (uses more memory) as the processor needs more
scratch space and contracts (uses less memory) when the processor
no longer needs the variables stored there. Before explaining how func-
tions use the stack to store temporary values, we explain how the stack
works.

The stack is a last-in-first-out (LIFO) queue. Like a stack of dishes,
the last item pushed onto the stack (the top dish) is the first one that
can be popped off. Each function may allocate stack space to store local
variables but must deallocate it before returning. The top of the stack is
the most recently allocated space. Whereas a stack of dishes grows up
in space, the ARM stack grows down in memory. The stack expands to
lower memory addresses when a program needs more scratch space.

Figure 6.11 shows a picture of the stack. The stack pointer, SP (R13),
is an ordinary ARM register that, by convention, points to the top of the
stack. A pointer is a fancy name for a memory address. SP points to (gives
the address of) data. For example, in Figure 6.11(a), the stack pointer, SP,
holds the address value 0XBEFFFAE8 and points to the data value
0xAB000001.

The stack pointer (SP) starts at a high memory address and decre-
ments to expand as needed. Figure 6.11(b) shows the stack expanding
to allow two more data words of temporary storage. To do so, SP decre-
ments by eight to become 0xBEFFFAE0. Two additional data words,
0x12345678 and 0xFFEEDDCC, are temporarily stored on the stack.

One of the important uses of the stack is to save and restore registers
that are used by a function. Recall that a function should calculate a
return value but have no other unintended side effects. In particular, it
should not modify any registers besides R0, the one containing the return
value. The diffofsums function in Code Example 6.21 violates this rule
because it modifies R4, R8, and R9. If main had been using these registers
before the call to diffofsums, their contents would have been corrupted
by the function call.

To solve this problem, a function saves registers on the stack before it
modifies them, then restores them from the stack before it returns. Speci-
fically, it performs the following steps:

1. Makes space on the stack to store the values of one or more registers

2. Stores the values of the registers on the stack

3. Executes the function using the registers

4. Restores the original values of the registers from the stack

5. Deallocates space on the stack

The stack is typically stored
upside down inmemory such that
the top of the stack is actually the
lowest address and the stack
grows downward toward lower
memory addresses. This is called
a descending stack. ARM also
allows for ascending stacks that
grow up toward higher memory
addresses. The stack pointer
typically points to the topmost
element on the stack; this is called
a full stack. ARM also allows for
empty stacks in which SP points
one word beyond the top of the
stack. The ARM Application
Binary Interface (ABI) defines a
standard way in which functions
pass variables and use the stack
so that libraries developed by
different compilers can
interoperate. It specifies a full
descending stack, which we will
use in this chapter.

Data

BEFFFAE8

BEFFFAE4

BEFFFAE0

BEFFFADC

Address

BEFFFAE8

BEFFFAE4

BEFFFAE0

BEFFFADC

Address

(a)

(b)

Data

AB000001

12345678

FFEEDDCC

AB000001 SP

SP

Memory

Figure 6.11 The stack (a) before
expansion and (b) after two-word
expansion

320 CHAPTER SIX Architecture

Code Example 6.22 shows an improved version of diffofsums that
saves and restores R4, R8, and R9. Figure 6.12 shows the stack before,
during, and after a call to the diffofsums function from Code Example
6.22. The stack starts at 0xBEF0F0FC. diffofsums makes room for
three words on the stack by decrementing the stack pointer SP by 12. It
then stores the current values held in R4, R8, and R9 in the newly allo-
cated space. It executes the rest of the function, changing the values in
these three registers. At the end of the function, diffofsums restores
the values of these registers from the stack, deallocates its stack space,
and returns. When the function returns, R0 holds the result, but there

(a)

DataAddress

(b) (c)

???

S
ta

ck
 fr

am
e

R4

R8

R9

DataAddressData

BEF0F0FC

BEF0F0F8

BEF0F0F4

BEF0F0F0

Address

SP

SP

SPBEF0F0FC

BEF0F0F8

BEF0F0F4

BEF0F0F0

BEF0F0FC

BEF0F0F8

BEF0F0F4

BEF0F0F0

Figure 6.12 The stack: (a) before, (b) during, and (c) after the diffofsums function call

Code Example 6.22 FUNCTION SAVING REGISTERS ON THE STACK

ARM Assembly Code
;R4 = result
DIFFOFSUMS

SUB SP, SP, #12 ; make space on stack for 3 registers

STR R9, [SP, #8] ; save R9 on stack

STR R8, [SP, #4] ; save R8 on stack

STR R4, [SP] ; save R4 on stack

ADD R8, R0, R1 ; R8 = f + g

ADD R9, R2, R3 ; R9 = h + i

SUB R4, R8, R9 ; result = (f + g) − (h + i)

MOV R0, R4 ; put return value in R0

LDR R4, [SP] ; restore R4 from stack

LDR R8, [SP, #4] ; restore R8 from stack

LDR R9, [SP, #8] ; restore R9 from stack

ADD SP, SP, #12 ; deallocate stack space

MOV PC, LR ; return to caller

6.3 Programming 321

are no other side effects: R4, R8, R9, and SP have the same values as they
did before the function call.

The stack space that a function allocates for itself is called its stack
frame. diffofsums’s stack frame is three words deep. The principle of
modularity tells us that each function should access only its own stack
frame, not the frames belonging to other functions.

Loading and Storing Multiple Registers
Saving and restoring registers on the stack is such a common operation that
ARM provides Load Multiple and Store Multiple instructions (LDM and STM)
that are optimized to this purpose. Code Example 6.23 rewrites diffofsums
using these instructions. The stack holds exactly the same information as in
the previous example, but the code is much shorter.

LDM and STM come in four flavors for full and empty descending and
ascending stacks (FD, ED, FA, EA). The SP! in the instructions indicates to
store the data relative to the stack pointer and to update the stack pointer
after the store or load. PUSH and POP are synonyms for STMFD SP!, {regs}
and LDMFD SP!, {regs}, respectively, and are the preferred way to save reg-
isters on the conventional full descending stack.

Preserved Registers
Code Examples 6.22 and 6.23 assume that all of the used registers
(R4, R8, and R9) must be saved and restored. If the calling function
does not use those registers, the effort to save and restore them is
wasted. To avoid this waste, ARM divides registers into preserved and
nonpreserved categories. The preserved registers include R4–R11. The
nonpreserved registers are R0–R3 and R12. SP and LR (R13 and R14)

Code Example 6.23 SAVING AND RESTORING MULTIPLE REGISTERS

ARM Assembly Code
; R4 = result
DIFFOFSUMS

STMFD SP!, {R4, R8, R9} ; push R4/8/9 on full descending stack

ADD R8, R0, R1 ; R8 = f + g

ADD R9, R2, R3 ; R9 = h + i

SUB R4, R8, R9 ; result = (f + g) − (h + i)

MOV R0, R4 ; put return value in R0

LDMFD SP!, {R4, R8, R9} ; pop R4/8/9 off full descending stack

MOV PC, LR ; return to caller

322 CHAPTER SIX Architecture

must also be preserved. A function must save and restore any of the pre-
served registers that it wishes to use, but it can change the nonpreserved
registers freely.

Code Example 6.24 shows a further improved version of diffofsums
that saves only R4 on the stack. It also illustrates the preferred PUSH and POP
synonyms. The code reuses the nonpreserved argument registers R1 and R3
to hold the intermediate sums when those arguments are no longer necessary.

Remember that when one function calls another, the former is the
caller and the latter is the callee. The callee must save and restore any pre-
served registers that it wishes to use. The callee may change any of the
nonpreserved registers. Hence, if the caller is holding active data in a non-
preserved register, the caller needs to save that nonpreserved register
before making the function call and then needs to restore it afterward.
For these reasons, preserved registers are also called callee-save, and non-
preserved registers are called caller-save.

Table 6.6 summarizes which registers are preserved. R4–R11 are
generally used to hold local variables within a function, so they must be
saved. LR must also be saved, so that the function knows where to return.

Code Example 6.24 REDUCING THE NUMBER OF PRESERVED REGISTERS

ARM Assembly Code
; R4 = result
DIFFOFSUMS

PUSH {R4} ; save R4 on stack

ADD R1, R0, R1 ; R1 = f + g

ADD R3, R2, R3 ; R3 = h + i

SUB R4, R1, R3 ; result = (f + g) − (h + i)

MOV R0, R4 ; put return value in R0

POP {R4} ; pop R4 off stack

MOV PC, LR ; return to caller

Table 6.6 Preserved and nonpreserved registers

Preserved Nonpreserved

Saved registers: R4–R11 Temporary register: R12

Stack pointer: SP (R13) Argument registers: R0–R3

Return address: LR (R14) Current Program Status Register

Stack above the stack pointer Stack below the stack pointer

PUSH (and POP) save (and
restore) registers on the stack in
order of register number from
low to high, with the lowest
numbered register placed at the
lowest memory address,
regardless of the order listed in
the assembly instruction. For
example, PUSH {R8, R1, R3}
will store R1 at the lowest
memory address, then R3 and
finally R8 at the next higher
memory addresses on the stack.

6.3 Programming 323

R0–R3 and R12 are used to hold temporary results. These calcula-
tions typically complete before a function call is made, so they are not
preserved, and it is rare that the caller needs to save them.

R0–R3 are often overwritten in the process of calling a function.
Hence, they must be saved by the caller if the caller depends on any of
its own arguments after a called function returns. R0 certainly should
not be preserved, because the callee returns its result in this register.
Recall that the Current Program Status Register (CPSR) holds the condi-
tion flags. It is not preserved across function calls.

The stack above the stack pointer is automatically preserved as long
as the callee does not write to memory addresses above SP. In this way,
it does not modify the stack frame of any other functions. The stack poin-
ter itself is preserved, because the callee deallocates its stack frame before
returning by adding back the same amount that it subtracted from SP at
the beginning of the function.

The astute reader or an optimizing compiler may notice that the local
variable result is immediately returnedwithout being used for anything else.
Hence, we can eliminate the variable and simply store it in the return register
R0, eliminating the need to push and pop R4 and to move result from R4
to R0. Code Example 6.25 shows this even further optimized diffofsums.

Nonleaf Function Calls
A function that does not call others is called a leaf function; diffofsums
is an example. A function that does call others is called a nonleaf function.
As mentioned, nonleaf functions are somewhat more complicated because
they may need to save nonpreserved registers on the stack before they call
another function and then restore those registers afterward. Specifically:

Caller save rule: Before a function call, the caller must save any non-
preserved registers (R0–R3 and R12) that it needs after the call. After
the call, it must restore these registers before using them.

Callee save rule: Before a callee disturbs any of the preserved registers
(R4–R11 and LR), it must save the registers. Before it returns, it must
restore these registers.

Code Example 6.25 OPTIMIZED diffofsums FUNCTION CALL

ARM Assembly Code
DIFFOFSUMS

ADD R1, R0, R1 ; R1 = f + g

ADD R3, R2, R3 ; R3 = h + i

SUB R0, R1, R3 ; return (f + g) − (h + i)

MOV PC, LR ; return to caller

The convention of which
registers are preserved or not
preserved is part of the
Procedure Call Standard for
the ARM Architecture, rather
than of the architecture itself.
Alternate procedure call
standards exist.

324 CHAPTER SIX Architecture

Code Example 6.26 demonstrates a nonleaf function f1 and a leaf
function f2 including all the necessary saving and preserving of regis-
ters. Suppose f1 keeps i in R4 and x in R5. f2 keeps r in R4. f1 uses
preserved registers R4, R5, and LR, so it initially pushes them on the
stack according to the callee save rule. It uses R12 to hold the intermedi-
ate result (a – b) so that it does not need to preserve another register
for this calculation. Before calling f2, f1 pushes R0 and R1 onto the
stack according to the caller save rule because these are nonpreserved
registers that f2 might change and that f1 will still need after the call.
Although R12 is also a nonpreserved register that f2 could overwrite,
f1 no longer needs R12 and doesn’t have to save it. f1 then passes the
argument to f2 in R0, makes the function call, and uses the result in
R0. f1 then restores R0 and R1 because it still needs them. When f1
is done, it puts the return value in R0, restores preserved registers R4,
R5, and LR, and returns. f2 saves and restores R4 according to the
callee save rule.

A nonleaf function overwrites
LR when it calls another
function using BL. Thus, a
nonleaf function must always
save LR on its stack and
restore it before returning.

Code Example 6.26 NONLEAF FUNCTION CALL

High-Level Code
int f1(int a, int b) {

int i, x;

x = (a + b)*(a − b);
for (i=0; i<a; i++)

x = x + f2(b+i);
return x;

}

int f2(int p) {
int r;

r = p + 5;
return r + p;

}

ARM Assembly Code
; R0 = a, R1 = b, R4 = i, R5 = x
F1

PUSH {R4, R5, LR} ; save preserved registers used by f1
ADD R5, R0, R1 ; x = (a + b)
SUB R12, R0, R1 ; temp = (a − b)
MUL R5, R5, R12 ; x = x * temp = (a + b) * (a − b)
MOV R4, #0 ; i = 0

FOR
CMP R4, R0 ; i < a?
BGE RETURN ; no: exit loop
PUSH {R0, R1} ; save nonpreserved registers
ADD R0, R1, R4 ; argument is b + i
BL F2 ; call f2(b+i)
ADD R5, R5, R0 ; x = x + f2(b+i)
POP {R0, R1} ; restore nonpreserved registers
ADD R4, R4, #1 ; i++
B FOR ; continue for loop

RETURN
MOV R0, R5 ; return value is x
POP {R4, R5, LR} ; restore preserved registers
MOV PC, LR ; return from f1

; R0 = p, R4 = r

F2
PUSH {R4} ; save preserved registers used by f2
ADD R4, R0, 5 ; r = p + 5
ADD R0, R4, R0 ; return value is r + p
POP {R4} ; restore preserved registers
MOV PC, LR ; return from f2

On careful inspection, one
might note that f2 does not
modify R1, so f1 did not need
to save and restore it.
However, a compiler cannot
always easily ascertain which
nonpreserved registers may be
disturbed during a function
call. Hence, a simple compiler
will always make the caller
save and restore any
nonpreserved registers that it
needs after the call.

An optimizing compiler could
observe that f2 is a leaf
procedure and could allocate
r to a nonpreserved register,
avoiding the need to save and
restore R4.

6.3 Programming 325

Figure 6.13 shows the stack during execution of f1. The stack pointer
originally starts at 0xBEF7FF0C.

Recursive Function Calls
A recursive function is a nonleaf function that calls itself. Recursive
functions behave as both caller and callee and must save both preserved
and nonpreserved registers. For example, the factorial function can be
written as a recursive function. Recall that factorial(n)= n × (n – 1)
× (n – 2) × ⋯ × 2 × 1. The factorial function can be rewritten recursively
as factorial(n)= n × factorial(n – 1), as shown in Code Example 6.27. The
factorial of 1 is simply 1. To conveniently refer to program addresses, we
show the program starting at address 0x8500.

According to the callee save rule, factorial is a nonleaf function
and must save LR. According to the caller save rule, factorial will
need n after calling itself, so it must save R0. Hence, it pushes both
registers onto the stack at the start. It then checks whether n ≤ 1. If
so, it puts the return value of 1 in R0, restores the stack pointer,
and returns to the caller. It does not have to reload LR and R0 in this
case, because they were never modified. If n > 1, the function recursively
calls factorial(n – 1). It then restores the value of n and the link
register (LR) from the stack, performs the multiplication, and returns
this result. Notice that the function cleverly restores n into R1, so
as not to overwrite the returned value. The multiply instruction
(MUL R0, R1, R0) multiplies n (R1) and the returned value (R0) and puts
the result in R0.

SP

(a) (b) (c)

?

f1
's

 s
ta

ck
 fr

am
e

Data

BEF7FEFC

Address

BEF7FEF8

BEF7FEF4

BEF7FF0C

BEF7FF08

BEF7FF04

BEF7FF00 R4

R5

LR

?

DataAddress

R0

R1

f1
's

 s
ta

ck
 fr

am
e

R4

R5

LR

?

DataAddress

R0

R1

R4

f2
's

 s
ta

ck
fr

am
e

SP

SP

BEF7FEFC

BEF7FEF8

BEF7FEF4

BEF7FF0C

BEF7FF08

BEF7FF04

BEF7FF00

BEF7FEFC

BEF7FEF8

BEF7FEF4

BEF7FF0C

BEF7FF08

BEF7FF04

BEF7FF00

Figure 6.13 The stack: (a) before function calls, (b) during f1, and (c) during f2

326 CHAPTER SIX Architecture

Figure 6.14 shows the stack when executing factorial(3). For illus-
tration, we show SP initially pointing to 0xBEFF0FF0, as shown in Figure
6.14(a). The function creates a two-word stack frame to hold n (R0) and
LR. On the first invocation, factorial saves R0 (holding n = 3) at
0xBEFF0FE8 and LR at 0xBEFF0FEC, as shown in Figure 6.14(b). The
function then changes n to 2 and recursively calls factorial(2), making
LR hold 0x8520. On the second invocation, it saves R0 (holding n=2)
at 0xBEFF0FE0 and LR at 0xBEFF0FE4. This time, we know that
LR contains 0x8520. The function then changes n to 1 and recursively calls
factorial(1). On the third invocation, it saves R0 (holding n = 1) at

For clarity, we will always save
registers at the start of a procedure
call. An optimizing compiler
might observe that there is no need
to save R0 and LR when n ≤ 1,
and thus push registers only in the
ELSE portion of the function.

Code Example 6.27 factorial RECURSIVE FUNCTION CALL

High-Level Code
int factorial(int n) {

if (n <= 1)
return 1;

else
return (n * factorial(n − 1));

}

ARM Assembly Code
0x8500 FACTORIAL PUSH {R0, LR} ; push n and LR on stack
0x8504 CMP R0, #1 ; R0 <= 1?
0x8508 BGT ELSE ; no: branch to else
0x850C MOV R0, #1 ; otherwise, return 1
0x8510 ADD SP, SP, #8 ; restore SP
0x8514 MOV PC, LR ; return
0x8518 ELSE SUB R0, R0, #1 ; n = n − 1
0x851C BL FACTORIAL ; recursive call
0x8520 POP {R1, LR} ; pop n (into R1) and LR
0x8524 MUL R0, R1, R0 ; R0 = n * factorial(n − 1)
0x8528 MOV PC, LR ; return

(a) (b) (c)

R0 = 1

n = 2
R0 = 2 x 1

n = 3
R0 = 3 x 2

R0 = 6

R0 (3)

LR (0x8520)

R0 (2)

Data

BEFF0FF0

Address DataAddress DataAddress

LR

LR (0x8520)

R0 (1)

R0 (3)

LR (0x8520)

R0 (2)

LR

LR (0x8520)

R0 (1)

SP

BEFF0FEC

BEFF0FE8

BEFF0FE4

BEFF0FE0

BEFF0FDC

BEFF0FD8

BEFF0FF0

BEFF0FEC

BEFF0FE8

BEFF0FE4

BEFF0FE0

BEFF0FDC

BEFF0FD8

BEFF0FF0

BEFF0FEC

BEFF0FE8

BEFF0FE4

BEFF0FE0

BEFF0FDC

BEFF0FD8SP

SP SP

SP

SP

SP

SP

Figure 6.14 Stack: (a) before, (b) during, and (c) after factorial function call with n = 3

6.3 Programming 327

0xBEFF0FD8 and LR at 0xBEFF0FDC. This time, LR again contains
0x8520. The third invocation of factorial returns the value 1 in R0
and deallocates the stack frame before returning to the second invocation.
The second invocation restores n (into R1) to 2, restores LR to 0x8520
(it happened to already have this value), deallocates the stack frame, and
returns R0 = 2 × 1= 2 to the first invocation. The first invocation restores
n (into R1) to 3, restores LR to the return address of the caller, deallocates
the stack frame, and returns R0 = 3 × 2= 6. Figure 6.14(c) shows the stack
as the recursively called functions return. When factorial returns to the
caller, the stack pointer is in its original position (0xBEFF0FF0), none of
the contents of the stack above the pointer have changed, and all of the pre-
served registers hold their original values. R0 holds the return value, 6.

Additional Arguments and Local Variables*
Functions may have more than four input arguments and may have too
many local variables to keep in preserved registers. The stack is used to
store this information. By ARM convention, if a function has more than
four arguments, the first four are passed in the argument registers as
usual. Additional arguments are passed on the stack, just above SP. The
caller must expand its stack to make room for the additional arguments.
Figure 6.15(a) shows the caller’s stack for calling a function with more
than four arguments.

A function can also declare local variables or arrays. Local variables
are declared within a function and can be accessed only within that func-
tion. Local variables are stored in R4–R11; if there are too many local
variables, they can also be stored in the function’s stack frame. In particu-
lar, local arrays are stored on the stack.

Figure 6.15(b) shows the organization of a callee’s stack frame. The
stack frame holds the temporary registers and link register (if they need
to be saved because of a subsequent function call), and any of the saved

Additional arguments

R0 – R12, LR
(if needed)

Local variables or
arrays

Additional arguments

S
ta

ck
 fr

am
e

(a) (b)

SP

SP

Figure 6.15 Stack usage: (a)
before and (b) after call

328 CHAPTER SIX Architecture

registers that the function will modify. It also holds local arrays and any
excess local variables. If the callee has more than four arguments, it finds
them in the caller’s stack frame. Accessing additional input arguments is
the one exception in which a function can access stack data not in its
own stack frame.

6.4 MACHINE LANGUAGE

Assembly language is convenient for humans to read. However, digital
circuits understand only 1’s and 0’s. Therefore, a program written in
assembly language is translated from mnemonics to a representation
using only 1’s and 0’s called machine language. This section describes
ARM machine language and the tedious process of converting between
assembly and machine language.

ARM uses 32-bit instructions. Again, regularity supports simplicity,
and the most regular choice is to encode all instructions as words that
can be stored in memory. Even though some instructions may not require
all 32 bits of encoding, variable-length instructions would add complex-
ity. Simplicity would also encourage a single instruction format, but that
is too restrictive. However, this issue allows us to introduce the last design
principle:

Design Principle 4: Good design demands good compromises.

ARM makes the compromise of defining three main instruction
formats: Data-processing, Memory, and Branch. This small number of
formats allows for some regularity among instructions, and thus simpler
decoder hardware, while also accommodating different instruction needs.
Data-processing instructions have a first source register, a second source
that is either an immediate or a register, possibly shifted, and a destina-
tion register. The Data-processing format has several variations for these
second sources. Memory instructions have three operands: a base register,
an offset that is either an immediate or an optionally shifted register, and
a register that is the destination on an LDR and another source on an STR.
Branch instructions take one 24-bit immediate branch offset. This section
discusses these ARM instruction formats and shows how they are
encoded into binary. Appendix B provides a quick reference for all the
ARMv4 instructions.

6 . 4 . 1 Data-processing Instructions

The data-processing instruction format is the most common. The first
source operand is a register. The second source operand can be an
immediate or an optionally shifted register. A third register is the destina-
tion. Figure 6.16 shows the data-processing instruction format. The
32-bit instruction has six fields: cond, op, funct, Rn, Rd, and Src2.

6.4 Machine Language 329

The operation the instruction performs is encoded in the fields high-
lighted in blue: op (also called the opcode or operation code) and funct
or function code; the cond field encodes conditional execution based on
flags described in Section 6.3.2. Recall that cond= 11102 for uncondi-
tional instructions. op is 002 for data-processing instructions.

The operands are encoded in the three fields: Rn, Rd, and Src2. Rn is the
first source register and Src2 is the second source;Rd is the destination register.

Figure 6.17 shows the format of the funct field and the three varia-
tions of Src2 for data-processing instructions. funct has three subfields:
I, cmd, and S. The I-bit is 1 when Src2 is an immediate. The S-bit is 1
when the instruction sets the condition flags. For example, SUBS R1,
R9, #11 has S= 1. cmd indicates the specific data-processing instruction,
as given in Table B.1 in Appendix B. For example, cmd is 4 (01002) for
ADD and 2 (00102) for SUB.

Three variations of Src2 encoding allow the second source operand to
be (1) an immediate, (2) a register (Rm) optionally shifted by a constant
(shamt5), or (3) a register (Rm) shifted by another register (Rs). For the
latter two encodings of Src2, sh encodes the type of shift to perform, as
will be shown in Table 6.8.

Data-processing instructions have an unusual immediate representa-
tion involving an 8-bit unsigned immediate, imm8, and a 4-bit rotation,
rot. imm8 is rotated right by 2 × rot to create a 32-bit constant.
Table 6.7 gives example rotations and resulting 32-bit constants for
the 8-bit immediate 0xFF. This representation is valuable because it

cond op funct Rn Rd

Data-processing

4 bits 2 bits 6 bits 4 bits 4 bits

31:28 27:26 25:20 19:16 15:12 11:0

12 bits

Src2

Figure 6.16 Data-processing
instruction format

Rd is short for “register
destination.” Rn and Rm
unintuitively indicate the first
and second register sources.

Data-processing

cond op
00 cmd

31:28 27:26 24:21 19:16 15:12 11:0 411:7 6:5

shshamt5 0

11:8

Rn Rd

Rs sh

6:5

10

47

11:8

rot imm8

7:0

Src2 Rm

Rm

3:0

3:0

I

25

S

20

funct

I = 1

I = 0

Immediate

Register

Register-shifted
Register

Figure 6.17 Data-processing instruction format showing the funct field and Src2 variations

330 CHAPTER SIX Architecture

permits many useful constants, including small multiples of any power
of two, to be packed into a small number of bits. Section 6.6.1 describes
how to generate arbitrary 32-bit constants.

Figure 6.18 shows the machine code for ADD and SUB when Src2 is a
register. The easiest way to translate from assembly to machine code is
to write out the values of each field and then convert these values to bin-
ary. Group the bits into blocks of four to convert to hexadecimal to
make the machine language representation more compact. Beware that
the destination is the first register in an assembly language instruction,
but it is the second register field (Rd) in the machine language instruc-
tion. Rn and Rm are the first and second source operands, respectively.
For example, the assembly instruction ADD R5, R6, R7 has Rn = 6,
Rd = 5, and Rm = 7.

Figure 6.19 shows the machine code for ADD and SUB with an
immediate and two register operands. Again, the destination is the first

Table 6.7 Immediate rotations and resulting 32-bit constant for imm8 = 0xFF

rot 32-bit Constant

0000 0000 0000 0000 0000 0000 0000 1111 1111

0001 1100 0000 0000 0000 0000 0000 0011 1111

0010 1111 0000 0000 0000 0000 0000 0000 1111

… …

1111 0000 0000 0000 0000 0000 0011 1111 1100

If an immediate has multiple
possible encodings, the
representation with the
smallest rotation value rot is
used. For example, #12 would
be represented as (rot, imm8)=
(0000, 00001100), not
(0001, 00110000).

cond op cmd Rn Rd

Field Values

31:28 27:26 24:21 19:16 15:12

002

002

I

25

S

20

11102

11102

0 0 6 5

shshamt5

0

Rm

411:7 6:5 3:0

0 0 9 8 0

0 0 7

0 0 10

cond op cmd Rn Rd

Machine Code

31:28 27:26 24:21 19:16 15:12

00

I

25

S

20

shshamt5

0

Rm

411:7 6:5 3:0

1110 0 0100 0 0110 0101 00000 00 0111

1110 0 0010 0 1001 1000 0 1010

Assembly Code

ADD R5, R6, R7

SUB R8, R9, R10 00000 0000
(0xE0865007)

(0xE049800A)

01002

00102

Figure 6.18 Data-processing instructions with three register operands

Field Values

31:28 27:26 24:21 19:16 15:1225 20 7:011:8

Machine Code

31:28 27:26 24:21 19:16 15:12

00

25 20

Assembly Code

ADD R0, R1, #42

SUB R2, R3, #0xFF0 00

(0xE281002A)

(0xE2432EFF)

7:011:8

cond op cmd Rn RdI S cond op cmd Rn RdI Srot imm8 rot imm8

00102

1 0 1 0 0 42

1 0 3 2 14 255

1110 1 0100 0001 0000

1110 1 0010

0

0 0011 0010

0000 00101010

1110 11111111

002

002

0100211102

11102

Figure 6.19 Data-processing instructions with an immediate and two register operands

6.4 Machine Language 331

register in an assembly language instruction, but it is the second register
field (Rd) in the machine language instruction. The immediate of the
ADD instruction (42) can be encoded in 8 bits, so no rotation is needed
(imm8= 42, rot= 0). However, the immediate of SUB R2, R3, 0xFF0 can-
not be encoded directly using the 8 bits of imm8. Instead, imm8 is 255
(0xFF), and it is rotated right by 28 bits (rot= 14). This is easiest to inter-
pret by remembering that the right rotation by 28 bits is equivalent to a
left rotation by 32−28= 4 bits.

Shifts are also data-processing instructions. Recall from Section 6.3.1
that the amount by which to shift can be encoded using either a 5-bit
immediate or a register.

Figure 6.20 shows the machine code for logical shift left (LSL)
and rotate right (ROR) with immediate shift amounts. The cmd field
is 13 (11012) for all shift instruction, and the shift field (sh) encodes the
type of shift to perform, as given in Table 6.8. Rm (i.e., R5) holds the
32-bit value to be shifted, and shamt5 gives the number of bits to shift.
The shifted result is placed in Rd. Rn is not used and should be 0.

Figure 6.21 shows the machine code for LSR and ASR with the shift
amount encoded in the least significant 8 bits of Rs (R6 and R12). As

cond op cmd Rn Rd

Field Values
31:28 27:26 24:21 19:16 15:12

I

25

S

20

0 0 0 0

shshamt5

0

Rm

411:7 6:5 3:0

7 9

cond op cmd Rn Rd

Machine Code
31:28 27:26 24:21 19:16 15:12

00

I

25

S

20

shshamt5

0

Rm

411:7 6:5 3:0

Assembly Code

LSL R0, R9, #7

00

1110 0 1101 0

0

0000 0000

1110 0 1101 0000 0011 0

00111 00 1001

10101 11 0101ROR R3, R5, #21 50 0 0 3 021

002 11012

002 11012

002

112

11102

11102

(0xE1A00389)

(0xE1A03AE5)

Figure 6.20 Shift instructions with immediate shift amounts

Table 6.8 sh field encodings

Instruction sh Operation

LSL 002 Logical shift left

LSR 012 Logical shift right

ASR 102 Arithmetic shift right

ROR 112 Rotate right

cond op cmd Rn Rd

Field Values

I S

0 0 0 4

shRs

1

Rm

6 8

1

cond op cmd Rn Rd

Machine Code

00

I S

1110 0 1101 0000 0100

shRs

1

Rm

0110 01 1000

Assembly Code

LSR R4, R8, R6

ASR R5, R1, R12
(0xE1A04638)

0 0 0 5 112 001110 0 1101

0

0 0000 0101 11100 10 0001
(0xE1A05C51)

0

0

0

0

31:28 27:26 24:21 19:16 15:1225 20 411:8 6:5 3:0 31:28 27:26 24:21 19:16 15:1225 20 46:5 3:07 11:8 7

002 11012

002 11012

012

102

11102

11102

Figure 6.21 Shift instructions with register shift amounts

332 CHAPTER SIX Architecture

before, cmd is 13 (11012), sh encodes the type of shift, Rm holds the value
to be shifted, and the shifted result is placed in Rd. This instruction uses
the register-shifted register addressing mode, where one register (Rm) is
shifted by the amount held in a second register (Rs). Because the least
significant 8 bits of Rs are used, Rm can be shifted by up to 255 positions.
For example, if Rs holds the value 0xF001001C, the shift amount is 0x1C
(28). A logical shift by more than 31 bits pushes all the bits off the end
and produces all 0's. Rotate is cyclical, so a rotate by 50 bits is equivalent
to a rotate by 18 bits.

6 . 4 . 2 Memory Instructions

Memory instructions use a format similar to that of data-processing
instructions, with the same six overall fields: cond, op, funct, Rn, Rd,
and Src2, as shown in Figure 6.22. However, memory instructions use a
different funct field encoding, have two variations of Src2, and use an
op of 012. Rn is the base register, Src2 holds the offset, and Rd is the des-
tination register in a load or the source register in a store. The offset is
either a 12-bit unsigned immediate (imm12) or a register (Rm) that is
optionally shifted by a constant (shamt5). funct is composed of six con-
trol bits: I, P, U, B, W, and L. The I (immediate) and U (add) bits deter-
mine whether the offset is an immediate or register and whether it should
be added or subtracted, according to Table 6.9. The P (pre-index) and W
(writeback) bits specify the index mode according to Table 6.10. The L
(load) and B (byte) bits specify the type of memory operation according
to Table 6.11.

Memory

cond op Rn Rd

31:28 27:26 25:20 19:16 15:12 11:0

11:7

shamt5 sh
6:5

1

4Src2

Rm

3:001 I L

funct

I = 0

I = 1

11:0

imm12

WBUP

Immediate

Register

Figure 6.22 Memory instruction format for LDR, STR, LDRB, and STRB

Table 6.9 Offset type control bits for memory instructions

Meaning
Bit I U

0 Immediate offset in Src2 Subtract offset from base

1 Register offset in Src2 Add offset to base

Table 6.10 Index mode control
bits for memory instructions

P W Index Mode

0 0 Post-index

0 1 Not supported

1 0 Offset

1 1 Pre-index

Table 6.11 Memory operation type
control bits for memory instructions

L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB

6.4 Machine Language 333

Example 6.3 TRANSLATING MEMORY INSTRUCTIONS INTO MACHINE
LANGUAGE

Translate the following assembly language statement into machine language.

STR R11, [R5], #-26

Solution: STR is a memory instruction, so it has an op of 012. According to
Table 6.11, L= 0 and B= 0 for STR. The instruction uses post-indexing,
so according to Table 6.10, P= 0 and W= 0. The immediate offset is subtracted
from the base, so I = 0 and U= 0. Figure 6.23 shows each field and the machine
code. Hence, the machine language instruction is 0xE405B01A.

6 . 4 . 3 Branch Instructions

Branch instructions use a single 24-bit signed immediate operand, imm24,
as shown in Figure 6.24. As with data-processing and memory instruc-
tions, branch instructions begin with a 4-bit condition field and a 2-bit
op, which is 102. The funct field is only 2 bits. The upper bit of funct is
always 1 for branches. The lower bit, L, indicates the type of branch
operation: 1 for BL and 0 for B. The remaining 24-bit two’s complement
imm24 field is used to specify an instruction address relative to PC + 8.

Code Example 6.28 shows the use of the branch if less than (BLT)
instruction and Figure 6.25 shows the machine code for that instruction.
The branch target address (BTA) is the address of the next instruction to
execute if the branch is taken. The BLT instruction in Figure 6.25 has a
BTA of 0x80B4, the instruction address of the THERE label.

The 24-bit immediate field gives the number of instructions between
the BTA and PC + 8 (two instructions past the branch). In this case, the
value in the immediate field (imm24) of BLT is 3 because the BTA
(0x80B4) is three instructions past PC + 8 (0x80A8).

cond op IPUBWL

Field Values
31:28 27:26 25:20 19:16 15:12

00000002

Rn Rd

5 11
11:0

26

Machine CodeAssembly Code

STR R11, [R5], #-26

imm12 E 4 0 5 B

31:28 27:26 25:20 19:16 15:12

011110 000000 0101 1011
11:0

0000 0001 1010

0 1 A

01211102

Figure 6.23 Machine code for the memory instruction of Example 6.3

cond imm24

Branch

23:025:2427:2631:28

1L
op
10

funct

Figure 6.24 Branch instruction format

Notice the counterintuitive
encoding of post-indexing
mode.

334 CHAPTER SIX Architecture

The processor calculates the BTA from the instruction by sign-extend-
ing the 24-bit immediate, shifting it left by 2 (to convert words to bytes),
and adding it to PC + 8.

Example 6.4 CALCULATING THE IMMEDIATE FIELD FOR PC-RELATIVE
ADDRESSING

Calculate the immediate field and show the machine code for the branch instruc-
tion in the following assembly program.

0x8040 TEST LDRB R5, [R0, R3]
0x8044 STRB R5, [R1, R3]
0x8048 ADD R3, R3, #1
0x8044 MOV PC, LR
0x8050 BL TEST
0x8054 LDR R3, [R1], #4
0x8058 SUB R4, R3, #9

Solution: Figure 6.26 shows the machine code for the branch and link instruction
(BL). Its branch target address (0x8040) is six instructions behind PC + 8
(0x8058), so the immediate field is -6.

cond op

Field Values
23:027:2631:28

funct

25:24 27:2631:28 25:24

-6

Machine Code

101110

Assembly
Code

BL TEST

(0xEBFFFFFA)
imm24 cond op

23:0

funct

1111 1111 1111 1111 1111 1010

imm24

11102 11211102

Figure 6.26 BL machine code

cond op

Field Values
23:027:2631:28

funct

25:24

3

Machine Code
31:28 27:26

101011

Assembly Code

BLT THERE
(0xBA000003)

imm24 cond op

23:0

funct

25:24

0000 0000 0000 0000 0000 0011

imm24

10102 10210112

Figure 6.25 Machine code for branch if less than (BLT)

Code Example 6.28 CALCULATING THE BRANCH TARGET ADDRESS

ARM Assembly Code
0x80A0 BLT THERE
0x80A4 ADD R0, R1, R2
0x80A8 SUB R0, R0, R9
0x80AC ADD SP, SP, #8
0x80B0 MOV PC, LR
0x80B4 THERE SUB R0, R0, #1
0x80B8 ADD R3, R3, #0x5

6.4 Machine Language 335

6 . 4 . 4 Addressing Modes

This section summarizes the modes used for addressing instruction
operands. ARM uses four main modes: register, immediate, base, and
PC-relative addressing.Most other architectures provide similar addressing
modes, so understanding these modes helps you easily learn other assembly
languages. Register and base addressing have several submodes described
below. The first three modes (register, immediate, and base addressing)
define modes of reading and writing operands. The last mode (PC-relative
addressing) defines amode of writing the program counter (PC). Table 6.12
summarizes and gives examples of each addressing mode.

Data-processing instructions use register or immediate addressing,
in which the first source operand is a register and the second is a register
or immediate, respectively. ARM allows the second register to be
optionally shifted by an amount specified in an immediate or a third reg-
ister. Memory instructions use base addressing, in which the base
address comes from a register and the offset comes from an immediate,
a register, or a register shifted by an immediate. Branches use PC-relative
addressing in which the branch target address is computed by adding an
offset to PC + 8.

6 . 4 . 5 Interpreting Machine Language Code

To interpret machine language, one must decipher the fields of each 32-
bit instruction word. Different instructions use different formats, but all

Table 6.12 ARM operand addressing modes

Operand Addressing Mode Example Description

Register

Register-only ADD R3, R2, R1 R3 ← R2 + R1

Immediate-shifted register SUB R4, R5, R9, LSR #2 R4 ← R5 − (R9 >> 2)

Register-shifted register ORR R0, R10, R2, ROR R7 R0 ← R10 | (R2 ROR R7)

Immediate SUB R3, R2, #25 R3 ← R2 − 25

Base

Immediate offset STR R6, [R11, #77] mem[R11+77] ← R6

Register offset LDR R12, [R1, −R5] R12 ← mem[R1 − R5]

Immediate-shifted register offset LDR R8, [R9, R2, LSL #2] R8 ← mem[R9 + (R2 << 2)]

PC-Relative B LABEL1 Branch to LABEL1

ARM is unusual among RISC
architectures in that it allows
the second source operand to
be shifted in register and base
addressing modes. This
requires a shifter in series with
the ALU in the hardware
implementation but
significantly reduces code
length in common programs,
especially array accesses. For
example, in an array of 32-bit
data elements, the array index
must be left-shifted by 2 to
compute the byte offset into
the array. Any type of shift is
permitted, but left shifts for
multiplication are most
common.

336 CHAPTER SIX Architecture

formats start with a 4-bit condition field and a 2-bit op. The best place to
begin is to look at the op. If it is 002, then the instruction is a data-proces-
sing instruction; if it is 012, then the instruction is a memory instruction; if
it is 102, then it is a branch instruction. Based on that, the rest of the fields
can be interpreted.

Example 6.5 TRANSLATING MACHINE LANGUAGE TO ASSEMBLY
LANGUAGE

Translate the following machine language code into assembly language.

0xE0475001
0xE5949010

Solution: First, we represent each instruction in binary and look at bits 27:26 to
find the op for each instruction, as shown in Figure 6.27. The op fields are 002
and 012, indicating a data-processing and memory instruction, respectively. Next,
we look at the funct field of each instruction.

The cmd field of the data-processing instruction is 2 (00102) and the I-bit (bit 25) is 0,
indicating that it is a SUB instruction with a register Src2.Rd is 5,Rn is 7, andRm is 1.

The funct field for the memory instruction is 0110012. B= 0 and L= 1, so this
is an LDR instruction. P= 1 and W= 0, indicating offset addressing. I = 0, so the
offset is an immediate. U= 1, so the offset is added. Thus, it is a load register
instruction with an immediate offset that is added to the base register. Rd is 9,
Rn is 4, and imm12 is 16. Figure 6.27 shows the assembly code equivalent of
the two machine instructions.

6 . 4 . 6 The Power of the Stored Program

A program written in machine language is a series of 32-bit numbers
representing the instructions. Like other binary numbers, these instruc-
tions can be stored in memory. This is called the stored program concept,
and it is a key reason why computers are so powerful. Running a different

cond op cmd Rn Rd

Field Values

31:28 27:26 24:21 19:16 15:12

I

25

S

20

shshamt5

0

Rm

411:7 6:5 3:0

0 2 0 7 5 0 0 1

Machine Code

31:28 27:26 24:21 19:16 15:12

00
25 20

1110 0 00010 0111 0101 0
411:7 6:5 3:0

00000 00 0001

Assembly Code

SUB R5, R7, R1

E 0

cond op IPUBWL Rn Rd

31:28 27:26 25:20 19:16 15:12

25 4 9
11:0

16 LDR R9, [R4, #16]

imm12E

31:28 27:26 25:20 19:16 15:12

011110 011001 0100 1001
11:0

0000 0001 0000

0 4 7 5 0 1

5 9 4 9 0 1 0

cond op cmd Rn Rd shSI shamt5 Rm

cond op Rn Rd imm12IPUBWL

002

012

11102

11102

Figure 6.27 Machine code to assembly code translation

6.4 Machine Language 337

program does not require large amounts of time and effort to reconfigure
or rewire hardware; it only requires writing the new program to memory.
In contrast to dedicated hardware, the stored program offers general-pur-
pose computing. In this way, a computer can execute applications ranging
from a calculator to a word processor to a video player simply by chan-
ging the stored program.

Instructions in a stored program are retrieved, or fetched, from mem-
ory and executed by the processor. Even large, complex programs are
simply a series of memory reads and instruction executions.

Figure 6.28 shows how machine instructions are stored in memory. In
ARM programs, the instructions are normally stored starting at low
addresses, in this case 0x00008000. Remember that ARM memory is byte-
addressable, so32-bit (4-byte) instruction addresses advance by 4bytes, not 1.

To run or execute the stored program, the processor fetches the
instructions from memory sequentially. The fetched instructions are then
decoded and executed by the digital hardware. The address of the current
instruction is kept in a 32-bit register called the program counter (PC),
which is register R15. For historical reasons, a read to the PC returns
the address of the current instruction plus 8.

To execute the code in Figure 6.28, the PC is initialized to address
0x00008000. The processor fetches the instruction at that memory address
and executes the instruction, 0xE3A01064 (MOV R1, #100). The processor
then increments the PC by 4 to 0x00008004, fetches and executes that
instruction, and repeats.

The architectural state of a microprocessor holds the state of a pro-
gram. For ARM, the architectural state includes the register file and status
registers. If the operating system (OS) saves the architectural state at some
point in the program, it can interrupt the program, do something else, and
then restore the state such that the program continues properly, unaware
that it was ever interrupted. The architectural state is also of great impor-
tance when we build a microprocessor in Chapter 7.

CMP R1, R2

Machine codeAssembly code

MOV R1, #100

MOV R2, #69

STRHS R3, [R1, #0x24]

0xE3A01064

0xE3A02045

0xE1510002

0x25813024

Address Instructions

0000800C 2 5 8 1 3 0 2 4

E 1 5 1 0 0 0 2

E 3 A 0 2 0 4 5

E 3 A 0 1 0 6 4

00008008

00008004

00008000

Stored program

Main memory

PC

Figure 6.28 Stored program

Ada Lovelace, 1815–1852.
A British mathematician who
wrote the first computer
program. It calculated the
Bernoulli numbers using
Charles Babbage’s Analytical
Engine. She was the daughter
of the poet Lord Byron.

338 CHAPTER SIX Architecture

6.5 LIGHTS, CAMERA, ACTION: COMPILING, ASSEMBLING,
AND LOADING*

Until now, we have shown how to translate short high-level code snippets
into assembly and machine code. This section describes how to compile
and assemble a complete high-level program and how to load the program
into memory for execution. We begin by introducing an example ARM
memorymap, whichdefineswhere code, data, and stackmemory are located.

Figure 6.29 shows the steps required to translate a program from a high-
level language into machine language and to start executing that program.
First, a compiler translates the high-level code into assembly code. The
assembler translates the assembly code into machine code and puts it in an
object file. The linker combines the machine code with code from libraries
and other files and determines the proper branch addresses and variable
locations to produce an entire executable program. In practice, most compi-
lers perform all three steps of compiling, assembling, and linking. Finally, the
loader loads the program into memory and starts execution. The remainder
of this section walks through these steps for a simple program.

6 . 5 . 1 The Memory Map

With 32-bit addresses, the ARM address space spans 232 bytes (4 GB).
Word addresses are multiples of 4 and range from 0 to 0xFFFFFFFC.
Figure 6.30 shows an example memory map. The ARM architecture
divides the address space into five parts or segments: the text segment,

Assembly code

High level code

Compiler

Object file

Assembler

Executable

Linker

Memory

Loader

Object files
Library files

Figure 6.29 Steps for translating
and starting a program

SegmentAddress

SP

0x00008000

0x00000000

Operating
System & I/O

Stack

Heap

Text

Exception
handlers

PC

Dynamic Data

0xFFFFFFFC

Global Data

0xBEFFFAE8
0xC0000000

SB

Figure 6.30 Example ARM memory map

6.5 Lights, Camera, Action: Compiling, Assembling, and Loading 339

global data segment, dynamic data segment, and segments for exception
handlers, the operating system (OS) and input/output (I/O). The following
sections describe each segment.

The Text Segment
The text segment stores the machine language program. ARM also calls
this the read-only (RO) segment. In addition to code, it may include lit-
erals (constants) and read-only data.

The Global Data Segment
The global data segment stores global variables that, in contrast to local
variables, can be accessed by all functions in a program. Global variables
are allocated in memory before the program begins executing. ARM also
calls this the read/write (RW) segment. Global variables are typically
accessed using a static base register that points to the start of the global
segment. ARM conventionally uses R9 as the static base pointer (SB).

The Dynamic Data Segment
The dynamic data segment holds the stack and the heap. The data in this
segment is not known at start-up but is dynamically allocated and deallo-
cated throughout the execution of the program.

Upon start-up, the operating system sets up the stack pointer (SP) to
point to the top of the stack. The stack typically grows downward, as
shown here. The stack includes temporary storage and local variables,
such as arrays, that do not fit in the registers. As discussed in Section
6.3.7, functions also use the stack to save and restore registers. Each stack
frame is accessed in last-in-first-out order.

The heap stores data that is allocated by the program during runtime.
In C, memory allocations are made by the malloc function; in C++ and
Java, new is used to allocate memory. Like a heap of clothes on a dorm
room floor, heap data can be used and discarded in any order. The heap
typically grows upward from the bottom of the dynamic data segment.

If the stack and heap ever grow into each other, the program’s data
can become corrupted. The memory allocator tries to ensure that this
never happens by returning an out-of-memory error if there is insufficient
space to allocate more dynamic data.

The Exception Handler, OS, and I/O Segments
The lowest part of the ARM memory map is reserved for the exception
vector table and exception handlers, starting at address 0x0 (see Section
6.6.3). The highest part of the memory map is reserved for the operating
system and memory-mapped I/O (see Section 9.2).

6 . 5 . 2 Compilation

A compiler translates high-level code into assembly language. The
examples in this section are based on GCC, a popular and widely used
free compiler, running on the Raspberry Pi single-board computer

We present an example ARM
memory map here; however, in
ARM, the memory map is
somewhat flexible. While the
exception vector table must be
located at 0x0 and memory-
mapped I/O is typically
located at the high memory
addresses, the user can define
where the text (code and
constant data), stack, and
global data are placed.
Moreover, at least historically,
most ARM systems have less
than 4 GB of memory.

Grace Hopper, 1906–1992.
Graduated from Yale University
with a Ph.D. in mathematics.
Developed the first compiler
while working for the Remington
Rand Corporation and was
instrumental in developing the
COBOL programming language.
As a naval officer, she received
many awards, including a World
War II Victory Medal and the
National Defense Service Medal.

340 CHAPTER SIX Architecture

(see Section 9.3). Code Example 6.29 shows a simple high-level program
with three global variables and two functions, along with the assembly
code produced by GCC.

To compile, assemble, and link a C program named prog.c with
GCC, use the command:

gcc –O1 –g prog.c –o prog

This command produces an executable output file called prog. The –O1
flag asks the compiler to perform basic optimizations rather than produ-
cing grossly inefficient code. The –g flag tells the compiler to include
debugging information in the file.

To see the intermediate steps, we can use GCC's –S flag to compile
but not assemble or link.

gcc –O1 –S prog.c –o prog.s

The output, prog.s, is rather verbose, but the interesting parts are shown in
CodeExample 6.29.Note thatGCC requires labels to be followed by a colon.
The GCC output is in lowercase and has other assembler directives not dis-
cussed here. Observe that sum returns using the BX instruction rather than
MOV PC, LR. Also, observe that GCC elected to save and restore R3 even
though it is not one of the preserved registers. The addresses of the global
variables will be stored in a table starting at label .L3.

Code Example 6.29 COMPILING A HIGH-LEVEL PROGRAM

High-Level Code
int f, g, y; // global variables

int sum(int a, int b) {
return (a + b);

}

int main(void)
{

f = 2;
g = 3;
y = sum(f, g);
return y;

}

ARM Assembly Code
.text
.global sum
.type sum, %function

sum:
add r0, r0, r1
bx lr
.global main
.type main, %function

main:
push {r3, lr}
mov r0, #2
ldr r3, .L3
str r0, [r3, #0]
mov r1, #3
ldr r3, .L3+4
str r1, [r3, #0]
bl sum
ldr r3, .L3+8
str r0, [r3, #0]
pop {r3, pc}

.L3:
.word f
.word g
.word y

In Code Example 6.29, global
variables are accessed using
two memory instructions: one
to load the address of the
variable, and a second to read
or write the variable. The
addresses of the global
variables are placed after the
code, starting at label
.L3. LDR R3, .L3 loads the
address of f into R3, and
STR R0, [R3, #0] writes to
f; LDR R3, .L3+4 loads the
address of g into R3, and
STR R1, [R3, #0] writes to
g, and so on. Section 6.6.1
describes this assembly code
construct further.

6.5 Lights, Camera, Action: Compiling, Assembling, and Loading 341

6 . 5 . 3 Assembling

An assembler turns the assembly language code into an object file con-
taining machine language code. GCC can create the object file from either
prog.s or directly from prog.c using

gcc –c prog.s –o prog.o

or

gcc –O1 –g –c prog.c –o prog.o

The assembler makes two passes through the assembly code. On the first
pass, the assembler assigns instruction addresses and finds all the sym-
bols, such as labels and global variable names. The names and addresses
of the symbols are kept in a symbol table. On the second pass through the
code, the assembler produces the machine language code. Addresses for
labels are taken from the symbol table. The machine language code and
symbol table are stored in the object file.

We can disassemble the object file using the objdump command to see
the assembly language code beside the machine language code. If the code
was originally compiled with –g, the disassembler also shows the corre-
sponding lines of C code:

objdump –S prog.o

The following shows the disassembly of section .text:

00000000 <sum>:

int sum(int a, int b) {
return (a + b);

}
0: e0800001 add r0, r0, r1
4: e12fff1e bx lr

00000008 <main>:

int f, g, y; // global variables

int sum(int a, int b);

int main(void) {
8: e92d4008 push {r3, lr}

f = 2;
c: e3a00002 mov r0, #2
10: e59f301c ldr r3, [pc, #28] ; 34 <main+0x2c>
14: e5830000 str r0, [r3]

g = 3;
18: e3a01003 mov r1, #3
1c: e59f3014 ldr r3, [pc, #20] ; 38 <main+0x30>
20: e5831000 str r1, [r3]

y = sum(f,g);
24: ebfffffe bl 0 <sum>

Recall from Section 6.4.6 that a
read to PC returns the address of
the current instruction plus 8. So,
LDR R3, [PC, #28] loads f's
address, which is just after the
code at: (PC+ 8)+ 28= (0x10+
0x8)+ 0x1C= 0x34.

342 CHAPTER SIX Architecture

28: e59f300c ldr r3, [pc, #12] ; 3c <main+0x34>
2c: e5830000 str r0, [r3]
return y;

}
30: e8bd8008 pop {r3, pc}
...

We can also view the symbol table from the object file using objdump with
the –t flag. The interesting parts are shown below. Observe that the sum
function starts at address 0 and has a size of 8 bytes. main starts at address
8 and has size 0x38. The global variable symbols f, g, and h are listed
and are 4 bytes each, but they have not yet been assigned addresses.

objdump –t prog.o

SYMBOL TABLE:
00000000 l d .text 00000000 .text
00000000 l d .data 00000000 .data
00000000 g F .text 00000008 sum
00000008 g F .text 00000038 main
00000004 O *COM* 00000004 f
00000004 O *COM* 00000004 g
00000004 O *COM* 00000004 y

6 . 5 . 4 Linking

Most large programs contain more than one file. If the programmer
changes only one of the files, it would bewasteful to recompile and reassem-
ble the other files. In particular, programs often call functions in library
files; these library files almost never change. If a file of high-level code is
not changed, the associated object file need not be updated. Also, a pro-
gram typically involves some start-up code to initialize the stack, heap,
and so forth, that must be executed before calling the main function.

The job of the linker is to combine all of the object files and the start-
up code into one machine language file called the executable and assign
addresses for global variables. The linker relocates the data and instruc-
tions in the object files so that they are not all on top of each other. It uses
the information in the symbol tables to adjust the code based on the new
label and global variable addresses. Invoke GCC to link the object file
using:

gcc prog.o –o prog

We can again disassemble the executable using:

objdump –S -t prog

The start-up code is too lengthy to show, but our program begins at address
0x8390 in the text segment and the global variables are assigned addresses

6.5 Lights, Camera, Action: Compiling, Assembling, and Loading 343

starting at 0x10570 in the global segment. Notice the .word assembler
directives defining the addresses of the global variables f, g, and y.

00008390 <sum>:

int sum(int a, int b) {
return (a + b);

}
8390: e0800001 add r0, r0, r1
8394: e12fff1e bx lr

00008398 <main>:

int f, g, y; // global variables

int sum(int a, int b);

int main(void) {
8398: e92d4008 push {r3, lr}
f = 2;
839c: e3a00002 mov r0, #2
83a0: e59f301c ldr r3, [pc, #28] ; 83c4 <main+0x2c>
83a4: e5830000 str r0, [r3]
g = 3;
83a8: e3a01003 mov r1, #3
83ac: e59f3014 ldr r3, [pc, #20] ; 83c8 <main+0x30>
83b0: e5831000 str r1, [r3]
y = sum(f,g);
83b4: ebfffff5 bl 8390 <sum>
83b8: e59f300c ldr r3, [pc, #12] ; 83cc <main+0x34>
83bc: e5830000 str r0, [r3]
return y;

}
83c0: e8bd8008 pop {r3, pc}
83c4: 00010570 .word 0x00010570
83c8: 00010574 .word 0x00010574
83cc: 00010578 .word 0x00010578

The executable also contains an updated symbol table with the relocated
addresses of the functions and global variables.

SYMBOL TABLE:
000082e4 l d .text 00000000 .text
00010564 l d .data 00000000 .data
00008390 g F .text 00000008 sum
00008398 g F .text 00000038 main
00010570 g O .bss 00000004 f
00010574 g O .bss 00000004 g
00010578 g O .bss 00000004 y

6 . 5 . 5 Loading

The operating system loads a program by reading the text segment of the
executable file from a storage device (usually the hard disk) into the text
segment of memory. The operating system jumps to the beginning of the
program to begin executing. Figure 6.31 shows the memory map at
the beginning of program execution.

The instruction LDR R3, [PC,

#28] in the executable loads
from address (PC + 8) + 28 =
(0x83A0 + 0x8) + 0x1C =
0x83C4. This memory address
contains the value 0x10570,
the location of global variable f.

344 CHAPTER SIX Architecture

6.6 ODDS AND ENDS*
This section covers a few optional topics that do not fit naturally elsewhere in
the chapter. These topics include loading 32-bit literals,NOPs, and exceptions.

6 . 6 . 1 Loading Literals

Many programs need to load 32-bit literals, such as constants or
addresses. MOV only accepts a 12-bit source, so the LDR instruction is used
to load these numbers from a literal pool in the text segment. ARM
assemblers accept loads of the form

LDR Rd, =literal
LDR Rd, =label

y

g

f

0x00010578

0x00010574

0x00010570

0xE8BD8008

0xE5830000

0xE59F300C

0xEBFFFFF5

0xE5831000

0xE59F3014

0xE3A01003

0xE5830000

0xE59F301C

0xE3A00002

0xE92D4008

0xE12FFF1E

0xE0800001

MemoryAddress

0x00008390

Stack

PC = 0x00008398

O.S. & I/O

Exception
Handlers

0x00010570

SP0xBEFFFAE8

Figure 6.31 Executable loaded in
memory

6.6 Odds and Ends 345

The first loads a 32-bit constant specified by literal, and the second
loads the address of a variable or pointer in the program specified by label.
In both cases, the value to load is kept in a literal pool, which is a portion of the
text segment containing literals. The literal pool must be less than 4096 bytes
from the LDR instruction so that the load can be performed as LDR Rd, [PC,
#offset_to_literal]. The program must be careful to branch around
the literal pool because executing literals would be nonsensical or worse.

Code Example 6.30 illustrates loading a literal. As shown in
Figure 6.32, suppose the LDR instruction is at address 0x8110 and the lit-
eral is at 0x815C. Remember that reading the PC returns the address 8
bytes beyond the current instruction being executed. Hence, when the
LDR is executed, reading the PC returns 0x8118. Thus, the LDR uses an
offset of 0x44 to find the literal pool: LDR R1, [PC, #0x44].

6 . 6 . 2 NOP

NOP is a mnemonic for “no operation” and is pronounced “no op.” It is
a pseudoinstruction that does nothing. The assembler translates it to
MOV R0, R0 (0xE1A00000). NOPs are useful to, among other things,
achieve some delay or align instructions.

Code Example 6.30 LARGE IMMEDIATE USING A LITERAL POOL

High-level code
int a = 0x2B9056F;

ARM Assembly Code
; R1 = a
LDR R1, =0x2B9056F

...

Address Instructions / Data

0000815C

...

00008114

00008110

Main Memory

PCLDR R1, [PC, #0x44]

...

0x02B9056F
Literal
Pool

Figure 6.32 Example literal pool

Pseudoinstructions are not
actually part of the instruction set
but are shorthand for instructions
or instruction sequences that are
commonly used by programmers
and compilers. The assembler
translates pseudoinstructions into
one or more actual instructions.

346 CHAPTER SIX Architecture

6 . 6 . 3 Exceptions

An exception is like an unscheduled function call that branches to
a new address. Exceptions may be caused by hardware or software.
For example, the processor may receive notification that the user pressed a
key on a keyboard. The processormay stopwhat it is doing, determinewhich
key was pressed, save it for future reference, and then resume the program
that was running. Such a hardware exception triggered by an input/output
(I/O) device such as a keyboard is often called an interrupt. Alternatively,
the programmay encounter an error condition such as an undefined instruc-
tion. The program then branches to code in the operating system (OS), which
may choose to either emulate the unimplemented instruction or terminate the
offending program. Software exceptions are sometimes called traps. A parti-
cularly important form of a trap is a system call, whereby the program
invokes a function in the OS running at a higher privilege level. Other causes
of exceptions include reset and attempts to read nonexistent memory.

Like any other function call, an exception must save the return
address, jump to some address, do its work, clean up after itself, and return
to the program where it left off. Exceptions use a vector table to determine
where to jump to the exception handler and use banked registers to main-
tain extra copies of key registers so that they will not corrupt the registers
in the active program. Exceptions also change the privilege level of the pro-
gram, allowing the exception handler to access protected parts of memory.

Execution Modes and Privilege Levels
An ARM processor can operate in one of several execution modes with dif-
ferent privilege levels. The different modes allow an exception to take place
in an exception handler without corrupting state; for example, an interrupt
could occur while the processor is executing operating system code in
Supervisormode, and a subsequentAbort exception could occur if the inter-
rupt attempted to access an invalid memory address. The exception hand-
lers would eventually return and resume the supervisor code. The mode is
specified in the bottom bits of the Current Program Status Register (CPSR),
as was shown in Figure 6.6. Table 6.13 lists execution modes and their
encodings. User mode operates at privilege level PL0, which is unable to
access protected portions of memory such as the operating system code.
The other modes operate at privilege level PL1, which can access all system
resources. Privilege levels are important so that buggy or malicious user
code cannot corrupt other programs or crash or infect the system.

Exception Vector Table
When an exception occurs, the processor branches to an offset in the
exception vector table, depending on the cause of the exception.
Table 6.14 describes the vector table, which is normally located starting
at address 0x00000000 in memory. For example, when an interrupt
occurs, the processor branches to address 0x00000018. Similarly, on

6.6 Odds and Ends 347

power-up, the processor branches to address 0x00000000. Each excep-
tion vector offset typically contains a branch instruction to an exception
handler, code that handles the exception and then either exits or returns
to the user code.

Banked Registers
Before an exception changes the PC, it must save the return address in the
LR so that the exception handler knows where to return. However,
it must take care not to disturb the value already in the LR, which the
program will need later. Therefore, the processor maintains a bank of
different registers to use as LR during each of the execution modes.
Similarly, the exception handler must not disturb the status register bits.

ARM also supports a High
Vectors mode in which the
exception vector table starts at
address 0xFFFF0000. For
example, the system may boot
using a vector table in ROM at
address 0x00000000. Once
the system starts up, the OS
may write an updated vector
table in RAM at 0xFFFF0000
and put the system into High
Vectors mode.

Table 6.13 ARM execution modes

Mode CPSR4:0

User 10000

Supervisor 10011

Abort 10111

Undefined 11011

Interrupt (IRQ) 10010

Fast Interrupt (FIQ) 10001

Table 6.14 Exception vector table

Exception Address Mode

Reset 0x00 Supervisor

Undefined Instruction 0x04 Undefined

Supervisor Call 0x08 Supervisor

Prefetch Abort (instruction fetch error) 0x0C Abort

Data Abort (data load or store error) 0x10 Abort

Reserved 0x14 N/A

Interrupt 0x18 IRQ

Fast Interrupt 0x1C FIQ

348 CHAPTER SIX Architecture

Hence, a bank of saved program status registers (SPSRs) is used to hold a
copy of the CPSR during exceptions.

If an exception takes place while a program is manipulating its stack
frame, the frame might be in an unstable state (e.g., data has been written
onto the stack but the stack pointer is not yet pointing to the top of
stack). Hence, each execution mode also uses its own stack and banked
copy of SP pointing to the top of its stack. Memory must be reserved
for each execution mode's stack and banked versions of the stack pointers
must be initialized at start-up.

The first thing that an exception handler must do is to push all of
the registers it might change onto the stack. This takes some time. ARM
has a fast interrupt execution mode FIQ in which R8–R12 are also
banked. Thus, the exception handler can immediately begin without
saving these registers.

Exception Handling
Now that we have defined execution modes, exception vectors, and
banked registers, we can define what occurs during an exception. Upon
detecting an exception, the processor:

1. Stores the CPSR into the banked SPSR

2. Sets the executionmode and privilege level based on the type of exception

3. Sets interrupt mask bits in the CPSR so that the exception handler will
not be interrupted

4. Stores the return address into the banked LR

5. Branches to the exception vector table based on the type of exception

The processor then executes the instruction in the exception vector table,
typically a branch to the exception handler. The handler usually pushes
other registers onto its stack, takes care of the exception, and pops the reg-
isters back off the stack. The exception handler returns using the MOVS PC,
LR instruction, a special flavor of MOV that performs the following cleanup:

1. Copies the banked SPSR to the CPSR to restore the status register

2. Copies the banked LR (possibly adjusted for certain exceptions) to the
PC to return to the program where the exception occurred

3. Restores the execution mode and privilege level

Exception-Related Instructions
Programs operate at a low privilege level, whereas the operating system
has a higher privilege level. To transition between levels in a controlled
way, the program places arguments in registers and issues a supervisor
call (SVC) instruction, which generates an exception and raises the

6.6 Odds and Ends 349

privilege level. The OS examines the arguments and performs the
requested function, and then returns to the program.

The OS and other code operating at PL1 can access the banked regis-
ters for the various execution modes using the MRS (move to register from
special register) and MSR (move to special register from register) instruc-
tions. For example, at boot time, the OS will use these instructions to
initialize the stacks for exception handlers.

Start-up
On start-up, the processor jumps to the reset vector and begins executing
boot loader code in supervisor mode. The boot loader typically configures
the memory system, initializes the stack pointer, and reads the OS from
disk; then it begins a much longer boot process in the OS. The OS even-
tually will load a program, change to unprivileged user mode, and jump
to the start of the program.

6.7 EVOLUTION OF ARM ARCHITECTURE

The ARM1 processor was first developed by Acorn Computer in
Britain for the BBC Micro computers in 1985 as an upgrade to the
6502 microprocessor used in many personal computers of the era. It
was followed within the year by the ARM2, which went into produc-
tion in the Acorn Archimedes computer. ARM was an acronym for
Acorn RISC Machine. The product implemented Version 2 of the
ARM instruction set (ARMv2). The address bus was only 26 bits, and
the upper 6 bits of the 32-bit PC were used to hold status bits.
The architecture included almost all of the instructions described in this
chapter, including data-processing, most loads and stores, branches,
and multiplies.

ARM soon extended the address bus to a full 32 bits, moving the sta-
tus bits into a dedicated Current Program Status Register (CPSR).
ARMv4, introduced in 1993, added halfword loads and stores and pro-
vided both signed and unsigned halfword and byte loads. This is the core
of the modern ARM instruction set, and is what we have covered in this
chapter.

The ARM instruction set has seen many enhancements described in
subsequent sections. The highly successful ARM7TDMI processor in
1995 introduced the 16-bit Thumb instruction set in ARMv4T to
improve code density. ARMv5TE added digital signal processing (DSP)
and optional floating-point instructions. ARMv6 added multimedia
instructions and enhanced the Thumb instruction set. ARMv7 improved
the floating-point and multimedia instructions, renaming them Advanced
SIMD. ARMv8 introduced a completely new 64-bit architecture. Various
other system programming instructions have been introduced as the
architecture has evolved.

As of ARMv7, the CPSR is
called the Application
Program Status Register
(APSR).

350 CHAPTER SIX Architecture

6 . 7 . 1 Thumb Instruction Set

Thumb instructions are 16 bits long to achieve higher code density; they
are identical to regular ARM instructions but generally have limitations,
including that they:

▶ Access only the bottom eight registers

▶ Reuse a register as both a source and destination

▶ Support shorter immediates

▶ Lack conditional execution

▶ Always write the status flags

Almost all ARM instructions have Thumb equivalents. Because the instruc-
tions are less powerful, more are required to write an equivalent program.
However, the instructions are half as long, giving overall Thumb code
size of about 65% of the ARM equivalent. The Thumb instruction set is
valuable not only to reduce the size and cost of code storage memory,
but also to allow for an inexpensive 16-bit bus to instruction memory
and to reduce the power consumed by fetching instructions from the
memory.

ARM processors have an instruction set state register, ISETSTATE,
that includes a T bit to indicate whether the processor is in normal mode
(T= 0) or Thumb mode (T= 1). This mode determines how instructions
should be fetched and interpreted. The BX and BLX branch instructions
toggle the T bit to enter or exit Thumb mode.

Thumb instruction encoding is more complex and irregular than
ARM instructions to pack as much useful information as possible into
16-bit halfwords. Figure 6.33 shows encodings for common Thumb
instructions. The upper bits specify the type of instruction. Data-proces-
sing instructions typically specify two registers, one of which is both the
first source and the destination. They always write the status flags. Adds,
subtracts, and shifts can specify a short immediate. Conditional branches
specify a 4-bit condition code and a short offset, whereas unconditional
branches allow a longer offset. Note that BX takes a 4-bit register identi-
fier so that it can access the link register LR. Special forms of LDR, STR,
ADD, and SUB are defined to operate relative to the stack pointer SP (to
access the stack frame during function calls). Another special form of
LDR loads relative to the PC (to access a literal pool). Forms of ADD and
MOV can access all 16 registers. BL always requires two halfwords to spe-
cify a 22-bit destination.

ARM subsequently refined the Thumb instruction set and added a
number of 32-bit Thumb-2 instructions to boost performance of common
operations and to allow any program to be written in Thumb mode.

The irregular Thumb
instruction set encoding and
variable-length instructions
(1 or 2 halfwords) are
characteristic of 16-bit
processor architectures that
must pack a large amount of
information into a short
instruction word. The
irregularity complicates
instruction decoding.

6.7 Evolution of ARM Architecture 351

Thumb-2 instructions are identified by their most significant 5 bits being
11101, 11110, or 11111. The processor then fetches a second halfword
containing the remainder of the instruction. The Cortex-M series of pro-
cessors operates exclusively in Thumb state.

6 . 7 . 2 DSP Instructions

Digital signal processors (DSPs) are designed to efficiently handle signal pro-
cessing algorithms such as the Fast Fourier Transform (FFT) and Finite/Infi-
nite Impulse Response filters (FIR/IIR). Common applications include audio
and video encoding and decoding, motor control, and speech recognition.
ARMprovides a number ofDSP instructions for these purposes. DSP instruc-
tions include multiply, add, and multiply-accumulate (MAC)—multiply and
add the result to a running sum: sum= sum+ src1 × src2. MAC is a distin-
guishing feature separatingDSP instruction sets from regular instruction sets.
It is very commonly used in DSP algorithms and doubles the performance
relative to separate multiply and add instructions. However, MAC requires
specifying an extra register to hold the running sum.

DSP instructions often operate on short (16-bit) data representing
samples read from a sensor by an analog-to-digital converter. However,
the intermediate results are held to greater precision (e.g., 32 or 64 bits)

15 0

0 1 0 0 0 0 funct Rm Rdn <funct>S Rdn, Rdn, Rm (data-processing)

0 0 ASR LSR imm5 Rm Rd0 LSLS / LSRS / ASRS Rd, Rm, #imm5

1 1 1 SUB imm3 Rm Rd0 ADDS / SUBS Rd, Rm, #imm30 0

1 ADDS / SUBS Rdn, Rdn, #imm80 10 Rdn imm8

0 0 MOV Rd, #imm80 1

0 1 CMP Rn, #imm80 1

0

0

Rd

Rn

imm8

imm8

0 1 BX / BLX Rm1 00 Rm1 1 L0 0 00

0 1 B<cond> imm81 1 cond imm8

0 1 STR(B / H) / LDR(B / H) Rd, [Rn, Rm]0 1 B HL Rm Rn Rd

1 0 STR / LDR Rd, [Rn, #imm5]1 L imm5 Rn Rd

0 11 0 L Rd imm8 STR / LDR Rd, [SP, #imm8]

0

0 01 1 Rd imm8 LDR Rd, [PC, #imm8]0

0 0 1 0 Rm Rdn[2:0]0 1 0 0 ADD Rdn, Rdn, RmRdn
[3]

1 0 0 0 imm71 0 1 0 ADD / SUB SP, SP, #imm7SUB

0 0 1 1 Rm Rdn[2:0]0 1 0 0 MOV Rdn, RmRdn
[3]

1 0 B imm111 1 imm80

1 11 0 imm22[21:11]1 1 11 1 imm22[10:0]1 BL imm22

SUB

Figure 6.33 Thumb instruction encoding examples

The basic multiply instructions,
listed in Appendix B, are part of
ARMv4. ARMv5TE added the
saturating math instructions and
packed and fractional multiplies
to support DSP algorithms.

The Fast Fourier Transform
(FFT), the most common DSP
algorithm, is both complicated
and performance-critical. The
DSP instructions in computer
architectures are intended to
perform efficient FFTs, especially
on 16-bit fractional data.

352 CHAPTER SIX Architecture

or saturated to prevent overflow. In saturated arithmetic, results larger
than the most positive number are treated as the most positive, and results
smaller than the most negative are treated as the most negative. For exam-
ple, in 32-bit arithmetic, results greater than 231 – 1 saturate at 231 – 1,
and results less than −231 saturate at −231. Common DSP data types
are given in Table 6.15. Two's complement numbers are indicated as hav-
ing one sign bit. The 16-, 32-, and 64-bit types are also known as half,
single, and double precision, not to be confused with single and double-
precision floating-point numbers. For efficiency, two half-precision num-
bers are packed in a single 32-bit word.

The integer types come in signed and unsigned flavors with the sign
bit in the msb. Fractional types (Q15 and Q31) represent a signed frac-
tional number; for example, Q31 spans the range [−1, 1–2−31] with a step
of 2−31 between consecutive numbers. These types are not defined in the
C standard but are supported by some libraries. Q31 can be converted
to Q15 by truncation or rounding. In truncation, the Q15 result is just
the upper half. In rounding, 0x00008000 is added to the Q31 value
and then the result is truncated. When a computation involves many
steps, rounding is useful because it avoids accumulating multiple small
truncation errors into a significant error.

ARM added a Q flag to the status registers to indicate that overflow
or saturation has occurred in DSP instructions. For applications where
accuracy is critical, the program can clear the Q flag before a computa-
tion, do the computation in single-precision, and check the Q flag
afterward. If it is set, overflow occurred and the computation can be
repeated in double precision if necessary.

Saturated arithmetic is an
important way to gracefully
degrade accuracy in DSP
algorithms. Commonly,
single-precision arithmetic is
sufficient to handle most
inputs, but pathological cases
can overflow the single-
precision range. An overflow
causes an abrupt sign change
to a radically wrong answer,
which may appear to the user
as a click in an audio stream
or a strangely colored pixel in
a video stream. Going to
double-precision arithmetic
prevents overflow but
degrades performance and
increases power consumption
in the typical case. Saturated
arithmetic clips the overflow
at the maximum or minimum
value, which is usually close to
the desired value and causes
little inaccuracy.

Table 6.15 DSP data types

Type Sign Bit Integer Bits Fractional Bits

short 1 15 0

unsigned short 0 16 0

long 1 31 0

unsigned long 0 32 0

long long 1 63 0

unsigned long long 0 64 0

Q15 1 0 15

Q31 1 0 31

6.7 Evolution of ARM Architecture 353

Addition and subtraction are performed identically no matter which
format is used. However, multiplication depends on the type. For example,
with 16-bit numbers, the number 0xFFFF is interpreted as 65535 for
unsigned short, −1 for short, and −2−15 for Q15 numbers. Hence,
0xFFFF × 0xFFFF has a very different value for each representation
(4,294,836,225; 1; and 2−30, respectively). This leads to different instruc-
tions for signed and unsigned multiplication.

A Q15 number A can be viewed as a × 2−15, where a is its interpreta-
tion in the range [−215, 215−1] as a signed 16-bit number. Hence, the pro-
duct of two Q15 numbers is:

A × B = a × b × 2−30 = 2 × a × b × 2−31

This means that to multiply two Q15 numbers and get a Q31 result, do
ordinary signed multiplication and then double the product. The product
can then be truncated or rounded to put it back into Q15 format if
necessary.

The rich assortment of multiply and multiply-accumulate instructions
are summarized in Table 6.16. MACs require up to four registers: RdHi,
RdLo, Rn, and Rm. For double-precision operations, RdHi and RdLo
hold the most and least significant 32 bits, respectively. For example,
UMLAL RdLo, RdHi, Rn, Rm computes {RdHi, RdLo}= {RdHi, RdLo}+
Rn ×Rm. Half-precision multiplies come in various flavors denoted in
braces to choose the operands from the top or bottom half of the word,
and in dual forms where both the top and bottom halves are multiplied.
MACs involving half-precision inputs and a single-precision accumulator
(SMLA*, SMLAW*, SMUAD, SMUSD, SMLAD, SMLSD) will set the Q flag if the
accumulator overflows. The most significant word (MSW) multiplies also
come in forms with an R suffix that round rather than truncate.

The DSP instructions also include saturated add (QADD) and subtract
(QSUB) of 32-bit words that saturate the results instead of overflowing. They
also include QDADD and QDSUB, which double the second operand before add-
ing/subtracting it to/from the first with saturation; we will shortly find these
valuable in fractional MACs. They set the Q flag if saturation occurs.

Finally, the DSP instructions include LDRD and STRD that load and
store an even/odd pair of registers in a 64-bit memory double word. These
instructions increase the efficiency of moving double-precision values
between memory and registers.

Table 6.17 summarizes how to use the DSP instructions to multiply or
MAC various types of data. The examples assume halfword data is in the
bottom half of a register and that the top half is zero; use the T flavor of SMUL
when the data is in the top instead. The result is stored in R2, or in {R3, R2}
for double-precision. Fractional operations (Q15/Q31) double the result
using saturated adds to prevent overflow when multiplying −1×−1.

354 CHAPTER SIX Architecture

Table 6.16 Multiply and multiply-accumulate instructions

Instruction Function Description

Ordinary 32-bit multiplication works for both signed and unsigned

MUL 32 = 32 × 32 Multiply

MLA 32 = 32 + 32 × 32 Multiply-accumulate

MLS 32 = 32 − 32 × 32 Multiply-subtract

unsigned long long = unsigned long × unsigned long

UMULL 64 = 32 × 32 Unsigned multiply long

UMLAL 64 = 64 + 32 × 32 Unsigned multiply-accumulate long

UMAAL 64 = 32 + 32 × 32 + 32 Unsigned multiply-accumulate-add long

long long = long × long

SMULL 64 = 32 × 32 Signed multiply long

SMLAL 64 = 64 + 32 × 32 Signed multiply-accumulate long

Packed arithmetic: short × short

SMUL{BB/BT/TB/TT} 32 = 16 × 16 Signed multiply {bottom/top}

SMLA{BB/BT/TB/TT} 32 = 32 + 16 × 16 Signed multiply-accumulate {bottom/top}

SMLAL{BB/BT/TB/TT} 64 = 64 + 16 × 16 Signed multiply-accumulate long {bottom/top}

Fractional multiplication (Q31 / Q15)

SMULW{B/T} 32 = (32 × 16) >> 16 Signed multiply word-halfword {bottom/top}

SMLAW{B/T} 32 = 32 + (32 × 16) >> 16
Signed multiply-add word-halfword {bottom/
top}

SMMUL{R} 32 = (32 × 32) >> 32 Signed MSW multiply {round}

SMMLA{R} 32 = 32 + (32 × 32) >> 32 Signed MSW multiply-accumulate {round}

SMMLS{R} 32 = 32 − (32 × 32) >> 32 Signed MSW multiply-subtract {round}

long or long long = short × short + short × short

SMUAD 32 = 16 × 16 + 16 × 16 Signed dual multiply-add

SMUSD 32 = 16 × 16 − 16 × 16 Signed dual multiply-subtract

SMLAD 32 = 32 + 16 × 16 + 16 × 16 Signed multiply-accumulate dual

SMLSD 32 = 32 + 16 × 16 − 16 × 16 Signed multiply-subtract dual

SMLALD 64 = 64 + 16 × 16 + 16 × 16 Signed multiply-accumulate long dual

SMLSLD 64 = 64 + 16 × 16 − 16 × 16 Signed multiply-subtract long dual

6.7 Evolution of ARM Architecture 355

Table 6.17 Multiply and MAC code for various data types

First Operand
(R0)

Second Operand
(R1)

Product
(R3/R2) Multiply MAC

short short short SMULBB R2, R0, R1 SMLABB R2, R0, R1

LDR R3, =0x0000FFFF LDR R3, =0x0000FFFF

AND R2, R3, R2 AND R2, R3, R2

short short long SMULBB R2, R0, R1 SMLABB R2, R0, R1, R2

short short long long MOV R2, #0 SMLALBB R2, R3, R0, R1

MOV R3, #0

SMLALBB R2, R3, R0, R1

long short long SMULWB R2, R0, R1 SMLAWB R2, R0, R1, R2

long long long MUL R2, R0, R1 MLA R2, R0, R1, R2

long long long long SMULL R2, R3, R0, R1 SMLAL R2, R3, R0, R1

unsigned short unsigned short unsigned short MUL R2, R0, R1 MLA R2, R0, R1, R2

LDR R3, =0x0000FFFF LDR R3, =0x0000FFFF

AND R2, R3, R2 AND R2, R3, R2

unsigned short unsigned short unsigned long MUL R2, R0, R1 MLA R2, R0, R1, R2

unsigned long unsigned short unsigned long MUL R2, R0, R1 MLA R2, R0, R1, R2

unsigned long unsigned long unsigned long MUL R2, R0, R1 MLA R2, R0, R1, R2

unsigned long unsigned long
unsigned long
long UMULL R2, R3, R0, R1 UMLAL R2, R3, R0, R1

Q15 Q15 Q15 SMULBB R2, R0, R1 SMLABB R2, R0, R1, R2

QADD R2, R2, R2 SSAT R2, 16, R2

LSR R2, R2, #16

Q15 Q15 Q31 SMULBB R2, R0, R1 SMULBB R3, R0, R1

QADD R2, R2, R2 QDADD R2, R2, R3

Q31 Q15 Q31 SMULWB R2, R0, R1 SMULWB R3, R0, R1

QADD R2, R2, R2 QDADD R2, R2, R3

Q31 Q31 Q31 SMMUL R2, R0, R1 SMMUL R3, R0, R1

QADD R2, R2, R2 QDADD R2, R2, R3

356 CHAPTER SIX Architecture

6 . 7 . 3 Floating-Point Instructions

Floating-point is more flexible than the fixed-point numbers favored in
DSP and makes programming easier. Floating-point is widely used in gra-
phics, scientific applications, and control algorithms. Floating-point arith-
metic can be performed with a series of ordinary data-processing
instructions but is faster and consumes less power using dedicated float-
ing-point instructions and hardware.

The ARMv5 instruction set includes optional floating-point instruc-
tions. These instructions access at least 16 64-bit double-precision regis-
ters separate from the ordinary registers. These registers can also be
treated as pairs of 32-bit single-precision registers. The registers are
named D0–D15 as double-precision or S0–S31 as single-precision. For
example, VADD.F32 S2, S0, S1 and VADD.F64 D2, D0, D1 perform single
and double-precision floating-point adds, respectively. Floating-point
instructions, listed in Table 6.18, are suffixed with .F32 or .F64 to indi-
cate single- or double-precision floating-point.

Table 6.18 ARM floating-point instructions

Instruction Function

VABS Rd, Rm Rd = |Rm|

VADD Rd, Rn, Rm Rd = Rn + Rm

VCMP Rd, Rm Compare and set floating-point status flags

VCVT Rd, Rm Convert between int and float

VDIV Rd, Rn, Rm Rd = Rn / Rm

VMLA Rd, Rn, Rm Rd = Rd + Rn * Rm

VMLS Rd, Rn, Rm Rd = Rd − Rn * Rm

VMOV Rd, Rm or #const Rd = Rm or constant

VMUL Rd, Rn, Rm Rd = Rn * Rm

VNEG Rd, Rm Rd = −Rm

VNMLA Rd, Rn, Rm Rd = −(Rd + Rn * Rm)

VNMLS Rd, Rn, Rm Rd = −(Rd − Rn * Rm)

VNMUL Rd, Rn, Rm Rd = −Rn * Rm

VSQRT Rd, Rm Rd = sqrt(Rm)

VSUB Rd, Rn, Rm Rd = Rn – Rm

6.7 Evolution of ARM Architecture 357

The MRC and MCR instructions are used to transfer data between the
ordinary registers and the floating-point coprocessor registers.

ARM defines the Floating-Point Status and Control Register
(FPSCR). Like the ordinary status register, it holds N, Z, C, and V flags
for floating-point operations. It also specifies rounding modes, excep-
tions, and special conditions such as overflow, underflow, and divide-
by-zero. The VMRS and VMSR instructions transfer information between a
regular register and the FPSCR.

6 . 7 . 4 Power-Saving and Security Instructions

Battery-powered devices save power by spending most of their time in
sleep mode. ARMv6K introduced instructions to support such power
savings. The wait for interrupt (WFI) instruction allows the processor to
enter a low-power state until an interrupt occurs. The system may gener-
ate interrupts based on user events (such as touching a screen) or on a
periodic timer. The wait for event (WFE) instruction is similar but is helpful
in multiprocessor systems (see Section 7.7.8) so that a processor can go to
sleep until notified by another processor. It wakes up either during an
interrupt or when another processor sends an event using the SEV
instruction.

ARMv7 enhances the exception handling to support virtualization
and security. In virtualization, multiple operating systems can run concur-
rently on the same processor, unaware of each other’s existence. A hyper-
visor switches between the operating systems. The hypervisor operates at
privilege level PL2. It is invoked with a hypervisor trap exception. With
security extensions, the processor defines a secure state with limited
means of entry and restricted access to secure portions of memory. Even
if an attacker compromises the operating system, the secure kernel may
resist tampering. For example, the secure kernel may be used to disable
a stolen phone or to enforce digital rights management such that a user
can’t duplicate copyrighted content.

6 . 7 . 5 SIMD Instructions

The term SIMD (pronounced “sim-dee”) stands for single instruction mul-
tiple data, in which a single instruction acts on multiple pieces of data in
parallel. A common application of SIMD is to perform many short arith-
metic operations at once, especially for graphics processing. This is also
called packed arithmetic.

Short data elements often appear in graphics processing. For
example, a pixel in a digital photo may use 8 bits to store each of the
red, green, and blue color components. Using an entire 32-bit word to
process one of these components wastes the upper 24 bits. Moreover,

358 CHAPTER SIX Architecture

when the components from 16 adjacent pixels are packed into a 128-bit
quadword, the processing can be performed 16 times faster. Similarly,
coordinates in a 3-dimensional graphics space are generally represented
with 32-bit (single-precision) floating-point numbers. Four of these
coordinates can be packed into a 128-bit quadword.

Most modern architectures offer SIMD arithmetic operations with
wide SIMD registers packing multiple narrower operands. For example,
the ARMv7 Advanced SIMD instructions share the registers from the
floating-point unit. Moreover, these registers can also be paired to act
as eight 128-bit quad words Q0–Q7. The registers pack together several
8-, 16-, 32-, or 64-bit integer or floating-point values. The instructions
are suffixed with .I8, .I16, .I32, .I64, .F32, or .F64 to indicate how
the registers should be treated.

Figure 6.34 shows the VADD.I8 D2, D1, D0 vector add instruction
operating on eight pairs of 8-bit integers packed into 64-bit double words.
Similarly VADD.I32 Q2, Q1, Q0 adds four pairs of 32-bit integers packed
into 128-bit quad words and VADD.F32, D2, D1, D0 adds two pairs of
32-bit single-precision floating-point numbers packed into 64-bit double
words. Performing packed arithmetic requires modifying the ALU to elim-
inate carries between the smaller data elements. For example, a carry out
of a0+ b0 must not affect the result of a1+ b1.

Advanced SIMD instructions begin with V. They include the follow-
ing categories:

▶ Basic arithmetic functions also defined for floating-point

▶ Loads and stores of multiple elements, including deinterleaving and
interleaving

▶ Bitwise logical operations

▶ Comparisons

▶ Many flavors of shifts, additions, and subtractions with and without
saturation

▶ Many flavors of multiply and MAC

▶ Miscellaneous instructions

0781516232431 Bit position

D0

D1

D2

+

a7 a6 a5 a4 a3 a2 a1 a0

b7

a7 + b7 a6 + b6 a5 + b5 a4 + b4 a3 + b3 a2 + b2 a1 + b1 a0 + b0

b6 b5 b4 b3 b2 b1 b0

a4

3239404748555663

Figure 6.34 Packed arithmetic:
eight simultaneous 8-bit additions

6.7 Evolution of ARM Architecture 359

ARMv6 also defined a more limited set of SIMD instructions operat-
ing on the regular 32-bit registers. These include 8- and 16-bit addition
and subtraction, and instructions to efficiently pack and unpack bytes
and halfwords into a word. These instructions are useful to manipulate
16-bit data in DSP code.

6 . 7 . 6 64-bit Architecture

32-bit architectures allow a program to directly access at most 232 bytes
= 4 GB of memory. Large computer servers led the transition to 64-bit
architectures that can access vast amounts of memory. Personal compu-
ters and then mobile devices followed. 64-bit architectures can sometimes
be faster as well because they move more information with a single
instruction.

Many architectures simply extend their general-purpose registers
from 32 to 64 bits, but ARMv8 introduced a new instruction set as well
to streamline idiosyncrasies. The classic instruction set lacks enough gen-
eral-purpose registers for complex programs, forcing costly movement of
data between registers and memory. Keeping the PC in R15 and SP in
R13 also complicates the processor implementation, and programs often
need a register containing the value 0.

The ARMv8 instructions are still 32 bits long and the instruction set
looks very much like ARMv7, but with some problems cleaned up.
In ARMv8, the register file is expanded to 31 64-bit registers (called
X0–X30) and the PC and SP are no longer part of the general-purpose
registers. X30 serves as the link register. Note that there is no X31 regis-
ter; instead, it is called the zero register (ZR) and is hardwired to 0.
Data-processing instructions can operate on 32- or 64-bit values, whereas
loads and stores always use 64-bit addresses. To make room for the extra
bits to specify source and destination registers, the condition field is
removed from most instructions. However, branches can still be condi-
tional. ARMv8 also streamlines exception handling, doubles the number
of advanced SIMD registers, and adds instructions for AES and SHA
cryptography. The instruction encodings are rather complex and do not
classify into a handful of categories.

On reset, ARMv8 processors boot in 64-bit mode. The processor can
drop into 32-bit mode by setting a bit in a system register and invoking an
exception. It returns to 64-bit mode when the exception returns.

6.8 ANOTHER PERSPECTIVE: x86 ARCHITECTURE

Almost all personal computers today use x86 architecture microproces-
sors. x86, also called IA-32, is a 32-bit architecture originally developed
by Intel. AMD also sells x86 compatible microprocessors.

360 CHAPTER SIX Architecture

The x86 architecture has a long and convoluted history dating back
to 1978, when Intel announced the 16-bit 8086 microprocessor. IBM
selected the 8086 and its cousin, the 8088, for IBM’s first personal com-
puters. In 1985, Intel introduced the 32-bit 80386 microprocessor, which
was backward compatible with the 8086, so it could run software devel-
oped for earlier PCs. Processor architectures compatible with the 80386
are called x86 processors. The Pentium, Core, and Athlon processors
are well known x86 processors.

Various groups at Intel and AMD over many years have shoehorned
more instructions and capabilities into the antiquated architecture. The
result is far less elegant than ARM. However, software compatibility is far
more important than technical elegance, so x86 has been the de facto PC
standard for more than two decades. More than 100 million x86 processors
are sold every year. This huge market justifies more than $5 billion of
research and development annually to continue improving the processors.

x86 is an example of a Complex Instruction Set Computer (CISC)
architecture. In contrast to RISC architectures such as ARM, each CISC
instruction can do more work. Programs for CISC architectures usually
require fewer instructions. The instruction encodings were selected to be
more compact, so as to save memory, when RAM was far more expensive
than it is today; instructions are of variable length and are often less than
32 bits. The trade-off is that complicated instructions are more difficult to
decode and tend to execute more slowly.

This section introduces the x86 architecture. The goal is not to make
you into an x86 assembly language programmer, but rather to illustrate
some of the similarities and differences between x86 and ARM. We think
it is interesting to see how x86 works. However, none of the material in
this section is needed to understand the rest of the book. Major differ-
ences between x86 and ARM are summarized in Table 6.19.

Table 6.19 Major differences between ARM and x86

Feature ARM x86

of registers 15 general purpose 8, some restrictions on purpose

of operands 3–4 (2–3 sources, 1 destination) 2 (1 source, 1 source/destination)

operand location registers or immediates registers, immediates, or memory

operand size 32 bits 8, 16, or 32 bits

condition flags yes yes

instruction types simple simple and complicated

instruction encoding fixed, 4 bytes variable, 1–15 bytes

6.8 Another Perspective: x86 Architecture 361

6 . 8 . 1 x86 Registers

The 8086 microprocessor provided eight 16-bit registers. It could
separately access the upper and lower eight bits of some of these
registers. When the 32-bit 80386 was introduced, the registers were
extended to 32 bits. These registers are called EAX, ECX, EDX, EBX,
ESP, EBP, ESI, and EDI. For backward compatibility, the bottom 16 bits
and some of the bottom 8-bit portions are also usable, as shown in
Figure 6.35.

The eight registers are almost, but not quite, general purpose. Certain
instructions cannot use certain registers. Other instructions always put
their results in certain registers. Like SP in ARM, ESP is normally reserved
for the stack pointer.

The x86 program counter is called the EIP (the extended instruction
pointer). Like the ARM PC, it advances from one instruction to the next
or can be changed with branch and function call instructions.

6 . 8 . 2 x86 Operands

ARM instructions always act on registers or immediates. Explicit load
and store instructions are needed to move data between memory and
the registers. In contrast, x86 instructions may operate on registers,
immediates, or memory. This partially compensates for the small set of
registers.

ARM instructions generally specify three operands: two sources and
one destination. x86 instructions specify only two operands. The first is
a source. The second is both a source and the destination. Hence, x86
instructions always overwrite one of their sources with the result.
Table 6.20 lists the combinations of operand locations in x86. All combi-
nations are possible except memory to memory.

EAX
0

AH
AX

ECX
1

CH
CX

EDX
2

B
yte 0

B
yte 1

B
yte 2

B
yte 3

DH
DX

EBX
3

BH
BX

ESP
SP4

EBP
BP5

ESI
SI6

EDI
DI7

AL

CL

DL

BL

Figure 6.35 x86 registers

Table 6.20 Operand locations

Source/ Destination Source Example Meaning

register register add EAX, EBX EAX <− EAX + EBX

register immediate add EAX, 42 EAX <− EAX + 42

register memory add EAX, [20] EAX <− EAX + Mem[20]

memory register add [20], EAX Mem[20] <− Mem[20] + EAX

memory immediate add [20], 42 Mem[20] <− Mem[20] + 42

362 CHAPTER SIX Architecture

Like ARM, x86 has a 32-bit memory space that is byte-addressable.
However, x86 supports a wider variety of memory indexing modes.
Memory locations are specified with any combination of a base register,
displacement, and a scaled index register. Table 6.21 illustrates these
combinations. The displacement can be an 8-, 16-, or 32-bit value. The
scale multiplying the index register can be 1, 2, 4, or 8. The base+ displa-
cement mode is equivalent to the ARM base addressing mode for loads
and stores. Like ARM, x86 also provides a scaled index. In x86, the
scaled index provides an easy way to access arrays or structures of 2-,
4-, or 8-byte elements without having to issue a sequence of instructions
to generate the address.

While ARM always acts on 32-bit words, x86 instructions can oper-
ate on 8-, 16-, or 32-bit data. Table 6.22 illustrates these variations.

6 . 8 . 3 Status Flags

x86, like many CISC architectures, uses condition flags (also called status
flags) to make decisions about branches and to keep track of carries and
arithmetic overflow. x86 uses a 32-bit register, called EFLAGS, that
stores the status flags. Some of the bits of the EFLAGS register are given
in Table 6.23. Other bits are used by the operating system.

Table 6.21 Memory addressing modes

Example Meaning Comment

add EAX, [20] EAX <− EAX + Mem[20] displacement

add EAX, [ESP] EAX <− EAX + Mem[ESP] base addressing

add EAX, [EDX+40] EAX <− EAX + Mem[EDX+40] base + displacement

add EAX, [60+EDI*4] EAX <− EAX + Mem[60+EDI*4] displacement + scaled index

add EAX, [EDX+80+EDI*2] EAX <− EAX + Mem[EDX+80+EDI*2] base + displacement + scaled index

Table 6.22 Instructions acting on 8-, 16-, or 32-bit data

Example Meaning Data Size

add AH, BL AH <− AH + BL 8-bit

add AX, −1 AX <− AX + 0xFFFF 16-bit

add EAX, EDX EAX <− EAX + EDX 32-bit

ARM’s use of condition flags
sets it apart from other RISC
architectures.

6.8 Another Perspective: x86 Architecture 363

The architectural state of an x86 processor includes EFLAGS as well
as the eight registers and the EIP.

6 . 8 . 4 x86 Instructions

x86 has a larger set of instructions than ARM. Table 6.24 describes some of
the general purpose instructions. x86 also has instructions for floating-point
arithmetic and for arithmetic on multiple short data elements packed into a
longer word. D indicates the destination (a register or memory location),
and S indicates the source (a register, memory location, or immediate).

Note that some instructions always act on specific registers. For
example, 32×32-bit multiplication always takes one of the sources
from EAX and always puts the 64-bit result in EDX and EAX. LOOP
always stores the loop counter in ECX. PUSH, POP, CALL, and RET use
the stack pointer, ESP.

Conditional jumps check the flags and branch if the appropriate con-
dition is met. They come in many flavors. For example, JZ jumps if the
zero flag (ZF) is 1. JNZ jumps if the zero flag is 0. Like ARM, the jumps
usually follow an instruction, such as the compare instruction (CMP), that
sets the flags. Table 6.25 lists some of the conditional jumps and how they
depend on the flags set by a prior compare operation.

6 . 8 . 5 x86 Instruction Encoding

The x86 instruction encodings are truly messy, a legacy of decades of piece-
meal changes. Unlike ARMv4, whose instructions are uniformly 32
bits, x86 instructions vary from 1 to 15 bytes, as shown in Figure 6.36.1

Table 6.23 Selected EFLAGS

Name Meaning

CF (Carry Flag) Carry out generated by last arithmetic operation.
Indicates overflow in unsigned arithmetic. Also used
for propagating the carry between words in
multiple-precision arithmetic

ZF (Zero Flag) Result of last operation was zero

SF (Sign Flag) Result of last operation was negative (msb = 1)

OF (Overflow Flag) Overflow of two’s complement arithmetic

1 It is possible to construct 17-byte instructions if all the optional fields are used. However,
x86 places a 15-byte limit on the length of legal instructions.

364 CHAPTER SIX Architecture

Table 6.24 Selected x86 instructions

Instruction Meaning Function

ADD/SUB add/subtract D = D + S / D = D − S

ADDC add with carry D = D + S + CF

INC/DEC increment/decrement D = D + 1 / D = D − 1

CMP compare Set flags based on D − S

NEG negate D = − D

AND/OR/XOR logical AND/OR/XOR D = D op S

NOT logical NOT D = D

IMUL/MUL signed/unsigned multiply EDX:EAX = EAX × D

IDIV/DIV signed/unsigned divide EDX:EAX/D

EAX = Quotient; EDX = Remainder

SAR/SHR arithmetic/logical shift right D = D >>> S / D = D >> S

SAL/SHL left shift D = D << S

ROR/ROL rotate right/left Rotate D by S

RCR/RCL rotate right/left with carry Rotate CF and D by S

BT bit test CF = D[S] (the Sth bit of D)

BTR/BTS bit test and reset/set CF = D[S]; D[S] = 0 / 1

TEST set flags based on masked bits Set flags based on D AND S

MOV move D = S

PUSH push onto stack ESP = ESP −4; Mem[ESP] = S

POP pop off stack D = MEM[ESP]; ESP = ESP + 4

CLC, STC clear/set carry flag CF = 0 / 1

JMP unconditional jump relative jump: EIP = EIP + S

absolute jump: EIP = S

Jcc conditional jump if (flag) EIP = EIP + S

LOOP loop ECX = ECX −1
if (ECX ≠ 0) EIP = EIP + imm

CALL function call ESP = ESP −4;
MEM[ESP] = EIP; EIP = S

RET function return EIP = MEM[ESP]; ESP = ESP + 4

6.8 Another Perspective: x86 Architecture 365

The opcode may be 1, 2, or 3 bytes. It is followed by four optional fields:
ModR/M, SIB, Displacement, and Immediate. ModR/M specifies an
addressing mode. SIB specifies the scale, index, and base registers in certain
addressing modes. Displacement indicates a 1-, 2-, or 4-byte displacement
in certain addressing modes. And Immediate is a 1-, 2-, or 4-byte constant
for instructions using an immediate as the source operand. Moreover, an
instruction can be preceded by up to four optional byte-long prefixes that
modify its behavior.

The ModR/M byte uses the 2-bit Mod and 3-bit R/M field to specify
the addressing mode for one of the operands. The operand can come from

Table 6.25 Selected branch conditions

Instruction Meaning Function after CMP D, S

JZ/JE jump if ZF = 1 jump if D = S

JNZ/JNE jump if ZF = 0 jump if D ≠ S

JGE jump if SF = OF jump if D ≥ S

JG jump if SF = OF and ZF = 0 jump if D >S

JLE jump if SF ≠ OF or ZF = 1 jump if D ≤ S

JL jump if SF ≠ OF jump if D <S

JC/JB jump if CF = 1

JNC jump if CF = 0

JO jump if OF = 1

JNO jump if OF = 0

JS jump if SF = 1

JNS jump if SF = 0

Prefixes ModR/M SIB Displacement Immediate

Up to 4 optional
prefixes

of 1 byte each

1-, 2-, or 3-byte
opcode

1 byte
(for certain
addressing

modes)

1 byte
(for certain
addressing

modes)

1, 2, or 4 bytes
for addressing

modes with
displacement

1, 2, or 4 bytes
for addressing

modes with
immediate

Scale Index BaseMod R/MReg/
Opcode

Opcode

2 bits 3 bits 3 bits2 bits 3 bits 3 bits

Figure 6.36 x86 instruction
encodings

366 CHAPTER SIX Architecture

one of the eight registers, or from one of 24 memory addressing modes.
Due to artifacts in the encodings, the ESP and EBP registers are not avail-
able for use as the base or index register in certain addressing modes. The
Reg field specifies the register used as the other operand. For certain
instructions that do not require a second operand, the Reg field is used
to specify three more bits of the opcode.

In addressing modes using a scaled index register, the SIB byte speci-
fies the index register and the scale (1, 2, 4, or 8). If both a base and index
are used, the SIB byte also specifies the base register.

ARM fully specifies the instruction in the cond, op, and funct fields
of the instruction. x86 uses a variable number of bits to specify different
instructions. It uses fewer bits to specify more common instructions,
decreasing the average length of the instructions. Some instructions even
have multiple opcodes. For example, add AL, imm8 performs an 8-bit
add of an immediate to AL. It is represented with the 1-byte opcode,
0x04, followed by a 1-byte immediate. The A register (AL, AX, or
EAX) is called the accumulator. On the other hand, add D, imm8 per-
forms an 8-bit add of an immediate to an arbitrary destination, D (mem-
ory or a register). It is represented with the 1-byte opcode 0x80 followed
by one or more bytes specifying D, followed by a 1-byte immediate.
Many instructions have shortened encodings when the destination is
the accumulator.

In the original 8086, the opcode specified whether the instruction
acted on 8- or 16-bit operands. When the 80386 introduced 32-bit
operands, no new opcodes were available to specify the 32-bit form.
Instead, the same opcode was used for both 16- and 32-bit forms. An
additional bit in the code segment descriptor used by the OS specifies
which form the processor should choose. The bit is set to 0 for back-
ward compatibility with 8086 programs, defaulting the opcode to 16-
bit operands. It is set to 1 for programs to default to 32-bit operands.
Moreover, the programmer can specify prefixes to change the form for
a particular instruction. If the prefix 0x66 appears before the opcode,
the alternative size operand is used (16 bits in 32-bit mode, or 32 bits
in 16-bit mode).

6 . 8 . 6 Other x86 Peculiarities

The 80286 introduced segmentation to divide memory into segments of
up to 64 KB in length. When the OS enables segmentation, addresses
are computed relative to the beginning of the segment. The processor
checks for addresses that go beyond the end of the segment and indicates
an error, thus preventing programs from accessing memory outside their
own segment. Segmentation proved to be a hassle for programmers and
is not used in modern versions of the Windows operating system.

6.8 Another Perspective: x86 Architecture 367

x86 contains string instructions that act on entire strings of bytes or
words. The operations include moving, comparing, or scanning for a spe-
cific value. In modern processors, these instructions are usually slower
than performing the equivalent operation with a series of simpler instruc-
tions, so they are best avoided.

As mentioned earlier, the 0x66 prefix is used to choose between 16-
and 32-bit operand sizes. Other prefixes include ones used to lock the
bus (to control access to shared variables in a multiprocessor system), to
predict whether a branch will be taken or not, and to repeat the instruc-
tion during a string move.

The bane of any architecture is to run out of memory capacity. With
32-bit addresses, x86 can access 4 GB of memory. This was far more than
the largest computers had in 1985, but by the early 2000's it had become
limiting. In 2003, AMD extended the address space and register sizes to
64 bits, calling the enhanced architecture AMD64. AMD64 has a com-
patibility mode that allows it to run 32-bit programs unmodified while
the OS takes advantage of the bigger address space. In 2004, Intel gave
in and adopted the 64-bit extensions, renaming them Extended Memory
64 Technology (EM64T). With 64-bit addresses, computers can access
16 exabytes (16 billion GB) of memory.

For those curious about more details of the x86 architecture, the x86
Intel Architecture Software Developer’s Manual is freely available on
Intel’s Web site.

6 . 8 . 7 The Big Picture

This section has given a taste of some of the differences between the
ARM RISC architecture and the x86 CISC architecture. x86 tends to
have shorter programs, because a complex instruction is equivalent to
a series of simple ARM instructions and because the instructions are
encoded to minimize memory use. However, the x86 architecture is a
hodgepodge of features accumulated over the years, some of which are
no longer useful but must be kept for compatibility with old programs.
It has too few registers, and the instructions are difficult to decode.
Merely explaining the instruction set is difficult. Despite all these fail-
ings, x86 is firmly entrenched as the dominant computer architecture
for PCs, because the value of software compatibility is so great and
because the huge market justifies the effort required to build fast x86
microprocessors.

6.9 SUMMARY

To command a computer, you must speak its language. A computer
architecture defines how to command a processor. Many different com-
puter architectures are in widespread commercial use today, but once

ARM strikes a balance
between simple instructions
and dense code by including
features such as condition
flags and shifted register
operands. Thease features
make ARM code more
compact than other RISC
architectures.

Intel and Hewlett-Packard
jointly developed a new 64-bit
architecture called IA-64 in
the mid 1990’s. It was
designed from a clean slate,
bypassing the convoluted
history of x86, taking
advantage of 20 years of new
research in computer
architecture, and providing a
64-bit address space.
However, IA-64 has yet to
become a market success.
Most computers needing the
large address space now use
the 64-bit extensions of x86.

368 CHAPTER SIX Architecture

you understand one, learning others is much easier. The key questions to
ask when approaching a new architecture are:

▶ What is the data word length?

▶ What are the registers?

▶ How is memory organized?

▶ What are the instructions?

ARM is a 32-bit architecture because it operates on 32-bit data.
The ARM architecture has 16 registers which include 15 general-purpose
registers and the PC. In principle, any of the general-purpose registers can
be used in any code. However, by convention, certain registers are
reserved for certain purposes for ease of programming and so that func-
tions written by different programmers can communicate easily. For
example, R14 (the link register LR) holds the return address after a BL
instruction, and R0–R3 hold the arguments of a function. ARM has a
byte-addressable memory system with 32-bit addresses. Instructions are
32 bits long and are word-aligned for efficient access. This chapter dis-
cussed the most commonly used ARM instructions.

The power of defining a computer architecture is that a program
written for any given architecture can run on many different implementa-
tions of that architecture. For example, programs written for the Intel
Pentium processor in 1993 will generally still run (and run much faster)
on the Intel Xeon or AMD Phenom processors in 2015.

In the first part of this book, we learned about the circuit and logic
levels of abstraction. In this chapter, we jumped up to the architecture
level. In the next chapter, we study microarchitecture, the arrangement
of digital building blocks that implement a processor architecture. Micro-
architecture is the link between hardware and software engineering. And,
we believe it is one of the most exciting topics in all of engineering: You
will learn to build your own microprocessor!

6.9 Summary 369

Exercises

Exercise 6.1 Give three examples from the ARM architecture of each of the
architecture design principles: (1) regularity supports simplicity; (2) make the
common case fast; (3) smaller is faster; and (4) good design demands good
compromises. Explain how each of your examples exhibits the design principle.

Exercise 6.2 The ARM architecture has a register set that consists of 16 32-bit
registers. Is it possible to design a computer architecture without a register set? If
so, briefly describe the architecture, including the instruction set. What are
advantages and disadvantages of this architecture over the ARM architecture?

Exercise 6.3 Consider memory storage of a 32-bit word stored at memory word
42 in a byte-addressable memory.

(a) What is the byte address of memory word 42?

(b) What are the byte addresses that memory word 42 spans?

(c) Draw the number 0xFF223344 stored at word 42 in both big-endian and
little-endian machines. Clearly label the byte address corresponding to each
data byte value.

Exercise 6.4 Repeat Exercise 6.3 for memory storage of a 32-bit word stored at
memory word 15 in a byte-addressable memory.

Exercise 6.5 Explain how the following ARM program can be used to determine
whether a computer is big-endian or little-endian:

MOV R0, #100
LDR R1, =0xABCD876 ; R1 = 0xABCD876
STR R1, [R0]
LDRB R2, [R0, #1]

Exercise 6.6 Write the following strings using ASCII encoding. Write your final
answers in hexadecimal.

(a) SOS

(b) Cool

(c) boo!

Exercise 6.7 Repeat Exercise 6.6 for the following strings.

(a) howdy

(b) lions

(c) To the rescue!

370 CHAPTER SIX Architecture

Exercise 6.8 Show how the strings in Exercise 6.6 are stored in a byte-addressable
memory on a little-endian machine starting at memory address 0x00001050C.
Clearly indicate the memory address of each byte.

Exercise 6.9 Repeat Exercise 6.8 for the strings in Exercise 6.7.

Exercise 6.10 Convert the following ARM assembly code into machine language.
Write the instructions in hexadecimal.

MOV R10, #63488
LSL R9, R6, #7
STR R4, [R11, R8]
ASR R6, R7, R3

Exercise 6.11 Repeat Exercise 6.10 for the following ARM assembly code:

ADD R8, R0, R1
LDR R11, [R3, #4]
SUB R5, R7, #0x58
LSL R3, R2, #14

Exercise 6.12 Consider data-processing instructions with an immediate Src2.

(a) Which instructions from Exercise 6.10 are in this format?

(b) Write out the 12-bit immediate field (imm12) of the instructions from part
(a), then write them as 32-bit immediates.

Exercise 6.13 Repeat Exercise 6.12 for the instructions in Exercise 6.11.

Exercise 6.14 Convert the following program from machine language into ARM
assembly language. The numbers on the left are the instruction addresses in
memory, and the numbers on the right give the instruction at that address. Then
reverse engineer a high-level program that would compile into this assembly
language routine and write it. Explain in words what the program does. R0 and
R1 are the input, and they initially contain positive numbers, a and b. At the end
of the program, R0 is the output.

0x00008008 0xE3A02000
0x0000800C 0xE1A03001
0x00008010 0xE1510000
0x00008014 0x8A000002
0x00008018 0xE2822001
0x0000801C 0xE0811003
0x00008020 0xEAFFFFFA
0x00008024 0xE1A00002

Exercises 371

Exercise 6.15 Repeat Exercise 6.14 for the following machine code. R0 and R1
are the inputs. R0 contains a 32-bit number and R1 is the address of a 32-element
array of characters (char).

0x00008104 0xE3A0201F
0x00008108 0xE1A03230
0x0000810C 0xE2033001
0x00008110 0xE4C13001
0x00008114 0xE2522001
0x00008118 0x5AFFFFFA
0x0000811C 0xE1A0F00E

Exercise 6.16 The NOR instruction is not part of the ARM instruction set, because
the same functionality can be implemented using existing instructions. Write a
short assembly code snippet that has the following functionality: R0 =R1 NOR
R2. Use as few instructions as possible.

Exercise 6.17 The NAND instruction is not part of the ARM instruction set, because
the same functionality can be implemented using existing instructions. Write a
short assembly code snippet that has the following functionality: R0=R1 NAND
R2. Use as few instructions as possible.

Exercise 6.18 Consider the following high-level code snippets. Assume the
(signed) integer variables g and h are in registers R0 and R1, respectively.

(i) if (g >= h)
g = g + h;

else
g = g − h;

(ii) if (g < h)

h = h + 1;
else

h = h * 2;

(a) Write the code snippets in ARM assembly language assuming conditional
execution is available for branch instructions only. Use as few instructions as
possible (within these parameters).

(b) Write the code snippets in ARM assembly language with conditional execu-
tion available for all instructions. Use as few instructions as possible.

(c) Compare the difference in code density (i.e., number of instructions) between
(a) and (b) for each code snippet and discuss any advantages or
disadvantages.

372 CHAPTER SIX Architecture

Exercise 6.19 Repeat Exercise 6.18 for the following code snippets.

(i) if (g > h)
g = g + 1;

else
h = h − 1;

(ii) if (g <= h)
g = 0;

else
h = 0;

Exercise 6.20 Consider the following high-level code snippet. Assume that the
base addresses of array1 and array2 are held in R1 and R2 and that array2 is
initialized before it is used.

int i;
int array1[100];
int array2[100];
...
for (i=0; i<100; i=i+1)

array1[i] = array2[i];

(a) Write the code snippet in ARM assembly without using pre- or post-indexing
or a scaled register. Use as few instructions as possible (given the constraints).

(b) Write the code snippet in ARM assembly with pre- or post-indexing and a
scaled register available. Use as few instructions as possible.

(c) Compare the difference in code density (i.e., number of instructions) between
(a) and (b). Discuss any advantages or disadvantages.

Exercise 6.21 Repeat Exercise 6.20 for the following high-level code snippet.
Assume that temp is initialized before it is used and that R3 holds the base address
of temp.

int i;
int temp[100];
...
for (i=0; i<100; i=i+1)

temp[i] = temp[i] * 128;

Exercise 6.22 Consider the following two code snippets. Assume R1 holds i and
that R0 holds the base address of the vals array.

(i) int i;
int vals[200];

for (i=0; i < 200; i=i+1)
vals[i] = i;

Exercises 373

(ii) int i;
int vals[200];

for (i=199; i >= 0; i = i-1)
vals[i] = i;

(a) Are the code snippets functionally equivalent?

(b) Write each code snippet using ARM assembly language. Use as few instruc-
tions as possible.

(c) Discuss any advantages or disadvantages of one construct over the other.

Exercise 6.23 Repeat Exercise 6.22 for the following high-level code snippets.
Assume R1 holds i, R0 holds the base address of the nums array, and that the
array is initialized before use.

(i) int i;
int nums[10];
...
for (i=0; i < 10; i=i+1)

nums[i] = nums[i]/2;

(ii) int i;
int nums[10];
...
for (i=9; i >= 0; i = i-1)

nums[i] = nums[i]/2;

Exercise 6.24 Write a function in a high-level language for int find42(int
array[], int size). size specifies the number of elements in array, and array
specifies the base address of the array. The function should return the index
number of the first array entry that holds the value 42. If no array entry is 42, it
should return the value –1.

Exercise 6.25 The high-level function strcpy copies the character string src to
the character string dst.

// C code
void strcpy(char dst[], char src[]) {

int i = 0;
do {

dst[i] = src[i];
} while (src[i++]);

}

(a) Implement the strcpy function in ARM assembly code. Use R4 for i.

(b) Draw a picture of the stack before, during, and after the strcpy function call.

Assume SP = 0xBEFFF000 just before strcpy is called.

This simple string copy
function has a serious flaw: it
has no way of knowing that
dst has enough space to
receive src. If a malicious
programmer were able to
execute strcpy with a long
string src, the programmer
might be able to write bytes all
over memory, possibly even
modifying code stored in
subsequent memory locations.
With some cleverness, the
modified code might take over
the machine. This is called a
buffer overflow attack; it is
employed by several nasty
programs, including the
infamous Blaster worm, which
caused an estimated $525
million in damages in 2003.

374 CHAPTER SIX Architecture

Exercise 6.26 Convert the high-level function from Exercise 6.24 into ARM
assembly code.

Exercise 6.27 Consider the ARM assembly code below. func1, func2, and func3
are non-leaf functions. func4 is a leaf function. The code is not shown for each
function, but the comments indicate which registers are used within each function.

0x00091000 func1 ... ; func1 uses R4–R10
0x00091020 BL func2
. . .
0x00091100 func2 ... ; func2 uses R0–R5
0x0009117C BL func3
. . .
0x00091400 func3 ... ; func3 uses R3, R7–R9
0x00091704 BL func4
. . .
0x00093008 func4 ... ; func4 uses R11–R12
0x00093118 MOV PC, LR

(a) How many words are the stack frames of each function?

(b) Sketch the stack after func4 is called. Clearly indicate which registers are
stored where on the stack and mark each of the stack frames. Give values
where possible.

Exercise 6.28 Each number in the Fibonacci series is the sum of the previous two
numbers. Table 6.26 lists the first few numbers in the series, fib(n).

(a) What is fib(n) for n = 0 and n = –1?

(b) Write a function called fib in a high-level language that returns the Fibonacci
number for any nonnegative value of n. Hint: You probably will want to use
a loop. Clearly comment your code.

(c) Convert the high-level function of part (b) into ARM assembly code. Add
comments after every line of code that explain clearly what it does. Use the
Keil MDK-ARM simulator to test your code on fib(9). (See the Preface for
how to install the Keil MDK-ARM simulator.)

Table 6.26 Fibonacci series

n 1 2 3 4 5 6 7 8 9 10 11 …

fib(n) 1 1 2 3 5 8 13 21 34 55 89 …

Exercises 375

Exercise 6.29 Consider Code Example 6.27. For this exercise, assume factorial(n)
is called with input argument n = 5.

(a) What value is in R0 when factorial returns to the calling function?

(b) Suppose you replace the instructions at addresses 0x8500 and 0x8520 with
PUSH {R0, R1} and POP {R1, R2}, respectively. Will the program:
(1) enter an infinite loop but not crash;
(2) crash (cause the stack to grow or shrink beyond the dynamic data seg-

ment or the PC to jump to a location outside the program);
(3) produce an incorrect value in R0 when the program returns to loop (if

so, what value?); or
(4) run correctly despite the deleted lines?

(c) Repeat part (b) with the following instruction modifications:
(i) replace the instructions at addresses 0x8500 and 0x8520 with PUSH {R3,

LR} and POP {R3, LR}, respectively.
(ii) replace the instructions at addresses 0x8500 and 0x8520 with PUSH {LR}

and POP {LR}, respectively.
(iii) delete the instruction at address 0x8510.

Exercise 6.30 Ben Bitdiddle is trying to compute the function f(a, b) = 2a+ 3b for
nonnegative b. He goes overboard in the use of function calls and recursion and
produces the following high-level code for functions f and g.

// high-level code for functions f and g
int f(int a, int b) {

int j;

j = a;

return j + a + g(b);
}
int g(int x) {

int k;
k = 3;

if (x == 0) return 0;
else return k + g(x − l);

}

Ben then translates the two functions into assembly language as follows. He also
writes a function, test, that calls the function f(5, 3).

376 CHAPTER SIX Architecture

; ARM assembly code
; f: R0 = a, R1 = b, R4 = j;
; g: R0 = x, R4 = k

0x00008000 test MOV R0, #5 ; a = 5
0x00008004 MOV R1, #3 ; b = 3
0x00008008 BL f ; call f(5, 3)
0x0000800C loop B loop ; and loop forever
0x00008010 f PUSH {R1,R0,LR,R4} ; save registers on stack
0x00008014 MOV R4, R0 ; j = a
0x00008018 MOV R0, R1 ; place b as argument for g
0x0000801C BL g ; call g(b)
0x00008020 MOV R2, R0 ; place return value in R2
0x00008024 POP {R1,R0} ; restore a and b after call
0x00008028 ADD R0, R2, R0 ; R0 = g(b) + a
0x0000802C ADD R0, R0, R4 ; R0 = (g(b) + a) + j
0x00008030 POP {R4,LR} ; restore R4, LR
0x00008034 MOV PC, LR ; return
0x00008038 g PUSH {R4,LR} ; save registers on stack
0x0000803C MOV R4, #3 ; k = 3
0x00008040 CMP R0, #0 ; x == 0?
0x00008044 BNE else ; branch when not equal
0x00008048 MOV R0, #0 ; if equal, return value = 0
0x0000804C B done ; and clean up
0x00008050 else SUB R0, R0, #1 ; x = x - 1
0x00008054 BL g ; call g(x - 1)
0x00008058 ADD R0, R0, R4 ; R0 = g(x - 1) + k
0x0000805C done POP {R4,LR} ; restore R0,R4,LR from stack
0x00008060 MOV PC, LR ; return

You will probably find it useful to make drawings of the stack similar to the one
in Figure 6.14 to help you answer the following questions.

(a) If the code runs starting at test, what value is in R0 when the program gets
to loop? Does his program correctly compute 2a+ 3b?

(b) Suppose Ben changes the instructions at addresses 0x00008010 and
0x00008030 to PUSH {R1,R0,R4} and POP {R4}, respectively. Will the
program
(1) enter an infinite loop but not crash;
(2) crash (cause the stack to grow beyond the dynamic data segment or the

PC to jump to a location outside the program);
(3) produce an incorrect value in R0 when the program returns to loop

(if so, what value?), or
(4) run correctly despite the deleted lines?

Exercises 377

(c) Repeat part (b) when the following instructions are changed. Note that labels
aren’t changed, only instructions.
(i) instructions at 0x00008010 and 0x00008024 change to PUSH {R1,LR,

R4} and POP {R1}, respectively.
(ii) instructions at 0x00008010 and 0x00008024 change to PUSH {R0,LR,

R4} and POP {R0}, respectively.
(iii) instructions at 0x00008010 and 0x00008030 change to PUSH {R1,R0,

LR} and POP {LR}, respectively.
(iv) instructions at 0x00008010, 0x00008024, and 0x00008030 are deleted.
(v) instructions at 0x00008038 and 0x0000805C change to PUSH {R4} and

POP {R4}, respectively.
(vi) instructions at 0x00008038 and 0x0000805C change to PUSH {LR} and

POP {LR}, respectively.
(vii) instructions at 0x00008038 and 0x0000805C are deleted.

Exercise 6.31 Convert the following branch instructions into machine code.
Instruction addresses are given to the left of each instruction.

(a) 0x0000A000 BEQ LOOP
0x0000A004 ...
0x0000A008 ...
0x0000A00C LOOP ...

(b) 0x00801000 BGE DONE
...
0x00802040 DONE ...

(c) 0x0000B10C BACK ...
... ...
0x0000D000 BHI BACK

(d) 0x00103000 BL FUNC
... ...
0x0011147C FUNC ...

(e) 0x00008004 L1 ...
... ...
0x0000F00C B L1

Exercise 6.32 Consider the following ARM assembly language snippet. The
numbers to the left of each instruction indicate the instruction address.

0x000A0028 FUNC1 MOV R4, R1
0x000A002C ADD R5, R3, R5, LSR #2
0x000A0030 SUB R4, R0, R3, ROR R4
0x000A0034 BL FUNC2
... ...
0x000A0038 FUNC2 LDR R2, [R0, #4]
0x000A003C STR R2, [R1, -R2]

378 CHAPTER SIX Architecture

0x000A0040 CMP R3, #0
0x000A0044 BNE ELSE
0x000A0048 MOV PC, LR
0x000A004C ELSE SUB R3, R3, #1
0x000A0050 B FUNC2

(a) Translate the instruction sequence into machine code. Write the machine
code instructions in hexadecimal.

(b) List the addressing mode used at each line of code.

Exercise 6.33 Consider the following C code snippet.

// C code
void setArray(int num) {

int i;
int array[10];

for (i = 0; i < 10; i = i + 1)
array[i] = compare(num, i);

}
int compare(int a, int b) {

if (sub(a, b) >= 0)
return 1;

else
return 0;

}
int sub(int a, int b) {

return a − b;
}

(a) Implement the C code snippet in ARM assembly language. Use R4 to hold the
variable i. Be sure to handle the stack pointer appropriately. The array is
stored on the stack of the setArray function (see the end of Section 6.3.7).

(b) Assume setArray is the first function called. Draw the status of the stack
before calling setArray and during each function call. Indicate the names of
registers and variables stored on the stack, mark the location of SP, and
clearly mark each stack frame.

(c) How would your code function if you failed to store LR on the stack?

Exercise 6.34 Consider the following high-level function.

// C code
int f(int n, int k) {

int b;

b = k + 2;
if (n == 0) b = 10;
else b = b + (n * n) + f(n − 1, k + 1);
return b * k;

}

Exercises 379

(a) Translate the high-level function f into ARM assembly language. Pay parti-
cular attention to properly saving and restoring registers across function calls
and using the ARM preserved register conventions. Clearly comment your
code. You can use the ARM MUL instruction. The function starts at instruc-
tion address 0x00008100. Keep local variable b in R4.

(b) Step through your function from part (a) by hand for the case of f(2, 4).
Draw a picture of the stack similar to the one in Figure 6.14, and assume that
SP is equal to 0xBFF00100 when f is called. Write the register name and data
value stored at each location in the stack and keep track of the stack pointer
value (SP). Clearly mark each stack frame. You might also find it useful to
keep track of the values in R0, R1, and R4 throughout execution. Assume
that when f is called, R4 = 0xABCD and LR = 0x00008010. What is the
final value of R0?

Exercise 6.35 Give an example of the worst case for a forward branch (i.e., a
branch to a higher instruction address). The worst case is when the branch cannot
branch far. Show instructions and instruction addresses.

Exercise 6.36 The following questions examine the limitations of the branch
instruction, B. Give your answer in number of instructions relative to the branch
instruction.

(a) In the worst case, how far can B branch forward (i.e., to higher addresses)?
(The worst case is when the branch instruction cannot branch far.) Explain
using words and examples, as needed.

(b) In the best case, how far can B branch forward? (The best case is when the
branch instruction can branch the farthest.) Explain.

(c) In the worst case, how far can B branch backward (to lower addresses)? Explain.

(d) In the best case, how far can B branch backward? Explain.

Exercise 6.37 Explain why it is advantageous to have a large immediate field,
imm24, in the machine format for the branch instructions, B and BL.

Exercise 6.38 Write assembly code that branches to an instruction 32
Minstructions from the first instruction. Recall that 1 Minstruction = 220

instructions=1,048,576 instructions. Assume that your code begins at address
0x00008000. Use a minimum number of instructions.

Exercise 6.39 Write a function in high-level code that takes a 10-entry array of
32-bit integers stored in little-endian format and converts it to big-endian format.
After writing the high-level code, convert it to ARM assembly code. Comment all
your code and use a minimum number of instructions.

380 CHAPTER SIX Architecture

Exercise 6.40 Consider two strings: string1 and string2.

(a) Write high-level code for a function called concat that concatenates (joins
together) the two strings: void concat(char string1[], char string2[],
char stringconcat[]). The function does not return a value. It concate-
nates string1 and string2 and places the resulting string in stringconcat.
You may assume that the character array stringconcat is large enough to
accommodate the concatenated string.

(b) Convert the function from part (a) into ARM assembly language.

Exercise 6.41 Write an ARM assembly program that adds two positive single-
precision floating point numbers held in R0 and R1. Do not use any of the ARM
floating-point instructions. You need not worry about any of the encodings that are
reserved for special purposes (e.g., 0, NANs, etc.) or numbers that overflow or
underflow. Use the Keil MDK-ARM simulator to test your code. (See the Preface for
how to install the Keil MDK-ARM simulator.) You will need to manually set the
values of R0 and R1 to test your code. Demonstrate that your code functions reliably.

Exercise 6.42 Consider the following ARM program. Assume the instructions are
placed starting at memory address 0x8400 and that L1 is at memory address
0x10024.

; ARM assembly code
MAIN

PUSH {LR}
LDR R2, =L1 ; this is translated into a PC-relative load
LDR R0, [R2]
LDR R1, [R2, #4]
BL DIFF
POP {LR}
MOV PC, LR

DIFF
SUB R0, R0, R1
MOV PC, LR
...

L1

(a) First show the instruction address next to each assembly instruction.

(b) Describe the symbol table: i.e., list the address of each of the labels.

(c) Convert all instructions into machine code.

(d) How big (how many bytes) are the data and text segments?

(e) Sketch a memory map showing where data and instructions are stored,
similar to Figure 6.31.

Exercises 381

Exercise 6.43 Repeat Exercise 6.42 for the following ARM code. Assume the
instructions are placed starting at memory address 0x8534 and that L2 is at
memory address 0x1305C.

; ARM assembly code
MAIN

PUSH {R4,LR}
MOV R4, #15
LDR R3, =L2 ; this is translated into a PC-relative load
STR R4, [R3]
MOV R1, #27
STR R1, [R3, #4]
LDR R0, [R3]
BL GREATER
POP {R4,LR}
MOV PC, LR

GREATER
CMP R0, R1
MOV R0, #0
MOVGT R0, #1
MOV PC, LR
...

L2

Exercise 6.44 Name two ARM instructions that can increase code density (i.e.,
decrease the number of instructions in a program). Give examples of each,
showing equivalent ARM assembly code with and without using the instructions.

Exercise 6.45 Explain the advantages and disadvantages of conditional execution.

382 CHAPTER SIX Architecture

Interview Questions

The following exercises present questions that have been asked at interviews for
digital design jobs (but are usually open to any assembly language).

Question 6.1 Write ARM assembly code for swapping the contents of two
registers, R0 and R1. You may not use any other registers.

Question 6.2 Suppose you are given an array of both positive and negative
integers. Write ARM assembly code that finds the subset of the array with the
largest sum. Assume that the array’s base address and the number of array
elements are in R0 and R1, respectively. Your code should place the resulting
subset of the array starting at the base address in R2. Write code that runs as fast
as possible.

Question 6.3 You are given an array that holds a C string. The string forms a
sentence. Design an algorithm for reversing the words in the sentence and storing
the new sentence back in the array. Implement your algorithm using ARM
assembly code.

Question 6.4 Design an algorithm for counting the number of 1’s in a 32-bit
number. Implement your algorithm using ARM assembly code.

Question 6.5 Write ARM assembly code to reverse the bits in a register. Use as few
instructions as possible. Assume the register of interest is R3.

Question 6.6 Write ARM assembly code to test whether overflow occurs when R2
and R3 are added. Use a minimum number of instructions.

Question 6.7 Design an algorithm for testing whether a given string is a
palindrome. (Recall that a palindrome is a word that is the same forward and
backward. For example, the words “wow” and “racecar” are palindromes.)
Implement your algorithm using ARM assembly code

Interview Questions 383

	Outline placeholder
	6.1 Introduction
	6.2 Assembly Language
	6.2.1 Instructions
	6.2.2 Operands: Registers, Memory, and Constants
	Registers
	The Register Set
	Constants/Immediates
	Memory

	6.3 Programming
	6.3.1 Data-processing Instructions
	Logical Instructions
	Shift Instructions
	Multiply Instructions*

	6.3.2 Condition Flags
	6.3.3 Branching
	6.3.4 Conditional Statements
	if Statements
	if/else Statements
	switch/case Statements*

	6.3.5 Getting Loopy
	while Loops
	for Loops

	6.3.6 Memory
	Bytes and Characters

	6.3.7 Function Calls
	Function Calls and Returns
	Input Arguments and Return Values
	The Stack
	Loading and Storing Multiple Registers
	Preserved Registers
	Nonleaf Function Calls
	Recursive Function Calls
	Additional Arguments and Local Variables*

	6.4 Machine Language
	6.4.1 Data-processing Instructions
	6.4.2 Memory Instructions
	6.4.3 Branch Instructions
	6.4.4 Addressing Modes
	6.4.5 Interpreting Machine Language Code
	6.4.6 The Power of the Stored Program

	6.5 Lights, Camera, Action: Compiling, Assembling, and Loading*
	6.5.1 The Memory Map
	The Text Segment
	The Global Data Segment
	The Dynamic Data Segment
	The Exception Handler, OS, and I/O Segments

	6.5.2 Compilation
	6.5.3 Assembling
	6.5.4 Linking
	6.5.5 Loading

	6.6 Odds and Ends*
	6.6.1 Loading Literals
	6.6.2 NOP
	6.6.3 Exceptions
	Execution Modes and Privilege Levels
	Exception Vector Table
	Banked Registers
	Exception Handling
	Exception-Related Instructions
	Start-up

	6.7 Evolution of ARM Architecture
	6.7.1 Thumb Instruction Set
	6.7.2 DSP Instructions
	6.7.3 Floating-Point Instructions
	6.7.4 Power-Saving and Security Instructions
	6.7.5 SIMD Instructions
	6.7.6 64-bit Architecture

	6.8 Another Perspective: x86 Architecture
	6.8.1 x86 Registers
	6.8.2 x86 Operands
	6.8.3 Status Flags
	6.8.4 x86 Instructions
	6.8.5 x86 Instruction Encoding
	6.8.6 Other x86 Peculiarities
	6.8.7 The Big Picture

	6.9 Summary
	Exercises
	Interview Questions

