

5Digital Building Blocks

5.1 INTRODUCTION

Up to this point, we have examined the design of combinational and
sequential circuits using Boolean equations, schematics, and HDLs. This
chapter introduces more elaborate combinational and sequential building
blocks used in digital systems. These blocks include arithmetic circuits,
counters, shift registers, memory arrays, and logic arrays. These building
blocks are not only useful in their own right, but they also demonstrate
the principles of hierarchy, modularity, and regularity. The building
blocks are hierarchically assembled from simpler components such as
logic gates, multiplexers, and decoders. Each building block has a well-
defined interface and can be treated as a black box when the underlying
implementation is unimportant. The regular structure of each building
block is easily extended to different sizes. In Chapter 7, we use many of
these building blocks to build a microprocessor.

5.2 ARITHMETIC CIRCUITS

Arithmetic circuits are the central building blocks of computers. Compu-
ters and digital logic perform many arithmetic functions: addition, sub-
traction, comparisons, shifts, multiplication, and division. This section
describes hardware implementations for all of these operations.

5 . 2 . 1 Addition

Addition is one of the most common operations in digital systems. We
first consider how to add two 1-bit binary numbers. We then extend to
N-bit binary numbers. Adders also illustrate trade-offs between speed
and complexity.

5.1 Introduction

5.2 Arithmetic Circuits

5.3 Number Systems

5.4 Sequential Building Blocks

5.5 Memory Arrays

5.6 Logic Arrays

5.7 Summary

Exercises

Interview Questions

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

Digital Design and Computer Architecture, Second Edition. DOI: 10.1016/B978-0-12-394424-5.00005-7
© 2013 Elsevier, Inc. All rights reserved.

239

http://dx.doi.org/10.1016/B978-0-12-394424-5.00005-7

Half Adder
We begin by building a 1-bit half adder. As shown in Figure 5.1, the half
adder has two inputs, A and B, and two outputs, S and Cout. S is the sum
of A and B. If A and B are both 1, S is 2, which cannot be represented
with a single binary digit. Instead, it is indicated with a carry out Cout

in the next column. The half adder can be built from an XOR gate and
an AND gate.

In a multi-bit adder, Cout is added or carried in to the next most sig-
nificant bit. For example, in Figure 5.2, the carry bit shown in blue is the
output Cout of the first column of 1-bit addition and the input Cin to the
second column of addition. However, the half adder lacks a Cin input to
accept Cout of the previous column. The full adder, described in the next
section, solves this problem.

Full Adder
A full adder, introduced in Section 2.1, accepts the carry in Cin as shown
in Figure 5.3. The figure also shows the output equations for S and Cout.

Carry Propagate Adder
An N-bit adder sums two N-bit inputs, A and B, and a carry in Cin to
produce an N-bit result S and a carry out Cout. It is commonly called a
carry propagate adder (CPA) because the carry out of one bit propagates
into the next bit. The symbol for a CPA is shown in Figure 5.4; it is drawn
just like a full adder except that A, B, and S are busses rather than single
bits. Three common CPA implementations are called ripple-carry adders,
carry-lookahead adders, and prefix adders.

Ripple-Carry Adder
The simplest way to build an N-bit carry propagate adder is to chain
together N full adders. The Cout of one stage acts as the Cin of the next
stage, as shown in Figure 5.5 for 32-bit addition. This is called a ripple-
carry adder. It is a good application of modularity and regularity: the full
adder module is reused many times to form a larger system. The ripple-
carry adder has the disadvantage of being slow when N is large. S31
depends on C30, which depends on C29, which depends on C28, and so
forth all the way back to Cin, as shown in blue in Figure 5.5. We say that
the carry ripples through the carry chain. The delay of the adder, tripple,

A B
0
0
1
1

0
1
1
0

SCout

0
0
0
1

0
1
0
1

S = A ⊕ B
Cout = AB

Half
Adder

A B

S

Cout +

Figure 5.1 1-bit half adder

0001
+0101

0110

1

Figure 5.2 Carry bit

A B
0
0
1
1

0
1
1
0

SCout

0
0
0
1

S = A ⊕ B ⊕ C in

Cout = AB + AC in + BC in

Full
Adder

C in

0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1

1
0
0
1

0
1
1
1

A B

S

Cout C in+

Figure 5.3 1-bit full adder

S31

A30 B30

S30

A1 B1

S1

A0 B0

S0

C30 C 29 C1 C0

Cout ++++

A31 B31

C in

Figure 5.5 32-bit ripple-carry adder

A B

S

Cout C in+
N

NN

Figure 5.4 Carry
propagate adder

240 CHAPTER FIVE Digital Building Blocks

grows directly with the number of bits, as given in Equation 5.1, where
tFA is the delay of a full adder.

tripple = NtFA (5.1)

Carry-Lookahead Adder
The fundamental reason that large ripple-carry adders are slow is that the
carry signals must propagate through every bit in the adder. A carry-
lookahead adder (CLA) is another type of carry propagate adder that
solves this problem by dividing the adder into blocks and providing cir-
cuitry to quickly determine the carry out of a block as soon as the carry
in is known. Thus it is said to look ahead across the blocks rather than
waiting to ripple through all the full adders inside a block. For example,
a 32-bit adder may be divided into eight 4-bit blocks.

CLAs use generate (G) and propagate (P) signals that describe how a
column or block determines the carry out. The ith column of an adder is
said to generate a carry if it produces a carry out independent of the carry
in. The ith column of an adder is guaranteed to generate a carry Ci if Ai

and Bi are both 1. Hence Gi, the generate signal for column i, is calculated
as Gi=AiBi. The column is said to propagate a carry if it produces a carry
out whenever there is a carry in. The ith column will propagate a carry in,
Ci−1, if either Ai or Bi is 1. Thus, Pi=Ai+Bi. Using these definitions, we
can rewrite the carry logic for a particular column of the adder. The ith
column of an adder will generate a carry out Ci if it either generates a
carry, Gi, or propagates a carry in, PiCi−1. In equation form,

Ci = AiBi + ðAi +BiÞCi–1 = Gi +PiCi–1 (5.2)

The generate and propagate definitions extend to multiple-bit blocks.
A block is said to generate a carry if it produces a carry out independent of
the carry in to the block. The block is said to propagate a carry if it produces
a carry out whenever there is a carry in to the block. We defineGi:j and Pi:j as
generate and propagate signals for blocks spanning columns i through j.

A block generates a carry if the most significant column generates a
carry, or if the most significant column propagates a carry and the pre-
vious column generated a carry, and so forth. For example, the generate
logic for a block spanning columns 3 through 0 is

G3:0 = G3 +P3

�
G2 +P2ðG1 +P1G0Þ

�
(5.3)

Ablock propagates a carry if all the columns in the block propagate the carry.
For example, the propagate logic for a block spanning columns 3 through 0 is

P3:0 = P3P2P1P0 (5.4)

Using the block generate and propagate signals, we can quickly compute
the carry out of the block, Ci, using the carry in to the block, Cj�1.

Ci = Gi:j +Pi:jCj�1 (5.5)

Schematics typically show
signals flowing from left to
right. Arithmetic circuits
break this rule because the
carries flow from right to left
(from the least significant
column to the most significant
column).

Throughout the ages, people
have used many devices to
perform arithmetic. Toddlers
count on their fingers (and
some adults stealthily do too).
The Chinese and Babylonians
invented the abacus as early as
2400 BC. Slide rules, invented
in 1630, were in use until the
1970’s, when scientific hand
calculators became prevalent.
Computers and digital
calculators are ubiquitous
today. What will be next?

5.2 Arithmetic Circuits 241

Figure 5.6(a) shows a 32-bit carry-lookahead adder composed of
eight 4-bit blocks. Each block contains a 4-bit ripple-carry adder and
some lookahead logic to compute the carry out of the block given the
carry in, as shown in Figure 5.6(b). The AND and OR gates needed to
compute the single-bit generate and propagate signals, Gi and Pi, from
Ai and Bi are left out for brevity. Again, the carry-lookahead adder
demonstrates modularity and regularity.

All of the CLA blocks compute the single-bit and block generate and
propagate signals simultaneously. The critical path starts with computing
G0 and G3:0 in the first CLA block. Cin then advances directly to Cout

through the AND/OR gate in each block until the last. For a large adder,
this is much faster than waiting for the carries to ripple through each con-
secutive bit of the adder. Finally, the critical path through the last block
contains a short ripple-carry adder. Thus, an N-bit adder divided into
k-bit blocks has a delay

tCLA = tpg + tpg�block +
N
k
−1

� �
tAND�OR +ktFA (5.6)

B 0

+ + + +

P3:0

G3
P3
G2
P2
G1
P1
G0

P3
P2
P1
P0

G3:0

C in

Cout

A 0

S 0

C0

B 1 A 1

S 1

C1

B 2 A 2

S 2

C2

B 3 A 3

S 3

C in

(b)

(a)

A 3:0 B 3:0

S3:0

C in

A 7:4 B 7:4

S7:4

C 3 C 7

A 27:24 B27:24

S27:24

C 23

A 31:28 B31:28

S31:28

4-bit CLA
Block

4-bit CLA
Block

4-bit CLA
Block

4-bit CLA
Block

C 27

Cout

Figure 5.6 (a) 32-bit carry-
lookahead adder (CLA), (b) 4-bit
CLA block

242 CHAPTER FIVE Digital Building Blocks

where tpg is the delay of the individual generate/propagate gates (a single
AND or OR gate) to generate Pi and Gi, tpg_block is the delay to find the
generate/propagate signals Pi:j and Gi:j for a k-bit block, and tAND_OR is
the delay from Cin to Cout through the final AND/OR logic of the k-bit
CLA block. For N >16, the carry-lookahead adder is generally much
faster than the ripple-carry adder. However, the adder delay still increases
linearly with N.

Example 5.1 RIPPLE-CARRY ADDER AND CARRY-LOOKAHEAD
ADDER DELAY

Compare the delays of a 32-bit ripple-carry adder and a 32-bit carry-lookahead
adder with 4-bit blocks. Assume that each two-input gate delay is 100 ps and that
a full adder delay is 300 ps.

Solution: According to Equation 5.1, the propagation delay of the 32-bit ripple-
carry adder is 32 × 300 ps= 9.6 ns.

The CLA has tpg= 100 ps, tpg_block= 6× 100 ps= 600 ps, and tAND_OR= 2× 100 ps=
200 ps. According to Equation 5.6, the propagation delay of the 32-bit carry-lookahead
adder with 4-bit blocks is thus 100 ps+ 600 ps+ (32/4− 1)× 200 ps+ (4× 300 ps) =
3.3 ns, almost three times faster than the ripple-carry adder.

Prefix Adder*
Prefix adders extend the generate and propagate logic of the carry-
lookahead adder to perform addition even faster. They first compute G and
P for pairs of columns, then for blocks of 4, then for blocks of 8, then 16,
and so forth until the generate signal for every column is known. The sums
are computed from these generate signals.

In other words, the strategy of a prefix adder is to compute the carry
in Ci−1 for each column i as quickly as possible, then to compute the sum,
using

Si = ðAi⊕BiÞ⊕Ci–1 (5.7)

Define column i=−1 to holdCin, soG−1=Cin and P−1= 0. ThenCi−1=
Gi−1:−1 because there will be a carry out of column i−1 if the block spanning
columns i−1 through−1 generates a carry. The generated carry is either gen-
erated in column i−1 or generated in a previous column and propagated.
Thus, we rewrite Equation 5.7 as

Si = ðAi⊕BiÞ⊕Gi–1:–1 (5.8)

Hence, the main challenge is to rapidly compute all the block gener-
ate signals G−1:−1, G0:−1, G1:−1, G2:−1, . . . , GN−2:−1. These signals, along
with P−1:−1, P0:−1, P1:−1, P2:−1, . . . , PN−2:−1, are called prefixes.

Early computers used ripple-
carry adders, because
components were expensive
and ripple-carry adders used
the least hardware. Virtually
all modern PCs use prefix
adders on critical paths,
because transistors are now
cheap and speed is of great
importance.

5.2 Arithmetic Circuits 243

Figure 5.7 shows an N= 16-bit prefix adder. The adder begins with a
precomputation to form Pi and Gi for each column from Ai and Bi using
AND and OR gates. It then uses log2N= 4 levels of black cells to form the
prefixes of Gi:j and Pi:j. A black cell takes inputs from the upper part of a
block spanning bits i:k and from the lower part spanning bits k−1:j. It
combines these parts to form generate and propagate signals for the entire
block spanning bits i:j using the equations

Gi:j = Gi:k +Pi:kGk–1:j (5.9)

Pi:j = Pi:k Pk–1:j (5.10)

In other words, a block spanning bits i:j will generate a carry if the upper
part generates a carry or if the upper part propagates a carry generated in
the lower part. The block will propagate a carry if both the upper and

0:–1

–1

2:1

1:–12:–1

012

4:3

3

6:5

5:36:3

456

5:–16:–1 3:–14:–1

8:7

7

10:9

9:710:7

8910

12:11

11

14:13

13:1114:11

121314

13:714:7 11:712:7

14:-1 13:–1 12:-1 11:–1 10:–1 9:–1 8:–1 7:–1

15

0123456789101112131415

A i B i

Gi :iPi :i

Gk –1:jPk –1:j Gi :kPi :k

G i :jP i :j

Ai B iGi –1:–1

S i

i
i :j

iLegend

Figure 5.7 16-bit prefix adder

244 CHAPTER FIVE Digital Building Blocks

lower parts propagate the carry. Finally, the prefix adder computes the
sums using Equation 5.8.

In summary, the prefix adder achieves a delay that grows logarithmi-
cally rather than linearly with the number of columns in the adder. This
speedup is significant, especially for adders with 32 or more bits, but it
comes at the expense of more hardware than a simple carry-lookahead
adder. The network of black cells is called a prefix tree.

The general principle of using prefix trees to perform computations in
time that grows logarithmically with the number of inputs is a powerful
technique. With some cleverness, it can be applied to many other types
of circuits (see, for example, Exercise 5.7).

The critical path for anN-bit prefix adder involves the precomputation
of Pi and Gi followed by log2N stages of black prefix cells to obtain all the
prefixes.Gi-1:−1 then proceeds through the final XOR gate at the bottom to
compute Si. Mathematically, the delay of an N-bit prefix adder is

tPA = tpg + log2Nðtpg�prefixÞ+ tXOR (5.11)

where tpg_prefix is the delay of a black prefix cell.

Example 5.2 PREFIX ADDER DELAY

Compute the delay of a 32-bit prefix adder. Assume that each two-input gate
delay is 100 ps.

Solution: The propagation delay of each black prefix cell tpg_prefix is 200 ps (i.e., two
gate delays). Thus, using Equation 5.11, the propagation delay of the 32-bit prefix
adder is 100 ps+ log2(32) × 200 ps+ 100 ps= 1.2 ns, which is about three times
faster than the carry-lookahead adder and eight times faster than the ripple-carry
adder from Example 5.1. In practice, the benefits are not quite this great, but prefix
adders are still substantially faster than the alternatives.

Putting It All Together
This section introduced the half adder, full adder, and three types of carry
propagate adders: ripple-carry, carry-lookahead, and prefix adders. Fas-
ter adders require more hardware and therefore are more expensive and
power-hungry. These trade-offs must be considered when choosing an
appropriate adder for a design.

Hardware description languages provide the+ operation to specify a
CPA. Modern synthesis tools select among many possible implementa-
tions, choosing the cheapest (smallest) design that meets the speed require-
ments. This greatly simplifies the designer’s job. HDL Example 5.1
describes a CPA with carries in and out.

5.2 Arithmetic Circuits 245

5 . 2 . 2 Subtraction

Recall from Section 1.4.6 that adders can add positive and negative num-
bers using two’s complement number representation. Subtraction is almost
as easy: flip the sign of the second number, then add. Flipping the sign of a
two’s complement number is done by inverting the bits and adding 1.

To compute Y =A−B, first create the two’s complement of B: Invert
the bits of B to obtain B and add 1 to get −B =B+ 1. Add this quantity to
A to get Y=A +B+ 1=A −B. This sum can be performed with a single
CPA by adding A +B with Cin= 1. Figure 5.9 shows the symbol for a
subtractor and the underlying hardware for performing Y=A −B. HDL
Example 5.2 describes a subtractor.

5 . 2 . 3 Comparators

A comparator determines whether two binary numbers are equal or if one
is greater or less than the other. A comparator receives two N-bit binary
numbers A and B. There are two common types of comparators.

HDL Example 5.1 ADDER

SystemVerilog

module adder #(parameter N = 8)
(input logic [N–1:0] a, b,
input logic cin,
output logic [N–1:0] s,
output logic cout);

assign {cout, s} = a + b + cin;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD_UNSIGNED.ALL;

entity adder is
generic(N: integer := 8);
port(a, b: in STD_LOGIC_VECTOR(N–1 downto 0);

cin: in STD_LOGIC;
s: out STD_LOGIC_VECTOR(N–1 downto 0);
cout: out STD_LOGIC);

end;

architecture synth of adder is
signal result: STD_LOGIC_VECTOR(N downto 0);

begin
result <= ("0" & a) + ("0" & b) + cin;
s <= result(N–1 downto 0);
cout <= result(N);

end;

+

cout
[8]

s[7:0]
[7:0]

cin

b[7:0]

a[7:0]
[7:0]

[8:0]

[7:0] [7:0]

Figure 5.8 Synthesized adder

A B

–

Y
(a)

NN

N
+

Y

A B

(b)

N N

N

N

Figure 5.9 Subtractor: (a) symbol,
(b) implementation

246 CHAPTER FIVE Digital Building Blocks

An equality comparator produces a single output indicating whether A is
equal to B (A ==B). A magnitude comparator produces one or more out-
puts indicating the relative values of A and B.

The equality comparator is the simpler piece of hardware. Figure 5.11
shows the symbol and implementation of a 4-bit equality comparator. It
first checks to determine whether the corresponding bits in each column
of A and B are equal using XNOR gates. The numbers are equal if all
of the columns are equal.

Magnitude comparison of signed numbers is usually done by com-
puting A−B and looking at the sign (most significant bit) of the result
as shown in Figure 5.12. If the result is negative (i.e., the sign bit is 1),
then A is less than B. Otherwise A is greater than or equal to B. This com-
parator, however, functions incorrectly upon overflow. Exercises 5.9 and
5.10 explore this limitation and how to fix it.

HDL Example 5.2 SUBTRACTOR

SystemVerilog

module subtractor #(parameter N = 8)
(input logic [N–1:0] a, b,
output logic [N–1:0] y);

assign y = a − b;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD_UNSIGNED.ALL;

entity subtractor is
generic(N: integer := 8);
port(a, b: in STD_LOGIC_VECTOR(N–1 downto 0);

y: out STD_LOGIC_VECTOR(N–1 downto 0));
end;

architecture synth of subtractor is
begin

y <= a – b;
end;

A 3
B 3

A 2
B 2

A1
B1

A0
B0

Equal

(b)(a)

=

A B

Equal

44

Figure 5.11 4-bit equality
comparator: (a) symbol,
(b) implementation

A < B

–

BA

[N –1]

N

N N

Figure 5.12 N-bit signed
comparator

+ y[7:0]
[7:0]

b[7:0]

a[7:0]
[7:0]

[7:0]

1

Figure 5.10 Synthesized subtractor

5.2 Arithmetic Circuits 247

HDL Example 5.3 shows how to use various comparison operations
for unsigned numbers.

5 . 2 . 4 ALU

An Arithmetic/Logical Unit (ALU) combines a variety of mathematical
and logical operations into a single unit. For example, a typical ALU

HDL Example 5.3 COMPARATORS

SystemVerilog

module comparator #(parameter N = 8)
(input logic [N–1:0] a, b,
output logic eq, neq, lt, lte, gt, gte);

assign eq = (a == b);
assign neq = (a != b);
assign lt = (a < b);
assign lte = (a <= b);
assign gt = (a > b);
assign gte = (a >= b);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;

entity comparators is
generic(N: integer : = 8);
port(a, b: in STD_LOGIC_VECTOR(N–1 downto 0);

eq, neq, lt, lte, gt, gte: out STD_LOGIC);
end;

architecture synth of comparator is
begin

eq <= '1' when (a = b) else '0';
neq <= '1' when (a /= b) else '0';
lt <= '1' when (a < b) else '0';
lte <= '1' when (a <= b) else '0';
gt <= '1' when (a > b) else '0';
gte <= '1' when (a >= b) else '0';

end;

=

<

<

gte

gt

lte

lt

neq

eq

b[7:0]

a[7:0]
[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

Figure 5.13 Synthesized comparators

ALU

N N

N

2

A B

Result

ALUControl

Figure 5.14 ALU symbol

248 CHAPTER FIVE Digital Building Blocks

might perform addition, subtraction, AND, and OR operations. The ALU
forms the heart of most computer systems.

Figure 5.14 shows the symbol for an N-bit ALU with N-bit inputs
and outputs. The ALU receives a 2-bit control signal ALUControl that
specifies which function to perform. Control signals will generally be
shown in blue to distinguish them from the data. Table 5.1 lists typical
functions that the ALU can perform.

Figure 5.15 shows an implementation of the ALU. The ALU contains
anN-bit adder andN two-input AND and OR gates. It also contains inver-
ters and a multiplexer to invert input B when ALUControl0 is asserted. A
4:1 multiplexer chooses the desired function based on ALUControl.

More specifically, if ALUControl= 00, the output multiplexer chooses
A+B. If ALUControl= 01, the ALU computes A−B. (Recall from Section
5.2.2 that B + 1=−B in two’s complement arithmetic. Because ALUCon-
trol0 is 1, the adder receives inputs A and B and an asserted carry in, causing

Table 5.1 ALU operations

ALUControl1:0 Function

00 Add

01 Subtract

10 AND

11 OR

+

00

A B

Cout

Result

01

A
LU

C
ontrol0

ALUControl

Sum

NN

N

N

N NNN

N

2

011011

Figure 5.15 N-bit ALU

5.2 Arithmetic Circuits 249

it to perform subtraction:A+B + 1=A−B.) IfALUControl= 10, the ALU
computes A AND B. If ALUControl= 11, the ALU performs AOR B.

Some ALUs produce extra outputs, called flags, that indicate infor-
mation about the ALU output. Figure 5.16 shows the ALU symbol
with a 4-bit ALUFlags output. As shown in the schematic of this ALU
in Figure 5.17, the ALUFlags output is composed of the N, Z, C, and V
flags that indicate, respectively, that the ALU output is negative or zero
or that the adder produced a carry out or overflowed. Recall that the
most significant bit of a two's complement number is 1 if it is negative
and 0 otherwise. Thus, the N flag is connected to the most significant
bit of the ALU output, Result31. The Z flag is asserted when all of the bits
of Result are 0, as detected by the N-bit NOR gate in Figure 5.17. The C
flag is asserted when the adder produces a carry out and the ALU is per-
forming addition or subtraction (ALUControl1= 0).

Overflow detection, as shown on the left side of Figure 5.17, is trickier.
Recall from Section 1.4.6 that overflow occurs when the addition of
two same signed numbers produces a result with the opposite sign.
So, V is asserted when all three of the following conditions are true: (1)
the ALU is performing addition or subtraction (ALUControl1= 0), (2)
A and Sum have opposite signs, as detected by the XOR gate, and, as

ALU

N N

N

2

A B

Result

ALUControl

4

ALUFlags
{N,Z,C,V}

Figure 5.16 ALU symbol with
output flags

+

00

A B

Cout

Result

01

A
LU

C
ontrol0

ALUControl

Sum

NN

N

N

N NNN

N

2

011011

Zero

ALUControl1

Result31

NegativeCarry

ALUControl0

A31

B31

ALUFlags
4

ZN VC

Sum31

oVerflow

Figure 5.17 N-bit ALU with output
flags

250 CHAPTER FIVE Digital Building Blocks

detected by the XNOR gate, (3) either A and B have the same sign and
the adder is performing addition (ALUControl0= 0) orA andB have oppo-
site signs and the adder is performing subtraction (ALUControl0= 1).
The 3-input AND gate detects when all three conditions are true and
asserts V.

The HDL for an N-bit ALU with output flags is left to Exercises 5.11
and 5.12. There are many variations on this basic ALU that support other
functions, such as XOR or equality comparison.

5 . 2 . 5 Shifters and Rotators

Shifters and rotatorsmove bits and multiply or divide by powers of 2. As the
name implies, a shifter shifts a binary number left or right by a specified
number of positions. There are several kinds of commonly used shifters:

▶ Logical shifter—shifts the number to the left (LSL) or right (LSR) and
fills empty spots with 0’s.

Ex: 11001 LSR 2= 00110; 11001 LSL 2= 00100

▶ Arithmetic shifter—is the same as a logical shifter, but on right shifts
fills the most significant bits with a copy of the old most significant
bit (msb). This is useful for multiplying and dividing signed numbers
(see Sections 5.2.6 and 5.2.7). Arithmetic shift left (ASL) is the same
as logical shift left (LSL).

Ex: 11001 ASR 2= 11110; 11001 ASL 2= 00100

▶ Rotator—rotates number in a circle such that empty spots are filled
with bits shifted off the other end.

Ex: 11001 ROR 2= 01110; 11001 ROL 2= 00111

An N-bit shifter can be built from N N:1 multiplexers. The input is
shifted by 0 to N − 1 bits, depending on the value of the log2N-bit select
lines. Figure 5.18 shows the symbol and hardware of 4-bit shifters. The
operators<< , >>, and >>> typically indicate shift left, logical shift right,
and arithmetic shift right, respectively. Depending on the value of the
2-bit shift amount shamt1:0, the output Y receives the input A shifted by
0 to 3 bits. For all shifters, when shamt1:0= 00, Y =A. Exercise 5.18
covers rotator designs.

A left shift is a special case of multiplication. A left shift by N bits
multiplies the number by 2N. For example, 0000112<< 4= 1100002 is
equivalent to 310 × 24= 4810.

An arithmetic right shift is a special case of division. An arithmetic
right shift by N bits divides the number by 2N. For example, 111002
>>> 2= 111112 is equivalent to −410/22=−110.

5.2 Arithmetic Circuits 251

5 . 2 . 6 Multiplication*

Multiplication of unsigned binary numbers is similar to decimal multipli-
cation but involves only 1’s and 0’s. Figure 5.19 compares multiplication
in decimal and binary. In both cases, partial products are formed by mul-
tiplying a single digit of the multiplier with the entire multiplicand. The
shifted partial products are summed to form the result.

shamt1:0A3 A2 A1 A0

Y3

Y2

Y1

Y0

(a)

<<

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

2

4 4

2

(b)

A3 A2 A1 A0

Y3

Y2

Y1

Y0

shamt1:0

00

01

10

11

A3:0 Y3:0

shamt1:0

>>

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

2

4 4

2

(c)

A3 A2 A1 A0

Y3

Y2

Y1

Y0

shamt1:0

>>>

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

2

4 4

2

A3:0 Y3:0

shamt1:0

A3:0 Y3:0

shamt1:0

Figure 5.18 4-bit shifters: (a) shift left, (b) logical shift right, (c) arithmetic shift right

230
42 ×

(a)

460
920 +
9660

230 × 42 = 9660

multiplier
multiplicand

partial
products

result

0101
0111

5 × 7 = 35

0101
0101

0101
0000

×

+
0100011

(b)

Figure 5.19 Multiplication:
(a) decimal, (b) binary

252 CHAPTER FIVE Digital Building Blocks

In general, an N ×N multiplier multiplies two N-bit numbers and
produces a 2N-bit result. The partial products in binary multiplication
are either the multiplicand or all 0’s. Multiplication of 1-bit binary num-
bers is equivalent to the AND operation, so AND gates are used to form
the partial products.

Signed and unsigned multiplication differ. For example, consider
0xFE × 0xFD. If these 8-bit numbers are interpreted as signed integers,
they represent −2 and −3, so the 16-bit product is 0x0006. If these num-
bers are interpreted as unsigned integers, the 16-bit product is 0xFB06.
Notice that in either case, the least significant byte is 0x06.

Figure 5.20 shows the symbol, function, and implementation of an
unsigned 4× 4 multiplier. The unsigned multiplier receives the multiplicand
and multiplier, A and B, and produces the product P. Figure 5.20(b) shows
how partial products are formed. Each partial product is a single multiplier
bit (B3, B2, B1, or B0) AND the multiplicand bits (A3, A2, A1, A0). With
N-bit operands, there are N partial products and N− 1 stages of 1-bit
adders. For example, for a 4× 4 multiplier, the partial product of the first
row is B0 AND (A3, A2, A1, A0). This partial product is added to the
shifted second partial product, B1 AND (A3, A2, A1, A0). Subsequent rows
of AND gates and adders form and add the remaining partial products.

The HDL for signed and unsigned multipliers is in HDL Example 4.33.
As with adders, many different multiplier designs with different speed/cost
trade-offs exist. Synthesis tools may pick the most appropriate design given
the timing constraints.

A multiply accumulate operation multiplies two numbers and adds
them to a third number, typically the accumulated value. These operations,
also called MACs, are often used in digital signal processing (DSP) algo-
rithms such as the Fourier transform, which requires a summation of
products.

(a)

x

A B

P

44

8

(b)

× B3 B2 B1 B0

A3B0 A2B0 A1B0 A0B0

A3 A2 A1 A0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B3 A2B3 A1B3 A0B3+
P7 P6 P5 P4 P3 P2 P1 P0

0

P2

0

0

(c)

0

P1 P0P5 P4 P3P7 P6

A3 A2 A1 A0

B0
B1

B2

B3

Figure 5.20 4× 4 multiplier:
(a) symbol, (b) function,
(c) implementation

5.2 Arithmetic Circuits 253

5 . 2 . 7 Division*

Binary division can be performed using the following algorithm for N-bit
unsigned numbers in the range [0, 2N−1]:

R′= 0
for i = N−1 to 0

R = {R′ << 1, Ai}
D = R− B
if D < 0 then Qi = 0, R′= R // R < B
else Qi= 1, R′= D // R ≥ B

R = R′

The partial remainder R is initialized to 0 (R′= 0), and the most
significant bit of the dividend A becomes the least significant bit of
R (R = {R′ << 1, Ai}). The divisor B is subtracted from this partial
remainder to determine whether it fits (D=R −B). If the difference D is
negative (i.e., the sign bit of D is 1), then the quotient bit Qi is 0 and
the difference is discarded. Otherwise, Qi is 1, and the partial remainder
is updated to be the difference. In any event, the partial remainder is then
doubled (left-shifted by one column), the next most significant bit of A
becomes the least significant bit of R, and the process repeats. The result

satisfies A
B =Q+R

B.

+

R B

D

R '

N

CinCout

1 0

R B

D
R′N

Cout Cin1

A3000

Q3

B0B1B2B3

R0R1R2R3

Legend

1

A2

Q2

Q1

B0B1B2B3

A0 B0B1B2B3

A1 B0B1B2B3

1

1
Q0

Figure 5.21 Array divider

254 CHAPTER FIVE Digital Building Blocks

Figure 5.21 shows a schematic of a 4-bit array divider. The divider
computes A/B and produces a quotient Q and a remainder R. The legend
shows the symbol and schematic for each block in the array divider. Each
row performs one iteration of the division algorithm. Specifically, each
row calculates the difference D=R −B. (Recall that R + B + 1=R−B).
The signal N indicates whether D is negative. So a row’s multiplexer select
lines receive the most significant bit of D, which is 1 when the difference is
negative. The quotient (Qi) is 0 when D is negative and 1 otherwise. The
multiplexer passes R to the next row if the difference is negative and
D otherwise. The following row shifts the new partial remainder left by
one bit, appends the next most significant bit of A, and then repeats the
process.

The delay of an N-bit array divider increases proportionally to N2

because the carry must ripple through all N stages in a row before the sign
is determined and the multiplexer selects R or D. This repeats for all
N rows. Division is a slow and expensive operation in hardware and
therefore should be used as infrequently as possible.

5 . 2 . 8 Further Reading

Computer arithmetic could be the subject of an entire text. Digital
Arithmetic, by Ercegovac and Lang, is an excellent overview of the entire
field. CMOS VLSI Design, by Weste and Harris, covers high-performance
circuit designs for arithmetic operations.

5.3 NUMBER SYSTEMS

Computers operate on both integers and fractions. So far, we have only
considered representing signed or unsigned integers, as introduced in
Section 1.4. This section introduces fixed- and floating-point number sys-
tems that can represent rational numbers. Fixed-point numbers are analo-
gous to decimals; some of the bits represent the integer part, and the rest
represent the fraction. Floating-point numbers are analogous to scientific
notation, with a mantissa and an exponent.

5 . 3 . 1 Fixed-Point Number Systems

Fixed-point notation has an implied binary point between the integer
and fraction bits, analogous to the decimal point between the integer
and fraction digits of an ordinary decimal number. For example,
Figure 5.22(a) shows a fixed-point number with four integer bits
and four fraction bits. Figure 5.22(b) shows the implied binary point
in blue, and Figure 5.22(c) shows the equivalent decimal value. The
integer bits are called the high word and the fraction bits are called
the low word.

(a) 01101100

(b) 0110.1100

(c) 22 + 21 + 2–1 + 2–2 = 6.75

Figure 5.22 Fixed-point notation
of 6.75 with four integer bits and
four fraction bits

5.3 Number Systems 255

Signed fixed-point numbers can use either two’s complement or sign/
magnitude notation. Figure 5.23 shows the fixed-point representation of
−2.375 using both notations with four integer and four fraction bits.
The implicit binary point is shown in blue for clarity. In sign/magnitude
form, the most significant bit is used to indicate the sign. The two’s com-
plement representation is formed by inverting the bits of the absolute
value and adding a 1 to the least significant (rightmost) bit. In this case,
the least significant bit position is in the 2−4 column.

Like all binary number representations, fixed-point numbers are just a
collection of bits. There is no way of knowing the existence of the binary
point except through agreement of those people interpreting the number.

Example 5.3 ARITHMETIC WITH FIXED-POINT NUMBERS

Compute 0.75+−0.625 using fixed-point numbers.

Solution: First convert 0.625, the magnitude of the second number, to fixed-point bin-
ary notation. 0.625 ≥ 2−1, so there is a 1 in the 2−1 column, leaving 0.625− 0.5=
0.125. Because 0.125< 2−2, there is a 0 in the 2−2 column. Because 0.125 ≥ 2−3, there
is a 1 in the 2−3 column, leaving 0.125− 0.125= 0. Thus, there must be a 0 in the 2−4

column. Putting this all together, 0.62510= 0000.10102.

Use two’s complement representation for signed numbers so that addition works
correctly. Figure 5.24 shows the conversion of −0.625 to fixed-point two’s com-
plement notation.

Figure 5.25 shows the fixed-point binary addition and the decimal equivalent
for comparison. Note that the leading 1 in the binary fixed-point addition of
Figure 5.25(a) is discarded from the 8-bit result.

5 . 3 . 2 Floating-Point Number Systems*

Floating-point numbers are analogous to scientific notation. They circum-
vent the limitation of having a constant number of integer and fraction
bits, allowing the representation of very large and very small numbers.

0000.1010
1111.0101

+ 1 Add 1
1111.0110 Two's Complement

One's Complement
Binary Magnitude

Figure 5.24 Fixed-point two’s
complement conversion

0000.1100

10000.0010
+ 1111.0110

0.75

 0.125

+ (–0.625)

(a) (b)

Figure 5.25 Addition: (a) binary
fixed-point, (b) decimal equivalent

Fixed-point number systems
are commonly used for
banking and financial
applications that require
precision but not a large range.
Digital signal processing (DSP)
applications also often use
fixed-point numbers because
the computations are faster
and consume less power than
they would in floating-point.

(a) 0010.0110

(b) 1010.0110

(c) 1101.1010

Figure 5.23 Fixed-point
representation of −2.375:
(a) absolute value, (b) sign and
magnitude, (c) two’s complement

256 CHAPTER FIVE Digital Building Blocks

Like scientific notation, floating-point numbers have a sign, mantissa (M),
base (B), and exponent (E), as shown in Figure 5.26. For example, the
number 4.1 × 103 is the decimal scientific notation for 4100. It has a man-
tissa of 4.1, a base of 10, and an exponent of 3. The decimal point floats
to the position right after the most significant digit. Floating-point num-
bers are base 2 with a binary mantissa. 32 bits are used to represent 1 sign
bit, 8 exponent bits, and 23 mantissa bits.

Example 5.4 32-BIT FLOATING-POINT NUMBERS

Show the floating-point representation of the decimal number 228.

Solution: First convert the decimal number into binary: 22810= 111001002=
1.110012 × 27. Figure 5.27 shows the 32-bit encoding, which will be modified later
for efficiency. The sign bit is positive (0), the 8 exponent bits give the value 7, and
the remaining 23 bits are the mantissa.

In binary floating-point, the first bit of the mantissa (to the left of the
binary point) is always 1 and therefore need not be stored. It is called the
implicit leading one. Figure 5.28 shows the modified floating-point repre-
sentation of 22810= 111001002 × 20= 1.110012 × 27. The implicit lead-
ing one is not included in the 23-bit mantissa for efficiency. Only the
fraction bits are stored. This frees up an extra bit for useful data.

We make one final modification to the exponent field. The exponent
needs to represent both positive and negative exponents. To do so, float-
ing-point uses a biased exponent, which is the original exponent plus a
constant bias. 32-bit floating-point uses a bias of 127. For example,
for the exponent 7, the biased exponent is 7 + 127 = 134 = 100001102.
For the exponent −4, the biased exponent is: −4 + 127 = 123 =
011110112. Figure 5.29 shows 1.110012 × 27 represented in floating-
point notation with an implicit leading one and a biased exponent of

± M × BE

Figure 5.26 Floating-point
numbers

0 00000111 111 0010 0000 0000 0000 0000
Sign Exponent Mantissa

1 bit 8 bits 23 bits
Figure 5.27 32-bit floating-point
version 1

0 00000111 110 0100 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits
Figure 5.28 32-bit floating-point
version 2

0 10000110
Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits

110 0100 0000 0000 0000 0000 Figure 5.29 IEEE 754 floating-
point notation

As may be apparent, there are
many reasonable ways to
represent floating-point
numbers. For many years,
computer manufacturers used
incompatible floating-point
formats. Results from one
computer could not directly be
interpreted by another
computer.

The Institute of Electrical
and Electronics Engineers
solved this problem by
creating the IEEE 754
floating-point standard in
1985 defining floating-point
numbers. This floating-point
format is now almost
universally used and is the one
discussed in this section.

5.3 Number Systems 257

134 (7 + 127). This notation conforms to the IEEE 754 floating-point
standard.

Special Cases: 0, ±∞, and NaN
The IEEE floating-point standard has special cases to represent numbers
such as zero, infinity, and illegal results. For example, representing the
number zero is problematic in floating-point notation because of the
implicit leading one. Special codes with exponents of all 0’s or all l’s
are reserved for these special cases. Table 5.2 shows the floating-point
representations of 0, ±∞, and NaN. As with sign/magnitude numbers,
floating-point has both positive and negative 0. NaN is used for numbers
that don’t exist, such as

ffiffiffiffiffiffi
–1

p
or log2(−5).

Single- and Double-Precision Formats
So far, we have examined 32-bit floating-point numbers. This format is
also called single-precision, single, or float. The IEEE 754 standard also
defines 64-bit double-precision numbers (also called doubles) that provide
greater precision and greater range. Table 5.3 shows the number of bits
used for the fields in each format.

Excluding the special cases mentioned earlier, normal single-precision
numbers span a range of ±1.175494 × 10−38 to ±3.402824 × 1038.
They have a precision of about seven significant decimal digits (because
2−24≈ 10−7). Similarly, normal double-precision numbers span a range
of ±2.22507385850720 × 10−308 to ±1.79769313486232 × 10308 and
have a precision of about 15 significant decimal digits.

Table 5.2 IEEE 754 floating-point notations for 0, ±∞, and NaN

Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

−∞ 1 11111111 00000000000000000000000

NaN X 11111111 Non-zero

Table 5.3 Single- and double-precision floating-point formats

Format Total Bits Sign Bits Exponent Bits Fraction Bits

single 32 1 8 23

double 64 1 11 52

Floating-point cannot
represent some numbers
exactly, like 1.7. However,
when you type 1.7 into your
calculator, you see exactly 1.7,
not 1.69999. . . . To handle
this, some applications, such
as calculators and financial
software, use binary coded
decimal (BCD) numbers or
formats with a base 10
exponent. BCD numbers
encode each decimal digit
using four bits with a range of
0 to 9. For example, the BCD
fixed-point notation of 1.7
with four integer bits and four
fraction bits would be
0001.0111. Of course,
nothing is free. The cost is
increased complexity in
arithmetic hardware and
wasted encodings (A–F
encodings are not used), and
thus decreased performance.
So for compute-intensive
applications, floating-point is
much faster.

258 CHAPTER FIVE Digital Building Blocks

Rounding
Arithmetic results that fall outside of the available precision must round to a
neighboring number. The rounding modes are: round down, round up,
round toward zero, and round to nearest. The default rounding mode is
round to nearest. In the round to nearest mode, if two numbers are equally
near, the onewith a 0 in the least significant position of the fraction is chosen.

Recall that a number overflows when its magnitude is too large to be
represented. Likewise, a number underflows when it is too tiny to be
represented. In round to nearest mode, overflows are rounded up to ±∞
and underflows are rounded down to 0.

Floating-Point Addition
Addition with floating-point numbers is not as simple as addition with
two’s complement numbers. The steps for adding floating-point numbers
with the same sign are as follows:

1. Extract exponent and fraction bits.

2. Prepend leading 1 to form the mantissa.

3. Compare exponents.

4. Shift smaller mantissa if necessary.

5. Add mantissas.

6. Normalize mantissa and adjust exponent if necessary.

7. Round result.

8. Assemble exponent and fraction back into floating-point number.

Figure 5.30 shows the floating-point addition of 7.875 (1.11111× 22)
and 0.1875 (1.1 × 2−3). The result is 8.0625 (1.0000001× 23). After the
fraction and exponent bits are extracted and the implicit leading 1 is pre-
pended in steps 1 and 2, the exponents are compared by subtracting the
smaller exponent from the larger exponent. The result is the number of bits
by which the smaller number is shifted to the right to align the implied bin-
ary point (i.e., to make the exponents equal) in step 4. The aligned numbers
are added. Because the sum has a mantissa that is greater than or equal to
2.0, the result is normalized by shifting it to the right one bit and incre-
menting the exponent. In this example, the result is exact, so no rounding
is necessary. The result is stored in floating-point notation by removing
the implicit leading one of the mantissa and prepending the sign bit.

5.4 SEQUENTIAL BUILDING BLOCKS

This section examines sequential building blocks, including counters and
shift registers.

Floating-point arithmetic is
usually done in hardware to
make it fast. This hardware,
called the floating-point unit
(FPU), is typically distinct
from the central processing
unit (CPU). The infamous
floating-point division (FDIV)
bug in the Pentium FPU cost
Intel $475 million to recall
and replace defective chips.
The bug occurred simply
because a lookup table was
not loaded correctly.

5.4 Sequential Building Blocks 259

5 . 4 . 1 Counters

An N-bit binary counter, shown in Figure 5.31, is a sequential arith-
metic circuit with clock and reset inputs and an N-bit output Q. Reset
initializes the output to 0. The counter then advances through all 2N

possible outputs in binary order, incrementing on the rising edge of
the clock.

Figure 5.32 shows an N-bit counter composed of an adder and a
resettable register. On each cycle, the counter adds 1 to the value stored
in the register. HDL Example 5.4 describes a binary counter with asyn-
chronous reset.

Other types of counters, such as Up/Down counters, are explored in
Exercises 5.47 through 5.50.

111 1100 0000 0000 0000 0000
Step 1

10000001
Exponent

100 0000 0000 0000 0000 0000 01111100

1.111 1100 0000 0000 0000 0000
Step 2

10000001

1.100 0000 0000 0000 0000 0000 01111100

1.111 1100 0000 0000 0000 0000
Step 3

10000001

1.100 0000 0000 0000 0000 0000 01111100 –
101 (shift amount)

1.111 1100 0000 0000 0000 0000
Step 4

10000001

0.000 0110 0000 0000 0000 0000 10000001

1.111 1100 0000 0000 0000 0000
Step 5

10000001

0.000 0110 0000 0000 0000 0000 10000001 +

10.000 0010 0000 0000 0000 0000

Step 6

Step 7

Floating-point numbers

1.000 0001 0000 0000 0000 0000

10000001

1

10.000 0010 0000 0000 0000 0000 >> 1

10000010

0

0

Step 8 0

(No rounding necessary)

Fraction

111 1100 0000 0000 0000 0000

100 0000 0000 0000 0000 0000

10000001

01111100

000 0001 0000 0000 0000 0000 10000010

00000

+

Figure 5.30 Floating-point
addition

Q

CLK

Reset

N

Figure 5.31 Counter symbol

N

1

CLK

Reset

B

S

A
N

Q3:0
N

r

Figure 5.32 N-bit counter

260 CHAPTER FIVE Digital Building Blocks

5 . 4 . 2 Shift Registers

A shift register has a clock, a serial input Sin, a serial output Sout , and N
parallel outputs QN−1:0, as shown in Figure 5.34. On each rising edge of
the clock, a new bit is shifted in from Sin and all the subsequent contents
are shifted forward. The last bit in the shift register is available at Sout.
Shift registers can be viewed as serial-to-parallel converters. The input is
provided serially (one bit at a time) at Sin. After N cycles, the past N
inputs are available in parallel at Q.

A shift register can be constructed from N flip-flops connected in ser-
ies, as shown in Figure 5.35. Some shift registers also have a reset signal
to initialize all of the flip-flops.

HDL Example 5.4 COUNTER

SystemVerilog

module counter #(parameter N = 8)
(input logic clk,
input logic reset,
output logic [N–1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else q <= q + 1;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD_UNSIGNED.ALL;

entity counter is
generic(N: integer := 8);
port(clk, reset: in STD_LOGIC;

q: out STD_LOGIC_VECTOR(N-1 downto 0));
end;

architecture synth of counter is
begin

process(clk, reset) begin
if reset then q <= (OTHERS => '0');
elsif rising_edge(clk) then q <= q + '1';
end if;

end process;
end;

+
R

q[7:0]
[7:0]

reset

clk

[7:0]

1
Q[7:0]

[7:0]
D[7:0]

Figure 5.33 Synthesized counter

CLK

S in S out

Q 0 Q1 QN –1Q2

Figure 5.35 Shift register
schematic

NQ

S in Sout

Figure 5.34 Shift register symbol

5.4 Sequential Building Blocks 261

A related circuit is a parallel-to-serial converter that loads N bits in
parallel, then shifts them out one at a time. A shift register can be modi-
fied to perform both serial-to-parallel and parallel-to-serial operations
by adding a parallel input DN−1:0, and a control signal Load, as shown
in Figure 5.36. When Load is asserted, the flip-flops are loaded in parallel
from the D inputs. Otherwise, the shift register shifts normally. HDL
Example 5.5 describes such a shift register.

Scan Chains*
Shift registers are often used to test sequential circuits using a technique
called scan chains. Testing combinational circuits is relatively straight-
forward. Known inputs called test vectors are applied, and the outputs
are checked against the expected result. Testing sequential circuits
is more difficult, because the circuits have state. Starting from a
known initial condition, a large number of cycles of test vectors may
be needed to put the circuit into a desired state. For example, testing
that the most significant bit of a 32-bit counter advances from 0 to 1
requires resetting the counter, then applying 231 (about two billion)
clock pulses!

To solve this problem, designers like to be able to directly observe
and control all the state of the machine. This is done by adding a test
mode in which the contents of all flip-flops can be read out or loaded
with desired values. Most systems have too many flip-flops to dedicate
individual pins to read and write each flip-flop. Instead, all the flip-flops
in the system are connected together into a shift register called a scan
chain. In normal operation, the flip-flops load data from their D input
and ignore the scan chain. In test mode, the flip-flops serially shift their
contents out and shift in new contents using Sin and Sout. The load multi-
plexer is usually integrated into the flip-flop to produce a scannable
flip-flop. Figure 5.38 shows the schematic and symbol for a scannable
flip-flop and illustrates how the flops are cascaded to build an N-bit scan-
nable register.

For example, the 32-bit counter could be tested by shifting in the pat-
tern 011111. . .111 in test mode, counting for one cycle in normal mode,
then shifting out the result, which should be 100000. . .000. This requires
only 32+ 1+ 32= 65 cycles.

CLK
0

1

0

1

0

1

0

1

D0 D1 DN –1D2

Q0 Q1 QN – 1Q2

S in Sout

Load
Figure 5.36 Shift register with
parallel load

Don’t confuse shift registers
with the shifters from Section
5.2.5. Shift registers are
sequential logic blocks that
shift in a new bit on each clock
edge. Shifters are unclocked
combinational logic blocks
that shift an input by a
specified amount.

262 CHAPTER FIVE Digital Building Blocks

0

1

Test

D

S in

Q

Sout

(a)

D Q

S in Sout

Test

(b)

D Q

S in Sout

Test

D Q

S in Sout

Test

D Q

S in Sout

Test

D Q

Sin Sout

Test

(c)

Test

CLK

CLK

CLK

D0

Q0

D1

Q1

D2

Q2

DN – 1

QN –1

S in Sout

Figure 5.38 Scannable flip-flop: (a) schematic, (b) symbol, and (c) N-bit scannable register

HDL Example 5.5 SHIFT REGISTER WITH PARALLEL LOAD

SystemVerilog

module shiftreg #(parameter N = 8)
(input logic clk,
input logic reset, load,
input logic sin,
input logic [N–1:0] d,
output logic [N–1:0] q,
output logic sout);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else if (load) q <= d;
else q <= {q[N–2:0], sin};

assign sout = q[N–1];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;

entity shiftreg is
generic(N: integer := 8);
port(clk, reset: in STD_LOGIC;

load, sin: in STD_LOGIC;
d: in STD_LOGIC_VECTOR(N–1 downto 0);
q: out STD_LOGIC_VECTOR(N–1 downto 0);
sout: out STD_LOGIC);

end;

architecture synth of shiftreg is
begin
process(clk, reset) begin

if reset = '1' then q <= (OTHERS => '0');
elsif rising_edge(clk) then

if load then q <= d;
else q <= q(N–2 downto 0) & sin;
end if;

end if;
end process;

sout <= q(N–1);
end;

0

1 R

sout
[7]

q[7:0]

d[7:0]

sin

load

reset
clk

[6:0]

[7:0][7:0] [7:0]
Q[7:0]D[7:0]

Figure 5.37 Synthesized shiftreg

5.4 Sequential Building Blocks 263

5.5 MEMORY ARRAYS

The previous sections introduced arithmetic and sequential circuits for
manipulating data. Digital systems also require memories to store the
data used and generated by such circuits. Registers built from flip-flops
are a kind of memory that stores small amounts of data. This section
describes memory arrays that can efficiently store large amounts of data.

The section begins with an overview describing characteristics
shared by all memory arrays. It then introduces three types of memory
arrays: dynamic random access memory (DRAM), static random access
memory (SRAM), and read only memory (ROM). Each memory differs
in the way it stores data. The section briefly discusses area and delay
trade-offs and shows how memory arrays are used, not only to store
data but also to perform logic functions. The section finishes with the
HDL for a memory array.

5 . 5 . 1 Overview

Figure 5.39 shows a generic symbol for a memory array. The memory is
organized as a two-dimensional array of memory cells. The memory reads
or writes the contents of one of the rows of the array. This row is speci-
fied by an Address. The value read or written is called Data. An array
with N-bit addresses and M-bit data has 2N rows and M columns. Each
row of data is called a word. Thus, the array contains 2N M-bit words.

Figure 5.40 shows a memory array with two address bits and three
data bits. The two address bits specify one of the four rows (data words)
in the array. Each data word is three bits wide. Figure 5.40(b) shows
some possible contents of the memory array.

The depth of an array is the number of rows, and the width is the
number of columns, also called the word size. The size of an array is
given as depth ×width. Figure 5.40 is a 4-word × 3-bit array, or simply
4 × 3 array. The symbol for a 1024-word × 32-bit array is shown in
Figure 5.41. The total size of this array is 32 kilobits (Kb).

Bit Cells
Memory arrays are built as an array of bit cells, each of which stores 1 bit
of data. Figure 5.42 shows that each bit cell is connected to a wordline
and a bitline. For each combination of address bits, the memory asserts
a single wordline that activates the bit cells in that row. When the word-
line is HIGH, the stored bit transfers to or from the bitline. Otherwise, the
bitline is disconnected from the bit cell. The circuitry to store the bit varies
with memory type.

To read a bit cell, the bitline is initially left floating (Z). Then the
wordline is turned ON, allowing the stored value to drive the bitline to
0 or 1. To write a bit cell, the bitline is strongly driven to the desired

stored
bit

wordline

bitline

Figure 5.42 Bit cell

Address

Data

ArrayN

M

Figure 5.39 Generic memory
array symbol

(a)

Address

Data

Array2

3

(b)

Address

11

10

01

00

depth

0

1

1

0

1

0

1

1

0

0

0

1

width

Data

Figure 5.40 4× 3 memory
array: (a) symbol, (b) function

Address

Data

1024-word ×
32-bit
Array

10

32

Figure 5.41 32 Kb array: depth =
210 = 1024 words, width = 32 bits

264 CHAPTER FIVE Digital Building Blocks

value. Then the wordline is turned ON, connecting the bitline to the
stored bit. The strongly driven bitline overpowers the contents of the bit
cell, writing the desired value into the stored bit.

Organization
Figure 5.43 shows the internal organization of a 4 × 3 memory array. Of
course, practical memories are much larger, but the behavior of larger
arrays can be extrapolated from the smaller array. In this example, the
array stores the data from Figure 5.40(b).

During a memory read, a wordline is asserted, and the corresponding
row of bit cells drives the bitlines HIGH or LOW. During a memory
write, the bitlines are driven HIGH or LOW first and then a wordline is
asserted, allowing the bitline values to be stored in that row of bit cells.
For example, to read Address 10, the bitlines are left floating, the decoder
asserts wordline2, and the data stored in that row of bit cells (100) reads
out onto the Data bitlines. To write the value 001 to Address 11, the
bitlines are driven to the value 001, then wordline3 is asserted and the
new value (001) is stored in the bit cells.

Memory Ports
All memories have one or more ports. Each port gives read and/or write
access to one memory address. The previous examples were all single-
ported memories.

Multiported memories can access several addresses simultaneously.
Figure 5.44 shows a three-ported memory with two read ports
and one write port. Port 1 reads the data from address A1 onto the
read data output RD1. Port 2 reads the data from address A2 onto

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

wordline2

wordline1

wordline0

bitline2 bitline1 bitline0

Data 2 Data 1 Data 0

2

Figure 5.43 4× 3 memory array

A1

A3

WD 3

WE 3

A2

CLK

Array

RD 2

RD1
M

M

N

N

N

M

Figure 5.44 Three-ported
memory

5.5 Memory Arrays 265

RD2. Port 3 writes the data from the write data input WD3 into
address A3 on the rising edge of the clock if the write enable WE3 is
asserted.

Memory Types
Memory arrays are specified by their size (depth ×width) and the number
and type of ports. All memory arrays store data as an array of bit cells,
but they differ in how they store bits.

Memories are classified based on how they store bits in the bit cell.
The broadest classification is random access memory (RAM) versus read
only memory (ROM). RAM is volatile, meaning that it loses its data
when the power is turned off. ROM is nonvolatile, meaning that it retains
its data indefinitely, even without a power source.

RAM and ROM received their names for historical reasons that are
no longer very meaningful. RAM is called random access memory
because any data word is accessed with the same delay as any other. In
contrast, a sequential access memory, such as a tape recorder, accesses
nearby data more quickly than faraway data (e.g., at the other end of
the tape). ROM is called read only memory because, historically, it could
only be read but not written. These names are confusing, because ROMs
are randomly accessed too. Worse yet, most modern ROMs can be writ-
ten as well as read! The important distinction to remember is that RAMs
are volatile and ROMs are nonvolatile.

The two major types of RAMs are dynamic RAM (DRAM) and static
RAM (SRAM). Dynamic RAM stores data as a charge on a capacitor,
whereas static RAM stores data using a pair of cross-coupled inverters.
There are many flavors of ROMs that vary by how they are written
and erased. These various types of memories are discussed in the subse-
quent sections.

5 . 5 . 2 Dynamic Random Access Memory (DRAM)

Dynamic RAM (DRAM, pronounced “dee-ram”) stores a bit as the
presence or absence of charge on a capacitor. Figure 5.45 shows a DRAM
bit cell. The bit value is stored on a capacitor. The nMOS transistor
behaves as a switch that either connects or disconnects the capacitor from
the bitline. When the wordline is asserted, the nMOS transistor turns ON,
and the stored bit value transfers to or from the bitline.

As shown in Figure 5.46(a), when the capacitor is charged to VDD,
the stored bit is 1; when it is discharged to GND (Figure 5.46(b)), the
stored bit is 0. The capacitor node is dynamic because it is not actively
driven HIGH or LOW by a transistor tied to VDD or GND.

Upon a read, data values are transferred from the capacitor to the
bitline. Upon a write, data values are transferred from the bitline to

wordline

bitline

stored
bit

Figure 5.45 DRAM bit cell

Robert Dennard, 1932–.
Invented DRAM in 1966 at
IBM. Although many were
skeptical that the idea would
work, by the mid-1970s
DRAM was in virtually all
computers. He claims to have
done little creative work until,
arriving at IBM, they handed
him a patent notebook and
said, “put all your ideas in
there.” Since 1965, he has
received 35 patents in
semiconductors and micro-
electronics. (Photo courtesy
of IBM.)

266 CHAPTER FIVE Digital Building Blocks

the capacitor. Reading destroys the bit value stored on the capacitor, so
the data word must be restored (rewritten) after each read. Even when
DRAM is not read, the contents must be refreshed (read and rewritten)
every few milliseconds, because the charge on the capacitor gradually
leaks away.

5 . 5 . 3 Static Random Access Memory (SRAM)

Static RAM (SRAM, pronounced “es-ram”) is static because stored bits
do not need to be refreshed. Figure 5.47 shows an SRAM bit cell. The
data bit is stored on cross-coupled inverters like those described in Section
3.2. Each cell has two outputs, bitline and bitline: When the wordline is
asserted, both nMOS transistors turn on, and data values are transferred
to or from the bitlines. Unlike DRAM, if noise degrades the value of the
stored bit, the cross-coupled inverters restore the value.

5 . 5 . 4 Area and Delay

Flip-flops, SRAMs, and DRAMs are all volatile memories, but each has dif-
ferent area and delay characteristics. Table 5.4 shows a comparison of these
three types of volatile memory. The data bit stored in a flip-flop is available
immediately at its output. But flip-flops take at least 20 transistors to build.
Generally, the more transistors a device has, the more area, power, and cost
it requires. DRAM latency is longer than that of SRAM because its bitline is
not actively driven by a transistor. DRAM must wait for charge to move
(relatively) slowly from the capacitor to the bitline. DRAM also fundamen-
tally has lower throughput than SRAM, because it must refresh data

wordline

bitline

(a)

+ +stored
bit = 1

wordline

bitline

(b)

stored
bit = 0

Figure 5.46 DRAM stored values

stored
bit

wordline
bitline bitline

Figure 5.47 SRAM bit cell

Table 5.4 Memory comparison

Memory
Type

Transistors per
Bit Cell

Latency

flip-flop ~20 fast

SRAM 6 medium

DRAM 1 slow

5.5 Memory Arrays 267

periodically and after a read. DRAM technologies such as synchronous
DRAM (SDRAM) and double data rate (DDR) SDRAM have been devel-
oped to overcome this problem. SDRAM uses a clock to pipeline memory
accesses. DDR SDRAM, sometimes called simply DDR, uses both the rising
and falling edges of the clock to access data, thus doubling the throughput
for a given clock speed. DDR was first standardized in 2000 and ran at
100 to 200 MHz. Later standards, DDR2, DDR3, and DDR4, increased
the clock speeds, with speeds in 2015 being over 1 GHz.

Memory latency and throughput also depend on memory size; larger
memories tend to be slower than smaller ones if all else is the same. The
best memory type for a particular design depends on the speed, cost,
and power constraints.

5 . 5 . 5 Register Files

Digital systems often use a number of registers to store temporary vari-
ables. This group of registers, called a register file, is usually built as a
small, multiported SRAM array, because it is more compact than an array
of flip-flops.

Figure 5.48 shows a 16-register × 32-bit three-ported register file
built from a three-ported memory similar to that of Figure 5.44. The
register file has two read ports (A1/RD1 and A2/RD2) and one write
port (A3/WD3). The 4-bit addresses, A1, A2, and A3, can each access all
24= 16 registers. So, two registers can be read and one register written
simultaneously.

5 . 5 . 6 Read Only Memory

Read only memory (ROM) stores a bit as the presence or absence of a
transistor. Figure 5.49 shows a simple ROM bit cell. To read the cell,
the bitline is weakly pulled HIGH. Then the wordline is turned ON. If
the transistor is present, it pulls the bitline LOW. If it is absent, the bitline
remains HIGH. Note that the ROM bit cell is a combinational circuit and
has no state to “forget” if power is turned off.

The contents of a ROM can be indicated using dot notation. Figure 5.50
shows the dot notation for a 4-word× 3-bit ROM containing the
data from Figure 5.40. A dot at the intersection of a row (wordline)
and a column (bitline) indicates that the data bit is 1. For example, the top
wordline has a single dot on Data1, so the data word stored at Address
11 is 010.

Conceptually, ROMs can be built using two-level logic with a group
of AND gates followed by a group of OR gates. The AND gates produce
all possible minterms and hence form a decoder. Figure 5.51 shows
the ROM of Figure 5.50 built using a decoder and OR gates. Each
dotted row in Figure 5.50 is an input to an OR gate in Figure 5.51.

wordline

bitline

wordline

bitline

bit cell
containing 0

bit cell
containing 1

Figure 5.49 ROM bit cells
containing 0 and 1

4
4

4

32
32

32

A1

A3
WD3

RD2
RD1

WE3

A2

CLK

Register
File

Figure 5.48 16× 32 register
file with two read ports and one
write port

268 CHAPTER FIVE Digital Building Blocks

For data bits with a single dot, in this case Data0, no OR gate is needed.
This representation of a ROM is interesting because it shows how
the ROM can perform any two-level logic function. In practice,
ROMs are built from transistors instead of logic gates to reduce their
size and cost. Section 5.6.3 explores the transistor-level implementation
further.

The contents of the ROM bit cell in Figure 5.49 are specified during
manufacturing by the presence or absence of a transistor in each bit cell.
A programmable ROM (PROM, pronounced like the dance) places a
transistor in every bit cell but provides a way to connect or disconnect
the transistor to ground.

Figure 5.52 shows the bit cell for a fuse-programmable ROM. The
user programs the ROM by applying a high voltage to selectively blow

11

10

2:4
Decoder

01

00

Data2 Data1 Data 0

Address 2

Figure 5.51 4× 3 ROM implementation using gates

11

10

2:4
Decoder

Address

Data 0Data1Data 2

01

00

2

Figure 5.50 4× 3 ROM: dot
notation

wordline

bitline

bit cell containing 0

intact
fuse

wordline

bitline

bit cell containing 1

blown
fuse

Figure 5.52 Fuse-programmable
ROM bit cell

5.5 Memory Arrays 269

fuses. If the fuse is present, the transistor is connected to GND and the
cell holds a 0. If the fuse is destroyed, the transistor is disconnected
from ground and the cell holds a 1. This is also called a one-time
programmable ROM, because the fuse cannot be repaired once it is
blown.

Reprogrammable ROMs provide a reversible mechanism for con-
necting or disconnecting the transistor to GND. Erasable PROMs
(EPROMs, pronounced “e-proms”) replace the nMOS transistor and
fuse with a floating-gate transistor. The floating gate is not physically
attached to any other wires. When suitable high voltages are applied,
electrons tunnel through an insulator onto the floating gate, turning
on the transistor and connecting the bitline to the wordline (decoder
output). When the EPROM is exposed to intense ultraviolet (UV) light
for about half an hour, the electrons are knocked off the floating gate,
turning the transistor off. These actions are called programming and
erasing, respectively. Electrically erasable PROMs (EEPROMs, pro-
nounced “e-e-proms” or “double-e proms”) and Flash memory use
similar principles but include circuitry on the chip for erasing as well
as programming, so no UV light is necessary. EEPROM bit cells are
individually erasable; Flash memory erases larger blocks of bits and is
cheaper because fewer erasing circuits are needed. In 2015, Flash mem-
ory cost about $0.35 per GB, and the price continues to drop by 30 to
40% per year. Flash has become an extremely popular way to store large
amounts of data in portable battery-powered systems such as cameras and
music players.

In summary, modern ROMs are not really read only; they can be
programmed (written) as well. The difference between RAM and ROM
is that ROMs take a longer time to write but are nonvolatile.

5 . 5 . 7 Logic Using Memory Arrays

Although they are used primarily for data storage, memory arrays can
also perform combinational logic functions. For example, the Data2
output of the ROM in Figure 5.50 is the XOR of the two Address inputs.
Likewise Data0 is the NAND of the two inputs. A 2N-word ×M-bit mem-
ory can perform any combinational function of N inputs and M outputs.
For example, the ROM in Figure 5.50 performs three functions of two
inputs.

Memory arrays used to perform logic are called lookup tables
(LUTs). Figure 5.53 shows a 4-word × 1-bit memory array used as a
lookup table to perform the function Y=AB. Using memory to perform
logic, the user can look up the output value for a given input combination
(address). Each address corresponds to a row in the truth table, and each
data bit corresponds to an output value.

Fujio Masuoka, 1944–. Received a
Ph.D. in electrical engineering
from Tohoku University, Japan.
Developed memories and high-
speed circuits at Toshiba from
1971 to 1994. Invented Flash
memory as an unauthorized
project pursued during nights and
weekends in the late 1970s. Flash
received its name because the
process of erasing the memory
reminds one of the flash of a
camera. Toshiba was slow to
commercialize the idea; Intel was
first to market in 1988. Flash has
grown into a $25 billion per year
market. Dr.Masuoka later joined
the faculty at Tohoku University
and is working to develop a
3-dimensional transistor.

Flash memory drives with
Universal Serial Bus (USB)
connectors have replaced floppy
disks and CDs for sharing files
because Flash costs have
dropped so dramatically.

270 CHAPTER FIVE Digital Building Blocks

5 . 5 . 8 Memory HDL

HDL Example 5.6 describes a 2N-word ×M-bit RAM. The RAM has a
synchronous enabled write. In other words, writes occur on the rising
edge of the clock if the write enable we is asserted. Reads occur imme-
diately. When power is first applied, the contents of the RAM are
unpredictable.

HDL Example 5.7 describes a 4-word × 3-bit ROM. The contents of
the ROM are specified in the HDL case statement. A ROM as small as
this one may be synthesized into logic gates rather than an array. Note
that the seven-segment decoder from HDL Example 4.24 synthesizes into
a ROM in Figure 4.20.

5.6 LOGIC ARRAYS

Like memory, gates can be organized into regular arrays. If the connec-
tions are made programmable, these logic arrays can be configured to
perform any function without the user having to connect wires in specific
ways. The regular structure simplifies design. Logic arrays are mass pro-
duced in large quantities, so they are inexpensive. Software tools allow
users to map logic designs onto these arrays. Most logic arrays are also
reconfigurable, allowing designs to be modified without replacing the
hardware. Reconfigurability is valuable during development and is also
useful in the field, because a system can be upgraded by simply download-
ing the new configuration.

This section introduces two types of logic arrays: programmable logic
arrays (PLAs), and field programmable gate arrays (FPGAs). PLAs, the

stored
bit = 1

stored
bit = 0

00

01

2 : 4
Decoder

A

stored
bit = 0

bitline

stored
bit = 0

Y

B

10

11

4-word x 1-bit Array

A B Y
0 0
0 1
1 0
1 1

0
0
0
1

Truth
Table

A 1

A 0

Figure 5.53 4-word× 1-bit memory array used as a lookup table

Programmable ROMs can be
configured with a device
programmer like the one shown
below. The device programmer is
attached to a computer, which
specifies the type of ROM and the
data values to program. The
device programmer blows fuses or
injects charge onto a floating
gate on the ROM. Thus the
programming process is
sometimes called burning a ROM.

5.6 Logic Arrays 271

older technology, perform only combinational logic functions. FPGAs can
perform both combinational and sequential logic.

5 . 6 . 1 Programmable Logic Array

Programmable logic arrays (PLAs) implement two-level combinational
logic in sum-of-products (SOP) form. PLAs are built from an AND array
followed by an OR array, as shown in Figure 5.55. The inputs (in true
and complementary form) drive an AND array, which produces
implicants, which in turn are ORed together to form the outputs. An
M × N × P-bit PLA has M inputs, N implicants, and P outputs.

HDL Example 5.6 RAM

SystemVerilog

module ram #(parameter N = 6, M = 32)
(input logic clk,
input logic we,
input logic [N–1:0] adr,
input logic [M–1:0] din,
output logic [M–1:0] dout);

logic [M–1:0] mem [2**N–1:0];

always_ff @(posedge clk)
if (we) mem [adr] <= din;

assign dout = mem[adr];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD_UNSIGNED.ALL;

entity ram_array is
generic(N: integer := 6; M: integer := 32);
port(clk,

we: in STD_LOGIC;
adr: in STD_LOGIC_VECTOR(N–1 downto 0);
din: in STD_LOGIC_VECTOR(M–1 downto 0);
dout: out STD_LOGIC_VECTOR(M–1 downto 0));

end;

architecture synth of ram_array is
type mem_array is array ((2**N–1) downto 0)

of STD_LOGIC_VECTOR (M–1 downto 0);
signal mem: mem_array;

begin
process(clk) begin

if rising_edge(clk) then
if we then mem(TO_INTEGER(adr)) <= din;
end if;

end if;
end process;

dout <= mem(TO_INTEGER(adr));
end;

ram1

mem[31:0]

dout[31:0]
[31:0]

din[31:0]

adr[5:0]
we
clk

[5:0]
RADDR[5:0]

[31:0]
DATA[31:0]

DOUT[31:0] [5:0]
WADDR[5:0]
WE[0]
CLK

Figure 5.54 Synthesized ram

272 CHAPTER FIVE Digital Building Blocks

Figure 5.56 shows the dot notation for a 3 × 3 × 2-bit PLA perform-
ing the functions X=ABC+ABC and Y=AB. Each row in the AND
array forms an implicant. Dots in each row of the AND array indicate
which literals comprise the implicant. The AND array in Figure 5.56
forms three implicants: ABC, ABC, and AB. Dots in the OR array indi-
cate which implicants are part of the output function.

Figure 5.57 shows how PLAs can be built using two-level logic. An
alternative implementation is given in Section 5.6.3.

ROMs can be viewed as a special case of PLAs. A 2M-word ×N-bit
ROM is simply an M × 2M ×N-bit PLA. The decoder behaves as an
AND plane that produces all 2M minterms. The ROM array behaves
as an OR plane that produces the outputs. If the function does
not depend on all 2M minterms, a PLA is likely to be smaller than a
ROM. For example, an 8-word × 2-bit ROM is required to perform

HDL Example 5.7 ROM

SystemVerilog

module rom(input logic [1:0] adr,
output logic [2:0] dout):

always_comb
case(adr)

2'b00: dout = 3'b011;
2'b01: dout = 3'b110;
2'b10: dout = 3'b100;
2'b11: dout = 3'b010;

endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity rom is
port(adr: in STD_LOGIC_VECTOR(1 downto 0);

dout: out STD_LOGIC_VECTOR(2 downto 0));
end;

architecture synth of rom is
begin

process(all) begin
case adr is

when "00" => dout <= "011";
when "01" => dout <= "110";
when "10" => dout <= "100";
when "11" => dout <= "010";

end case;
end process;

end;

AND
Array

OR
Array

Inputs

Outputs

Implicants
N

M

P

Figure 5.55 M× N× P-bit PLA

5.6 Logic Arrays 273

the same functions performed by the 3 × 3 × 2-bit PLA shown in
Figures 5.56 and 5.57.

Simple programmable logic devices (SPLDs) are souped-up PLAs that
add registers and various other features to the basic AND/OR planes.
However, SPLDs and PLAs have largely been displaced by FPGAs, which
are more flexible and efficient for building large systems.

5 . 6 . 2 Field Programmable Gate Array

A field programmable gate array (FPGA) is an array of reconfigurable
gates. Using software programming tools, a user can implement designs
on the FPGA using either an HDL or a schematic. FPGAs are more

X Y

A B C

AND ARRAY

OR ARRAY

ABC

AB

ABC
Figure 5.57 3× 3× 2-bit PLA
using two-level logic

X Y

ABC

AB

ABC

A B C

AND Array

OR Array

Figure 5.56 3× 3× 2-bit PLA:
dot notation

274 CHAPTER FIVE Digital Building Blocks

powerful and more flexible than PLAs for several reasons. They can imple-
ment both combinational and sequential logic. They can also implement
multilevel logic functions, whereas PLAs can only implement two-level
logic. Modern FPGAs integrate other useful features such as built-in multi-
pliers, high-speed I/Os, data converters including analog-to-digital conver-
ters, large RAM arrays, and processors.

FPGAs are built as an array of configurable logic elements (LEs),
also referred to as configurable logic blocks (CLBs). Each LE can be con-
figured to perform combinational or sequential functions. Figure 5.58
shows a general block diagram of an FPGA. The LEs are surrounded
by input/output elements (IOEs) for interfacing with the outside world.
The IOEs connect LE inputs and outputs to pins on the chip package.
LEs can connect to other LEs and IOEs through programmable routing
channels.

Two of the leading FPGA manufacturers are Altera Corp. and
Xilinx, Inc. Figure 5.59 shows a single LE from Altera’s Cyclone IV
FPGA introduced in 2009. The key elements of the LE are a 4-input
lookup table (LUT) and a 1-bit register. The LE also contains con-
figurable multiplexers to route signals through the LE. The FPGA is con-
figured by specifying the contents of the lookup tables and the select
signals for the multiplexers.

FPGA

IOE IOE IOE IOE IOE IOE IOE

IOE IOE IOE IOE IOE IOE IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

LE LE LE LE

LE LE LE LE

LE LE LE LE

LE LE LE LE

Figure 5.58 General FPGA layout

FPGAs are the brains of many
consumer products, including
automobiles, medical
equipment, and media devices
like MP3 players. The
Mercedes Benz S-Class series,
for example, has over a dozen
Xilinx FPGAs or PLDs for uses
ranging from entertainment to
navigation to cruise control
systems. FPGAs allow for
quick time to market and
make debugging or adding
features late in the design
process easier.

5.6 Logic Arrays 275

The Cyclone IV LE has one 4-input LUT and one flip-flop. By loading
the appropriate values into the lookup table, the LUT can be configured to
perform any function of up to four variables. Configuring the FPGA also
involves choosing the select signals that determine how the multiplexers
route data through the LE and to neighboring LEs and IOEs. For example,
depending on the multiplexer configuration, the LUT may receive one of
its inputs from either data 3 or the output of the LE’s own register. The
other three inputs always come from data 1, data 2, and data 4. The data
1-4 inputs come from IOEs or the outputs of other LEs, depending on rout-
ing external to the LE. The LUT output either goes directly to the LE out-
put for combinational functions, or it can be fed through the flip-flop for
registered functions. The flip-flop input comes from its own LUT output,
the data 3 input, or the register output of the previous LE. Additional hard-
ware includes support for addition using the carry chain hardware, other
multiplexers for routing, and flip-flop enable and reset. Altera groups 16
LEs together to create a logic array block (LAB) and provides local con-
nections between LEs within the LAB.

In summary, the Cyclone IV LE can perform one combinational
and/or registered function which can involve up to four variables.
Other brands of FPGAs are organized somewhat differently, but the same

LE carry-out

LE carry-in

Look-Up
Table
(LUT)

Carry
Chain

Register chain
routing from
previous LE

LAB-wide
synchronous

load
LAB-wide

synchronous
clear

Register bypass

Programmable
register

Synchronous
Load and

Clear Logic
ENA

CLRN

Row,
column, and
direct link
routing

Row,
column, and
direct link
routing

Local
routing

Register
chain
output

O O

Register feedback

labclk 1

labclr 1

data 1
data 2
data 3

data 4

labclr 2

Chip-wide
reset

(DEV_CLRn)

Asynchronous
Clear Logic

Clock &
Clock Enable

Select

labclk 2

labclkena 1

labclkena 2

Figure 5.59 Cyclone IV Logic Element (LE)
(Reproduced with permission from the Altera Cyclone™ IV Handbook © 2010

Altera Corporation.)

276 CHAPTER FIVE Digital Building Blocks

general principles apply. For example, Xilinx’s 7-series FPGAs use 6-input
LUTs instead of 4-input LUTs.

The designer configures an FPGA by first creating a schematic or
HDL description of the design. The design is then synthesized onto
the FPGA. The synthesis tool determines how the LUTs, multiplexers,
and routing channels should be configured to perform the specified
functions. This configuration information is then downloaded to the
FPGA. Because Cyclone IV FPGAs store their configuration information
in SRAM, they are easily reprogrammed. The FPGA may download its
SRAM contents from a computer in the laboratory or from an EEPROM
chip when the system is turned on. Some manufacturers include an
EEPROM directly on the FPGA or use one-time programmable fuses to
configure the FPGA.

Example 5.5 FUNCTIONS BUILT USING LEs

Explain how to configure one or more Cyclone IV LEs to perform the following
functions: (a) X = ABC+ABC and Y = AB (b) Y= JKLMPQR; (c) a divide-by-3
counter with binary state encoding (see Figure 3.29(a)). You may show interconnec-
tion between LEs as needed.

Solution: (a) Configure two LEs. One LUT computesX and the other LUT computes
Y, as shown in Figure 5.60. For the first LE, inputs data 1, data 2, and data 3 areA, B,
and C, respectively (these connections are set by the routing channels). data 4 is a
don’t care but must be tied to something, so it is tied to 0. For the second LE, inputs
data 1 and data 2 areA and B; the other LUT inputs are don’t cares and are tied to 0.
Configure the final multiplexers to select the combinational outputs from the LUTs to
produce X and Y. In general, a single LE can compute any function of up to four
input variables in this fashion.

0
0
1
1
0
0
1
1

X
X
X
X
X
X
X
X

0
1
0
0

0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1

0
0
1
0

(A)
data 1

(B)
data 2 data 4

(C)
data 3

(X)
LUT output

0

A
BC

X

LUT

LE 1

LE 2

X
X
X
X

X
X
X
X

0
1
0
1

0
0
1
1

0
0
1
0

(A)
data 1

(B)
data 2 data 4data 3

(Y)
LUT output

data 1
data 2
data 3
data 4

0
0

A
B

Y

LUT

data 1
data 2
data 3
data 4

Figure 5.60 LE configuration
for two functions of up to four
inputs each

5.6 Logic Arrays 277

(b) Configure the LUT of the first LE to compute X= JKLM and the LUT on the
second LE to compute Y=XPQR. Configure the final multiplexers to select the
combinational outputs X and Y from each LE. This configuration is shown in
Figure 5.61. Routing channels between LEs, indicated by the dashed blue lines,
connect the output of LE 1 to the input of LE 2. In general, a group of LEs can
compute functions of N input variables in this manner.

(c) The FSM has two bits of state (S1:0) and one output (Y). The next state
depends on the two bits of current state. Use two LEs to compute the next state
from the current state, as shown in Figure 5.62. Use the two flip-flops, one from

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

(J)
data 1

(K)
data 2

(L)
data 3

(M)
data 4

(X)
LUT output

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

(P)
data 1

(Q)
data 2

(R)
data 3

(X)
data 4

(Y)
LUT output

M

J
KL X

LUT
LE 1

data 1
data 2
data 3
data 4

P
QR Y

LUT
LE 1

data 1
data 2
data 3
data 4

Figure 5.61 LE configuration for
one function of more than four
inputs

LUT output
1
0
0
0

data 2
X
X
X
X

data 1 data 4data 3
X
X
X
X

(S0) (S1) (S0′)

(S1) (S0) (S1′)

S1

S0

S1

S0′

S1′

LUT output
0
1
0
0

data 2data 1 data 4data 3

0
1
0
1

0
0
1
1

X
X
X
X

X
X
X
X

0
1
0
1

0
0
1
1

data 10
0 data 2

data 3
data 4

LUT

LE 1

clk

Reset

Y

data 10
0 data 2

data 3
data 4

LUT

LE 2

clk

ResetS0

Figure 5.62 LE configuration for
FSM with two bits of state

278 CHAPTER FIVE Digital Building Blocks

each LE, to hold this state. The flip-flops have a reset input that can be connected
to an external Reset signal. The registered outputs are fed back to the LUT inputs
using the multiplexer on data 3 and routing channels between LEs, as indicated by
the dashed blue lines. In general, another LE might be necessary to compute the
output Y. However, in this case Y= S′0, so Y can come from LE 1. Hence, the
entire FSM fits in two LEs. In general, an FSM requires at least one LE for each
bit of state, and it may require more LEs for the output or next state logic if they
are too complex to fit in a single LUT.

Example 5.6 LE DELAY

Alyssa P. Hacker is building a finite state machine that must run at 200 MHz. She
uses a Cyclone IV FPGA with the following specifications: tLE= 381 ps per LE,
tsetup = 76 ps, and tpcq = 199 ps for all flip-flops. The wiring delay between LEs
is 246 ps. Assume the hold time for the flip-flops is 0. What is the maximum num-
ber of LEs her design can use?

Solution: Alyssa uses Equation 3.13 to solve for the maximum propagation delay
of the logic: tpd ≤ Tc− (tpcq + tsetup).

Thus, tpd= 5 ns− (0.199 ns+ 0.076 ns), so tpd ≤ 4.725 ns. The delay of each LE
plus wiring delay between LEs, tLE+wire , is 381 ps+ 246 ps= 627 ps. The maxi-
mum number of LEs, N, is NtLE+wire≤ 4.725 ns. Thus, N= 7.

5 . 6 . 3 Array Implementations*

To minimize their size and cost, ROMs and PLAs commonly use pseudo-
nMOS or dynamic circuits (see Section 1.7.8) instead of conventional
logic gates.

Figure 5.63(a) shows the dot notation for a 4 × 3-bit ROM that
performs the following functions: X = A⊕B,Y = A+B, and Z = AB:
These are the same functions as those of Figure 5.50, with the address
inputs renamed A and B and the data outputs renamed X, Y, and Z.
The pseudo-nMOS implementation is given in Figure 5.63(b). Each deco-
der output is connected to the gates of the nMOS transistors in its row.
Remember that in pseudo-nMOS circuits, the weak pMOS transistor
pulls the output HIGH only if there is no path to GND through the pull-
down (nMOS) network.

Pull-down transistors are placed at every junction without a dot.
The dots from the dot notation diagram of Figure 5.63(a) are left visible
in Figure 5.63(b) for easy comparison. The weak pull-up transistors
pull the output HIGH for each wordline without a pull-down transistor.
For example, when AB = 11, the 11 wordline is HIGH and transistors
on X and Z turn on and pull those outputs LOW. The Y output has no

Many ROMs and PLAs use
dynamic circuits in place of
pseudo-nMOS circuits.
Dynamic gates turn the pMOS
transistor ON for only part of
the time, saving power when
the pMOS is OFF and the
result is not needed. Aside
from this, dynamic and
pseudo-nMOS memory arrays
are similar in design and
behavior.

5.6 Logic Arrays 279

transistor connecting to the 11 wordline, so Y is pulled HIGH by the
weak pull-up.

PLAs can also be built using pseudo-nMOS circuits, as shown in
Figure 5.64 for the PLA from Figure 5.56. Pull-down (nMOS) transis-
tors are placed on the complement of dotted literals in the AND array
and on dotted rows in the OR array. The columns in the OR array
are sent through an inverter before they are fed to the output bits.
Again, the blue dots from the dot notation diagram of Figure 5.56 are
left visible in Figure 5.64 for easy comparison.

X Y

ABC

AB

ABC

A B C

AND Array

OR Array

weak

weak

Figure 5.64 3× 3× 2-bit PLA
using pseudo-nMOS circuits

11

10

2:4
Decoder

01

00

A1

A0

X
(a)

A

B

Y Z

11

10

2:4
Decoder

01

00

A1

A0

A

B

weak

(b)
X Y Z

Figure 5.63 ROM implementation: (a) dot notation, (b) pseudo-nMOS circuit

280 CHAPTER FIVE Digital Building Blocks

5.7 SUMMARY

This chapter introduced digital building blocks used in many digital systems.
These blocks include arithmetic circuits such as adders, subtractors, com-
parators, shifters, multipliers, and dividers; sequential circuits such as coun-
ters and shift registers; and arrays for memory and logic. The chapter also
explored fixed-point and floating-point representations of fractional num-
bers. In Chapter 7, we use these building blocks to build a microprocessor.

Adders form the basis of most arithmetic circuits. A half adder adds
two 1-bit inputs, A and B, and produces a sum and a carry out. A full
adder extends the half adder to also accept a carry in. N full adders can
be cascaded to form a carry propagate adder (CPA) that adds two N-bit
numbers. This type of CPA is called a ripple-carry adder because the carry
ripples through each of the full adders. Faster CPAs can be constructed
using lookahead or prefix techniques.

A subtractor negates the second input and adds it to the first. A mag-
nitude comparator subtracts one number from another and determines
the relative value based on the sign of the result. A multiplier forms par-
tial products using AND gates, then sums these bits using full adders.
A divider repeatedly subtracts the divisor from the partial remainder
and checks the sign of the difference to determine the quotient bits.
A counter uses an adder and a register to increment a running count.

Fractional numbers are represented using fixed-point or floating-point
forms. Fixed-point numbers are analogous to decimals, and floating-point
numbers are analogous to scientific notation. Fixed-point numbers use
ordinary arithmetic circuits, whereas floating-point numbers require more
elaborate hardware to extract and process the sign, exponent, and mantissa.

Large memories are organized into arrays of words. The memories
have one or more ports to read and/or write the words. Volatile mem-
ories, such as SRAM and DRAM, lose their state when the power is
turned off. SRAM is faster than DRAM but requires more transistors.
A register file is a small multiported SRAM array. Nonvolatile memories,
called ROMs, retain their state indefinitely. Despite their names, most
modern ROMs can be written.

Arrays are also a regular way to build logic. Memory arrays can be
used as lookup tables to perform combinational functions. PLAs are com-
posed of dedicated connections between configurable AND and OR
arrays; they only implement combinational logic. FPGAs are composed
of many small lookup tables and registers; they implement combinational
and sequential logic. The lookup table contents and their interconnections
can be configured to perform any logic function. Modern FPGAs are easy
to reprogram and are large and cheap enough to build highly sophisti-
cated digital systems, so they are widely used in low- and medium-volume
commercial products as well as in education.

5.7 Summary 281

Exercises

Exercise 5.1 What is the delay for the following types of 64-bit adders? Assume
that each two-input gate delay is 150 ps and that a full adder delay is 450 ps.

(a) a ripple-carry adder

(b) a carry-lookahead adder with 4-bit blocks

(c) a prefix adder

Exercise 5.2 Design two adders: a 64-bit ripple-carry adder and a 64-bit carry-
lookahead adder with 4-bit blocks. Use only two-input gates. Each two-input gate
is 15 μm2, has a 50 ps delay, and has 20 fF of total gate capacitance. You may
assume that the static power is negligible.

(a) Compare the area, delay, and power of the adders (operating at 100 MHz
and 1.2 V).

(b) Discuss the trade-offs between power, area, and delay.

Exercise 5.3 Explain why a designer might choose to use a ripple-carry adder
instead of a carry-lookahead adder.

Exercise 5.4 Design the 16-bit prefix adder of Figure 5.7 in an HDL. Simulate and
test your module to prove that it functions correctly.

Exercise 5.5 The prefix network shown in Figure 5.7 uses black cells to compute
all of the prefixes. Some of the block propagate signals are not actually necessary.
Design a “gray cell” that receives G and P signals for bits i:k and k−1:j but
produces only Gi:j, not Pi:j. Redraw the prefix network, replacing black cells with
gray cells wherever possible.

Exercise 5.6 The prefix network shown in Figure 5.7 is not the only way to calculate
all of the prefixes in logarithmic time. The Kogge-Stone network is another common
prefix network that performs the same function using a different connection of black
cells. Research Kogge-Stone adders and draw a schematic similar to Figure 5.7
showing the connection of black cells in a Kogge-Stone adder.

Exercise 5.7 Recall that an N-input priority encoder has log2N outputs that
encodes which of the N inputs gets priority (see Exercise 2.36).

(a) Design an N-input priority encoder that has delay that increases logarithmi-
cally with N. Sketch your design and give the delay of the circuit in terms of
the delay of its circuit elements.

(b) Code your design in an HDL. Simulate and test your module to prove that it
functions correctly.

282 CHAPTER FIVE Digital Building Blocks

Exercise 5.8 Design the following comparators for 32-bit unsigned numbers.
Sketch the schematics.

(a) not equal

(b) greater than or equal to

(c) less than

Exercise 5.9 Consider the signed comparator of Figure 5.12.

(a) Give an example of two 4-bit signed numbers A and B for which a 4-bit signed
comparator correctly computes A<B.

(b) Give an example of two 4-bit signed numbers A and B for which a 4-bit signed
comparator incorrectly computes A<B.

(c) In general, when does the N-bit signed comparator operate incorrectly?

Exercise 5.10 Modify the N-bit signed comparator of Figure 5.12 to correctly
compute A<B for all N-bit signed inputs A and B.

Exercise 5.11 Design the 32-bit ALU shown in Figure 5.15 using your favorite
HDL. You can make the top-level module either behavioral or structural.

Exercise 5.12 Design the 32-bit ALU shown in Figure 5.17 using your favorite
HDL. You can make the top-level module either behavioral or structural.

Exercise 5.13 Write a testbench to test the 32-bit ALU from Exercise 5.11. Then
use it to test the ALU. Include any test vector files necessary. Be sure to test enough
corner cases to convince a reasonable skeptic that the ALU functions correctly.

Exercise 5.14 Repeat Exercise 5.13 for the ALU from Exercise 5.12.

Exercise 5.15 Build an Unsigned Comparison Unit that compares two unsigned
numbers A and B. The unit's input is the ALUFlags signal (N, Z, C, V) from the
ALU of Figure 5.16, with the ALU performing subtraction: A−B. The unit's
outputs are HS, LS, HI, and LO, which indicate that A is higher than or the same
as (HS), lower than or the same as (LS), higher (HI), or lower (LO) than B.

(a) Write minimal equations for HS, LS, HI, and LO in terms of N, Z, C, and V.

(b) Sketch circuits for HS, LS, HI, and LO.

Exercise 5.16 Build a Signed Comparison Unit that compares two signed numbers
A and B. The unit's input is the ALUFlags signal (N, Z, C, V) from the ALU of
Figure 5.16, with the ALU performing subtraction: A−B. The unit's outputs are
GE, LE, GT, and LT, which indicate that A is greater than or equal to (GE), less
than or equal to (LE), greater than (GT), or less than (LT) B.

Exercises 283

(a) Write minimal equations for GE, LE, GT, and LT in terms of N, Z, C,
and V.

(b) Sketch circuits for GE, LE, GT, and LT.

Exercise 5.17 Design a shifter that always shifts a 32-bit input left by 2 bits. The
input and output are both 32 bits. Explain the design in words and sketch a
schematic. Implement your design in your favorite HDL.

Exercise 5.18 Design 4-bit left and right rotators. Sketch a schematic of your
design. Implement your design in your favorite HDL.

Exercise 5.19 Design an 8-bit left shifter using only 24 2:1 multiplexers. The
shifter accepts an 8-bit input A and a 3-bit shift amount, shamt2:0. It produces an
8-bit output Y. Sketch the schematic.

Exercise 5.20 Explain how to build any N-bit shifter or rotator using only
Nlog2N 2:1 multiplexers.

Exercise 5.21 The funnel shifter in Figure 5.65 can perform any N-bit shift
or rotate operation. It shifts a 2N-bit input right by k bits. The output Y is
the N least significant bits of the result. The most significant N bits of the
input are called B and the least significant N bits are called C. By choosing
appropriate values of B, C, and k, the funnel shifter can perform any type of shift
or rotate. Explain what these values should be in terms of A, shamt, and N for

(a) logical right shift of A by shamt

(b) arithmetic right shift of A by shamt

(c) left shift of A by shamt

(d) right rotate of A by shamt

(e) left rotate of A by shamt

B C

kk + N – 1

0N – 12N – 1

Y

0N – 1

Figure 5.65 Funnel shifter

284 CHAPTER FIVE Digital Building Blocks

Exercise 5.22 Find the critical path for the 4 × 4 multiplier from Figure 5.20 in
terms of an AND gate delay (tAND) and an adder delay (tFA) What is the delay of
an N ×N multiplier built in the same way?

Exercise 5.23 Find the critical path for the 4 × 4 divider from Figure 5.21 in terms
of a 2:1 mux delay (tMUX), an adder delay (tFA), and an inverter delay (tINV). What
is the delay of an N ×N divider built in the same way?

Exercise 5.24 Design a multiplier that handles two’s complement numbers.

Exercise 5.25 A sign extension unit extends a two’s complement number from M
to N (N > M) bits by copying the most significant bit of the input into the upper
bits of the output (see Section 1.4.6). It receives an M-bit input A and produces
an N-bit output Y. Sketch a circuit for a sign extension unit with a 4-bit input and
an 8-bit output. Write the HDL for your design.

Exercise 5.26 A zero extension unit extends an unsigned number from M to N bits
(N > M) by putting zeros in the upper bits of the output. Sketch a circuit for a zero
extension unit with a 4-bit input and an 8-bit output. Write the HDL for your
design.

Exercise 5.27 Compute 111001.0002/001100.0002 in binary using the standard
division algorithm from elementary school. Show your work.

Exercise 5.28 What is the range of numbers that can be represented by the
following number systems?

(a) 24-bit unsigned fixed-point numbers with 12 integer bits and 12 fraction bits

(b) 24-bit sign and magnitude fixed-point numbers with 12 integer bits and
12 fraction bits

(c) 24-bit two’s complement fixed-point numbers with 12 integer bits and
12 fraction bits

Exercise 5.29 Express the following base 10 numbers in 16-bit fixed-point sign/
magnitude format with eight integer bits and eight fraction bits. Express your
answer in hexadecimal.

(a) −13.5625

(b) 42.3125

(c) −17.15625

Exercises 285

Exercise 5.30 Express the following base 10 numbers in 12-bit fixed-point sign/
magnitude format with six integer bits and six fraction bits. Express your answer
in hexadecimal.

(a) −30.5

(b) 16.25

(c) −8.078125

Exercise 5.31 Express the base 10 numbers in Exercise 5.29 in 16-bit fixed-point
two’s complement format with eight integer bits and eight fraction bits. Express
your answer in hexadecimal.

Exercise 5.32 Express the base 10 numbers in Exercise 5.30 in 12-bit fixed-point
two’s complement format with six integer bits and six fraction bits. Express your
answer in hexadecimal.

Exercise 5.33 Express the base 10 numbers in Exercise 5.29 in IEEE 754 single-
precision floating-point format. Express your answer in hexadecimal.

Exercise 5.34 Express the base 10 numbers in Exercise 5.30 in IEEE 754 single-
precision floating-point format. Express your answer in hexadecimal.

Exercise 5.35 Convert the following two’s complement binary fixed-point
numbers to base 10. The implied binary point is explicitly shown to aid in your
interpretation.

(a) 0101.1000

(b) 1111.1111

(c) 1000.0000

Exercise 5.36 Repeat Exercise 5.35 for the following two’s complement binary
fixed-point numbers.

(a) 011101.10101

(b) 100110.11010

(c) 101000.00100

Exercise 5.37 When adding two floating-point numbers, the number with the
smaller exponent is shifted. Why is this? Explain in words and give an example to
justify your explanation.

286 CHAPTER FIVE Digital Building Blocks

Exercise 5.38 Add the following IEEE 754 single-precision floating-point numbers.

(a) C0123456+ 81C564B7

(b) D0B10301+D1B43203

(c) 5EF10324+ 5E039020

Exercise 5.39 Add the following IEEE 754 single-precision floating-point numbers.

(a) C0D20004+ 72407020

(b) C0D20004+ 40DC0004

(c) (5FBE4000 + 3FF80000)+DFDE4000
(Why is the result counterintuitive? Explain.)

Exercise 5.40 Expand the steps in section 5.3.2 for performing floating-point
addition to work for negative as well as positive floating-point numbers.

Exercise 5.41 Consider IEEE 754 single-precision floating-point numbers.

(a) How many numbers can be represented by IEEE 754 single-precision floating-
point format? You need not count ±∞ or NaN.

(b) How many additional numbers could be represented if ±∞ and NaN were
not represented?

(c) Explain why ±∞ and NaN are given special representations.

Exercise 5.42 Consider the following decimal numbers: 245 and 0.0625.

(a) Write the two numbers using single-precision floating-point notation. Give
your answers in hexadecimal.

(b) Perform a magnitude comparison of the two 32-bit numbers from part (a). In
other words, interpret the two 32-bit numbers as two’s complement numbers
and compare them. Does the integer comparison give the correct result?

(c) You decide to come up with a new single-precision floating-point notation.
Everything is the same as the IEEE 754 single-precision floating-point stan-
dard, except that you represent the exponent using two’s complement instead
of a bias. Write the two numbers using your new standard. Give your
answers in hexadecimal.

(e) Does integer comparison work with your new floating-point notation from
part (d)?

(f) Why is it convenient for integer comparison to work with floating-point
numbers?

Exercises 287

Exercise 5.43 Design a single-precision floating-point adder using your favorite
HDL. Before coding the design in an HDL, sketch a schematic of your design.
Simulate and test your adder to prove to a skeptic that it functions correctly. You
may consider positive numbers only and use round toward zero (truncate). You
may also ignore the special cases given in Table 5.2.

Exercise 5.44 In this problem, you will explore the design of a 32-bit floating-point
multiplier. The multiplier has two 32-bit floating-point inputs and produces a 32-bit
floating-point output. You may consider positive numbers only and use round
toward zero (truncate). You may also ignore the special cases given in Table 5.2.

(a) Write the steps necessary to perform 32-bit floating-point multiplication.

(b) Sketch the schematic of a 32-bit floating-point multiplier.

(c) Design a 32-bit floating-point multiplier in an HDL. Simulate and test your
multiplier to prove to a skeptic that it functions correctly.

Exercise 5.45 In this problem, you will explore the design of a 32-bit prefix adder.

(a) Sketch a schematic of your design.

(b) Design the 32-bit prefix adder in an HDL. Simulate and test your adder to
prove that it functions correctly.

(c) What is the delay of your 32-bit prefix adder from part (a)? Assume that each
two-input gate delay is 100 ps.

(d) Design a pipelined version of the 32-bit prefix adder. Sketch the schematic of
your design. How fast can your pipelined prefix adder run? You may assume
a sequencing overhead (tpcq + tsetup) of 80 ps. Make the design run as fast as
possible.

(e) Design the pipelined 32-bit prefix adder in an HDL.

Exercise 5.46 An incrementer adds 1 to an N-bit number. Build an 8-bit
incrementer using half adders.

Exercise 5.47 Build a 32-bit synchronous Up/Down counter. The inputs are Reset
and Up. When Reset is 1, the outputs are all 0. Otherwise, when Up= 1, the
circuit counts up, and when Up= 0, the circuit counts down.

Exercise 5.48 Design a 32-bit counter that adds 4 at each clock edge. The counter
has reset and clock inputs. Upon reset, the counter output is all 0.

Exercise 5.49 Modify the counter from Exercise 5.48 such that the counter will
either increment by 4 or load a new 32-bit value, D, on each clock edge, depending
on a control signal Load. When Load= 1, the counter loads the new value D.

288 CHAPTER FIVE Digital Building Blocks

Exercise 5.50 An N-bit Johnson counter consists of an N-bit shift register with a
reset signal. The output of the shift register (Sout) is inverted and fed back to the
input (Sin). When the counter is reset, all of the bits are cleared to 0.

(a) Show the sequence of outputs, Q3:0, produced by a 4-bit Johnson counter
starting immediately after the counter is reset.

(b) How many cycles elapse until an N-bit Johnson counter repeats its sequence?
Explain.

(c) Design a decimal counter using a 5-bit Johnson counter, ten AND gates, and
inverters. The decimal counter has a clock, a reset, and ten one-hot outputs
Y9:0. When the counter is reset, Y0 is asserted. On each subsequent cycle, the
next output should be asserted. After ten cycles, the counter should repeat.
Sketch a schematic of the decimal counter.

(d) What advantages might a Johnson counter have over a conventional counter?

Exercise 5.51 Write the HDL for a 4-bit scannable flip-flop like the one shown in
Figure 5.38. Simulate and test your HDL module to prove that it functions
correctly.

Exercise 5.52 The English language has a good deal of redundancy that allows us
to reconstruct garbled transmissions. Binary data can also be transmitted in
redundant form to allow error correction. For example, the number 0 could be
coded as 00000 and the number 1 could be coded as 11111. The value could then
be sent over a noisy channel that might flip up to two of the bits. The receiver
could reconstruct the original data because a 0 will have at least three of the five
received bits as 0’s; similarly a 1 will have at least three 1’s.

(a) Propose an encoding to send 00, 01, 10, or 11 encoded using five bits of
information such that all errors that corrupt one bit of the encoded data can
be corrected. Hint: the encodings 00000 and 11111 for 00 and 11, respec-
tively, will not work.

(b) Design a circuit that receives your five-bit encoded data and decodes it to
00, 01, 10, or 11, even if one bit of the transmitted data has been
changed.

(c) Suppose you wanted to change to an alternative 5-bit encoding. How might
you implement your design to make it easy to change the encoding without
having to use different hardware?

Exercise 5.53 Flash EEPROM, simply called Flash memory, is a fairly recent
invention that has revolutionized consumer electronics. Research and explain how
Flash memory works. Use a diagram illustrating the floating gate. Describe how a
bit in the memory is programmed. Properly cite your sources.

Exercises 289

Exercise 5.54 The extraterrestrial life project team has just discovered aliens living
on the bottom of Mono Lake. They need to construct a circuit to classify the aliens
by potential planet of origin based on measured features available from the NASA
probe: greenness, brownness, sliminess, and ugliness. Careful consultation with
xenobiologists leads to the following conclusions:

• If the alien is green and slimy or ugly, brown, and slimy, it might be from
Mars.

• If the critter is ugly, brown, and slimy, or green and neither ugly nor slimy, it
might be from Venus.

• If the beastie is brown and neither ugly nor slimy or is green and slimy, it
might be from Jupiter.

Note that this is an inexact science; for example, a life form which is mottled green
and brown and is slimy but not ugly might be from either Mars or Jupiter.

(a) Program a 4 × 4 × 3 PLA to identify the alien. You may use dot notation.

(b) Program a 16 × 3 ROM to identify the alien. You may use dot notation.

(c) Implement your design in an HDL.

Exercise 5.55 Implement the following functions using a single 16 × 3 ROM. Use
dot notation to indicate the ROM contents.

(a) X = AB+BCD+AB

(b) Y = AB+BD

(c) Z = A+B+C+D

Exercise 5.56 Implement the functions from Exercise 5.55 using a 4 × 8 × 3 PLA.
You may use dot notation.

Exercise 5.57 Specify the size of a ROM that you could use to program each of
the following combinational circuits. Is using a ROM to implement these
functions a good design choice? Explain why or why not.

(a) a 16-bit adder/subtractor with Cin and Cout

(b) an 8 × 8 multiplier

(c) a 16-bit priority encoder (see Exercise 2.36)

Exercise 5.58 Consider the ROM circuits in Figure 5.66. For each row, can the
circuit in column I be replaced by an equivalent circuit in column II by proper
programming of the latter’s ROM?

290 CHAPTER FIVE Digital Building Blocks

Exercise 5.59 How many Cyclone IV FPGA LEs are required to perform each of the
following functions? Showhow to configure one ormore LEs to perform the function.
You should be able to do this by inspection, without performing logic synthesis.

(a) the combinational function from Exercise 2.13(c)

(b) the combinational function from Exercise 2.17(c)

(c) the two-output function from Exercise 2.24

(d) the function from Exercise 2.35

(e) a four-input priority encoder (see Exercise 2.36)

Exercise 5.60 Repeat Exercise 5.59 for the following functions.

(a) an eight-input priority encoder (see Exercise 2.36)

(b) a 3:8 decoder

(c) a 4-bit carry propagate adder (with no carry in or out)

K+1

I

A RD

ROM

CLK

NN

K

In

A RD

ROM

NN
A RD

ROM

N

A RD

ROM

K+1

CLK

K

OutA RD

ROM

K+1 K+1

CLK

K

In A RD

ROM

K +1 K+1
Out

CLK

K

In A RD

ROM

K+1 K+N N
A RD

ROM

N
Out

CLK

K

In A RD

ROM

K+1 K+N N
Out

CLK

N

In A RD

ROM

N+1 N N
A RD

ROM

N
Out

CLK

N

In A RD

ROM

N+1 N N
Out

II

(a)

(b)

(c)

(d)

Figure 5.66 ROM circuits

Exercises 291

(d) the FSM from Exercise 3.22

(e) the Gray code counter from Exercise 3.27

Exercise 5.61 Consider the Cyclone IV LE shown in Figure 5.59. According to the
datasheet, it has the timing specifications given in Table 5.5.

(a) What is the minimum number of Cyclone IV LEs required to implement the
FSM of Figure 3.26?

(b) Without clock skew, what is the fastest clock frequency at which this FSM
will run reliably?

(c) With 3 ns of clock skew, what is the fastest frequency at which the FSM will
run reliably?

Exercise 5.62 Repeat Exercise 5.61 for the FSM of Figure 3.31(b).

Exercise 5.63 You would like to use an FPGA to implement an M&M sorter with
a color sensor and motors to put red candy in one jar and green candy in another.
The design is to be implemented as an FSM using a Cyclone IV FPGA. According
to the data sheet, the FPGA has timing characteristics shown in Table 5.5. You
would like your FSM to run at 100 MHz. What is the maximum number of LEs
on the critical path? What is the fastest speed at which the FSM will run?

Table 5.5 Cyclone IV timing

Name Value (ps)

tpcq, tccq 199

tsetup 76

thold 0

tpd (per LE) 381

twire (between LEs) 246

tskew 0

292 CHAPTER FIVE Digital Building Blocks

Interview Questions

The following exercises present questions that have been asked at interviews for
digital design jobs.

Question 5.1 What is the largest possible result of multiplying two unsigned N-bit
numbers?

Question 5.2 Binary coded decimal (BCD) representation uses four bits to encode
each decimal digit. For example, 4210 is represented as 01000010BCD· Explain in
words why processors might use BCD representation.

Question 5.3 Design hardware to add two 8-bit unsigned BCD numbers (see
Question 5.2). Sketch a schematic for your design, and write an HDL module for
the BCD adder. The inputs are A, B, and Cin, and the outputs are S and Cout. Cin

and Cout are 1-bit carries and A, B, and S are 8-bit BCD numbers.

Interview Questions 293

	Outline placeholder
	5.1 Introduction
	5.2 Arithmetic Circuits
	5.2.1 Addition
	Half Adder
	Full Adder
	Carry Propagate Adder
	Ripple-Carry Adder
	Carry-Lookahead Adder
	Prefix Adder*
	Putting It All Together

	5.2.2 Subtraction
	5.2.3 Comparators
	5.2.4 ALU
	5.2.5 Shifters and Rotators
	5.2.6 Multiplication*
	5.2.7 Division*
	5.2.8 Further Reading

	5.3 Number Systems
	5.3.1 Fixed-Point Number Systems
	5.3.2 Floating-Point Number Systems*
	Special Cases: 0, ±∞, and NaN
	Single- and Double-Precision Formats
	Rounding
	Floating-Point Addition

	5.4 Sequential Building Blocks
	5.4.1 Counters
	5.4.2 Shift Registers
	Scan Chains*

	5.5 Memory Arrays
	5.5.1 Overview
	Bit Cells
	Organization
	Memory Ports
	Memory Types

	5.5.2 Dynamic Random Access Memory (DRAM)
	5.5.3 Static Random Access Memory (SRAM)
	5.5.4 Area and Delay
	5.5.5 Register Files
	5.5.6 Read Only Memory
	5.5.7 Logic Using Memory Arrays
	5.5.8 Memory HDL

	5.6 Logic Arrays
	5.6.1 Programmable Logic Array
	5.6.2 Field Programmable Gate Array
	5.6.3 Array Implementations*

	5.7 Summary
	Exercises
	Interview Questions

