


3Sequential Logic Design

3.1 INTRODUCTION

In the last chapter, we showed how to analyze and design combinational
logic. The output of combinational logic depends only on current input
values. Given a specification in the form of a truth table or Boolean equa-
tion, we can create an optimized circuit to meet the specification.

In this chapter, we will analyze and design sequential logic. The out-
puts of sequential logic depend on both current and prior input values.
Hence, sequential logic has memory. Sequential logic might explicitly
remember certain previous inputs, or it might distill the prior inputs into
a smaller amount of information called the state of the system. The state
of a digital sequential circuit is a set of bits called state variables that con-
tain all the information about the past necessary to explain the future
behavior of the circuit.

The chapter begins by studying latches and flip-flops, which are sim-
ple sequential circuits that store one bit of state. In general, sequential cir-
cuits are complicated to analyze. To simplify design, we discipline
ourselves to build only synchronous sequential circuits consisting of com-
binational logic and banks of flip-flops containing the state of the circuit.
The chapter describes finite state machines, which are an easy way to
design sequential circuits. Finally, we analyze the speed of sequential cir-
cuits and discuss parallelism as a way to increase speed.

3.2 LATCHES AND FLIP-FLOPS

The fundamental building block of memory is a bistable element, an ele-
ment with two stable states. Figure 3.1(a) shows a simple bistable element
consisting of a pair of inverters connected in a loop. Figure 3.1(b) shows
the same circuit redrawn to emphasize the symmetry. The inverters are
cross-coupled, meaning that the input of I1 is the output of I2 and vice
versa. The circuit has no inputs, but it does have two outputs, Q and Q:
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Analyzing this circuit is different from analyzing a combinational circuit
because it is cyclic: Q depends on Q, and Q depends on Q.

Consider the two cases, Q is 0 or Q is 1. Working through the con-
sequences of each case, we have:

▶ Case I: Q= 0
As shown in Figure 3.2(a), I2 receives a FALSE input,Q, so it produces
a TRUE output on Q: I1 receives a TRUE input, Q, so it produces a
FALSE output on Q. This is consistent with the original assumption
that Q= 0, so the case is said to be stable.

▶ Case II: Q= 1
As shown in Figure 3.2(b), I2 receives a TRUE input and produces a
FALSE output on Q: I1 receives a FALSE input and produces a TRUE
output on Q. This is again stable.

Because the cross-coupled inverters have two stable states, Q= 0 and
Q= 1, the circuit is said to be bistable. A subtle point is that the circuit
has a third possible state with both outputs approximately halfway
between 0 and 1. This is called a metastable state and will be discussed
in Section 3.5.4.

An element withN stable states conveys log2N bits of information, so a
bistable element stores one bit. The state of the cross-coupled inverters is
contained in one binary state variable,Q. The value ofQ tells us everything
about the past that is necessary to explain the future behavior of the circuit.
Specifically, if Q= 0, it will remain 0 forever, and if Q= 1, it will remain 1
forever. The circuit does have another node, Q, but Q does not contain
any additional information because if Q is known, Q is also known. On
the other hand, Q is also an acceptable choice for the state variable.

(b)
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I2 I1
Figure 3.1 Cross-coupled
inverter pair

Just as Y is commonly used for
the output of combinational
logic, Q is commonly used for
the output of sequential logic.
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Figure 3.2 Bistable operation of
cross-coupled inverters
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When power is first applied to a sequential circuit, the initial state is
unknown and usually unpredictable. It may differ each time the circuit is
turned on.

Although the cross-coupled inverters can store a bit of information,
they are not practical because the user has no inputs to control the state.
However, other bistable elements, such as latches and flip-flops, provide
inputs to control the value of the state variable. The remainder of this sec-
tion considers these circuits.

3 . 2 . 1 SR Latch

One of the simplest sequential circuits is the SR latch, which is
composed of two cross-coupled NOR gates, as shown in Figure 3.3.
The latch has two inputs, S and R, and two outputs, Q and Q:
The SR latch is similar to the cross-coupled inverters, but its state
can be controlled through the S and R inputs, which set and reset the
output Q.

A good way to understand an unfamiliar circuit is to work out its
truth table, so that is where we begin. Recall that a NOR gate produces
a FALSE output when either input is TRUE. Consider the four possible
combinations of R and S.

▶ Case I: R = 1, S= 0
N1 sees at least one TRUE input, R, so it produces a FALSE output
on Q. N2 sees both Q and S FALSE, so it produces a TRUE
output on Q:

▶ Case II: R = 0, S= 1
N1 receives inputs of 0 and Q: Because we don’t yet know Q, we
can’t determine the output Q. N2 receives at least one TRUE input,
S, so it produces a FALSE output on Q: Now we can revisit N1,
knowing that both inputs are FALSE, so the output Q is TRUE.

▶ Case III: R = 1, S= 1
N1 and N2 both see at least one TRUE input (R or S), so each pro-
duces a FALSE output. Hence Q and Q are both FALSE.

▶ Case IV: R= 0, S= 0
N1 receives inputs of 0 andQ: Because we don’t yet knowQ, we can’t
determine the output. N2 receives inputs of 0 andQ. Because we don’t
yet knowQ, we can’t determine the output. Now we are stuck. This is
reminiscent of the cross-coupled inverters. But we know that Q must
either be 0 or 1. So we can solve the problem by checking what
happens in each of these subcases.

R

S

QN1

N2 Q

Figure 3.3 SR latch schematic
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▶ Case IVa: Q= 0
Because S and Q are FALSE, N2 produces a TRUE output on Q,
as shown in Figure 3.4(a). Now N1 receives one TRUE input, Q,
so its output, Q, is FALSE, just as we had assumed.

▶ Case IVb: Q= 1
Because Q is TRUE, N2 produces a FALSE output on Q, as
shown in Figure 3.4(b). Now N1 receives two FALSE inputs, R
and Q, so its output, Q, is TRUE, just as we had assumed.

Putting this all together, suppose Q has some known prior value,
which we will call Qprev, before we enter Case IV. Qprev is either 0
or 1, and represents the state of the system. When R and S are 0, Q
will remember this old value, Qprev, and Q will be its complement,
Q

prev
: This circuit has memory.

The truth table in Figure 3.5 summarizes these four cases. The
inputs S and R stand for Set and Reset. To set a bit means to make it
TRUE. To reset a bit means to make it FALSE. The outputs, Q and
Q, are normally complementary. When R is asserted, Q is reset to 0
and Q does the opposite. When S is asserted, Q is set to 1 and Q does
the opposite. When neither input is asserted, Q remembers its old value,
Qprev. Asserting both S and R simultaneously doesn’t make much sense
because it means the latch should be set and reset at the same time,
which is impossible. The poor confused circuit responds by making
both outputs 0.

The SR latch is represented by the symbol in Figure 3.6. Using the
symbol is an application of abstraction and modularity. There are various
ways to build an SR latch, such as using different logic gates or transis-
tors. Nevertheless, any circuit element with the relationship specified by
the truth table in Figure 3.5 and the symbol in Figure 3.6 is called an
SR latch.

Like the cross-coupled inverters, the SR latch is a bistable element
with one bit of state stored in Q. However, the state can be controlled
through the S and R inputs. When R is asserted, the state is reset to 0.
When S is asserted, the state is set to 1. When neither is asserted, the state
retains its old value. Notice that the entire history of inputs can be
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Figure 3.4 Bistable states of SR
latch
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Figure 3.5 SR latch truth table

S

R Q

Q

Figure 3.6 SR latch symbol
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accounted for by the single state variable Q. No matter what pattern of
setting and resetting occurred in the past, all that is needed to predict
the future behavior of the SR latch is whether it was most recently set
or reset.

3 . 2 . 2 D Latch

The SR latch is awkward because it behaves strangely when both S and
R are simultaneously asserted. Moreover, the S and R inputs conflate
the issues of what and when. Asserting one of the inputs determines
not only what the state should be but also when it should change.
Designing circuits becomes easier when these questions of what and
when are separated. The D latch in Figure 3.7(a) solves these problems.
It has two inputs. The data input, D, controls what the next state
should be. The clock input, CLK, controls when the state should
change.

Again, we analyze the latch by writing the truth table, given in Figure
3.7(b). For convenience, we first consider the internal nodesD, S, and R. If
CLK= 0, both S and R are FALSE, regardless of the value of D. If CLK =
1, one AND gate will produce TRUE and the other FALSE, depending on
the value of D. Given S and R, Q and Q are determined using Figure 3.5.
Observe that when CLK= 0, Q remembers its old value, Qprev. When
CLK= 1, Q=D. In all cases, Q is the complement of Q, as would seem
logical. The D latch avoids the strange case of simultaneously asserted
R and S inputs.

Putting it all together, we see that the clock controls when data
flows through the latch. When CLK = 1, the latch is transparent. The
data at D flows through to Q as if the latch were just a buffer. When
CLK = 0, the latch is opaque. It blocks the new data from flowing
through to Q, and Q retains the old value. Hence, the D latch is some-
times called a transparent latch or a level-sensitive latch. The D latch
symbol is given in Figure 3.7(c).

The D latch updates its state continuously while CLK= 1. We shall
see later in this chapter that it is useful to update the state only at a spe-
cific instant in time. The D flip-flop described in the next section does
just that.
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R Q Q 
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S R Q 
0 0 Q prev 
0 1 0 
1 0 1 
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CLK D 
0 X 
1 0 
1 1 
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X 
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(b) 

Q prev 

Q

Figure 3.7 D latch: (a) schematic, (b) truth table, (c) symbol

Some people call a latch open
or closed rather than
transparent or opaque.
However, we think those
terms are ambiguous—does
open mean transparent like an
open door, or opaque, like an
open circuit?
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3 . 2 . 3 D FIip-Flop

A D flip-flop can be built from two back-to-back D latches controlled by
complementary clocks, as shown in Figure 3.8(a). The first latch, L1, is
called the master. The second latch, L2, is called the slave. The node
between them is named N1. A symbol for the D flip-flop is given in Figure
3.8(b). When the Q output is not needed, the symbol is often condensed
as in Figure 3.8(c).

When CLK= 0, the master latch is transparent and the slave is opa-
que. Therefore, whatever value was at D propagates through to N1.
When CLK = 1, the master goes opaque and the slave becomes transpar-
ent. The value at N1 propagates through to Q, but N1 is cut off from D.
Hence, whatever value was at D immediately before the clock rises from 0
to 1 gets copied to Q immediately after the clock rises. At all other times,
Q retains its old value, because there is always an opaque latch blocking
the path between D and Q.

In other words, a D flip-flop copies D to Q on the rising edge of the
clock, and remembers its state at all other times. Reread this definition
until you have it memorized; one of the most common problems for
beginning digital designers is to forget what a flip-flop does. The rising
edge of the clock is often just called the clock edge for brevity. The D
input specifies what the new state will be. The clock edge indicates when
the state should be updated.

A D flip-flop is also known as amaster-slave flip-flop, an edge-triggered
flip-flop, or a positive edge-triggered flip-flop. The triangle in the symbols
denotes an edge-triggered clock input. The Q output is often omitted when
it is not needed.

Example 3.1 FLIP-FLOP TRANSISTOR COUNT

How many transistors are needed to build the D flip-flop described in this section?

Solution: A NAND or NOR gate uses four transistors. A NOT gate uses two
transistors. An AND gate is built from a NAND and a NOT, so it uses six tran-
sistors. The SR latch uses two NOR gates, or eight transistors. The D latch uses
an SR latch, two AND gates, and a NOT gate, or 22 transistors. The D flip-flop
uses two D latches and a NOT gate, or 46 transistors. Section 3.2.7 describes a
more efficient CMOS implementation using transmission gates.

3 . 2 . 4 Register

An N-bit register is a bank of N flip-flops that share a common CLK
input, so that all bits of the register are updated at the same time. Regis-
ters are the key building block of most sequential circuits. Figure 3.9

The precise distinction between
flip-flops and latches is
somewhat muddled and has
evolved over time. In common
industry usage, a flip-flop is
edge-triggered. In other words,
it is a bistable element with a
clock input. The state of the
flip-flop changes only in
response to a clock edge, such
as when the clock rises from
0 to 1. Bistable elements
without an edge-triggered
clock are commonly called
latches.

The term flip-flop or latch
by itself usually refers to a
D flip-flop or D latch,
respectively, because these are
the types most commonly used
in practice.

(a)

CLK

D Q

CLK

D Q QD N1

CLK

L1 L2
master slave

(b)

D Q

(c)

QQQ

Q

Figure 3.8 D flip-flop:
(a) schematic, (b) symbol,
(c) condensed symbol
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shows the schematic and symbol for a four-bit register with inputs D3:0

and outputs Q3:0. D3:0 and Q3:0 are both 4-bit busses.

3 . 2 . 5 Enabled Flip-Flop

An enabled flip-flop adds another input called EN or ENABLE to deter-
mine whether data is loaded on the clock edge. When EN is TRUE, the
enabled flip-flop behaves like an ordinary D flip-flop. When EN is
FALSE, the enabled flip-flop ignores the clock and retains its state.
Enabled flip-flops are useful when we wish to load a new value into a
flip-flop only some of the time, rather than on every clock edge.

Figure 3.10 shows two ways to construct an enabled flip-flop from a
D flip-flop and an extra gate. In Figure 3.10(a), an input multiplexer
chooses whether to pass the value at D, if EN is TRUE, or to recycle
the old state from Q, if EN is FALSE. In Figure 3.10(b), the clock is gated.
If EN is TRUE, the CLK input to the flip-flop toggles normally. If EN is

CLK

D Q

D Q

D Q

D Q

D3

D2

D1

D0

Q3

Q2

Q1

Q0

(a)

D3:0 Q3:0
4 4

CLK

(b)

Figure 3.9 A 4-bit register:
(a) schematic and (b) symbol
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D Q
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D Q D Q

EN

(c)(a)

D Q

CLKEN

D
Q

0

1

Figure 3.10 Enabled flip-flop:
(a, b) schematics, (c) symbol
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FALSE, the CLK input is also FALSE and the flip-flop retains its old
value. Notice that EN must not change while CLK = 1, lest the flip-flop
see a clock glitch (switch at an incorrect time). Generally, performing
logic on the clock is a bad idea. Clock gating delays the clock and can
cause timing errors, as we will see in Section 3.5.3, so do it only if you
are sure you know what you are doing. The symbol for an enabled flip-
flop is given in Figure 3.10(c).

3 . 2 . 6 Resettable Flip-Flop

A resettable flip-flop adds another input called RESET. When RESET is
FALSE, the resettable flip-flop behaves like an ordinary D flip-flop.
When RESET is TRUE, the resettable flip-flop ignores D and resets
the output to 0. Resettable flip-flops are useful when we want to force
a known state (i.e., 0) into all the flip-flops in a system when we first
turn it on.

Such flip-flops may be synchronously or asynchronously resettable.
Synchronously resettable flip-flops reset themselves only on the rising
edge of CLK. Asynchronously resettable flip-flops reset themselves as
soon as RESET becomes TRUE, independent of CLK.

Figure 3.11(a) shows how to construct a synchronously resettable
flip-flop from an ordinary D flip-flop and an AND gate. When
RESET is FALSE, the AND gate forces a 0 into the input of the flip-
flop. When RESET is TRUE, the AND gate passes D to the flip-flop.
In this example, RESET is an active low signal, meaning that the reset
signal performs its function when it is 0, not 1. By adding an inverter,
the circuit could have accepted an active high reset signal instead.
Figures 3.11(b) and 3.11(c) show symbols for the resettable flip-flop
with active high reset.

Asynchronously resettable flip-flops require modifying the internal
structure of the flip-flop and are left to you to design in Exercise 3.13;
however, they are frequently available to the designer as a standard
component.

As you might imagine, settable flip-flops are also occasionally used.
They load a 1 into the flip-flop when SET is asserted, and they too come
in synchronous and asynchronous flavors. Resettable and settable flip-
flops may also have an enable input and may be grouped into N-bit
registers.

3 . 2 . 7 Transistor-Level Latch and Flip-Flop Designs*

Example 3.1 showed that latches and flip-flops require a large number of
transistors when built from logic gates. But the fundamental role of a
latch is to be transparent or opaque, much like a switch. Recall from

(a)

D Q

CLK

D QRESET

D Q

RESET

(b) (c)

r

Figure 3.11 Synchronously
resettable flip-flop:
(a) schematic, (b, c) symbols
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Section 1.7.7 that a transmission gate is an efficient way to build a CMOS
switch, so we might expect that we could take advantage of transmission
gates to reduce the transistor count.

A compact D latch can be constructed from a single transmission
gate, as shown in Figure 3.12(a). When CLK= 1 and CLK = 0, the trans-
mission gate is ON, so D flows to Q and the latch is transparent. When
CLK= 0 and CLK = 1, the transmission gate is OFF, so Q is isolated
from D and the latch is opaque. This latch suffers from two major
limitations:

▶ Floating output node: When the latch is opaque, Q is not held at its
value by any gates. Thus Q is called a floating or dynamic node. After
some time, noise and charge leakage may disturb the value of Q.

▶ No buffers: The lack of buffers has caused malfunctions on several
commercial chips. A spike of noise that pulls D to a negative vol-
tage can turn on the nMOS transistor, making the latch transpar-
ent, even when CLK = 0. Likewise, a spike on D above VDD can
turn on the pMOS transistor even when CLK = 0. And the trans-
mission gate is symmetric, so it could be driven backward with
noise on Q affecting the input D. The general rule is that neither
the input of a transmission gate nor the state node of a sequential
circuit should ever be exposed to the outside world, where noise
is likely.

Figure 3.12(b) shows a more robust 12-transistor D latch used on
modern commercial chips. It is still built around a clocked transmission
gate, but it adds inverters I1 and I2 to buffer the input and output. The
state of the latch is held on node N1. Inverter I3 and the tristate buffer,
T1, provide feedback to turn N1 into a static node. If a small amount
of noise occurs on N1 while CLK = 0, T1 will drive N1 back to a valid
logic value.

Figure 3.13 shows a D flip-flop constructed from two static latches
controlled by CLK and CLK. Some redundant internal inverters have
been removed, so the flip-flop requires only 20 transistors.
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D Q
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Figure 3.12 D latch schematic
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Figure 3.13 D flip-flop schematic

This circuit assumes CLK and
CLK are both available. If not,
two more transistors are
needed for a CLK inverter.
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3 . 2 . 8 Putting It All Together

Latches and flip-flops are the fundamental building blocks of sequential
circuits. Remember that a D latch is level-sensitive, whereas a D flip-flop
is edge-triggered. The D latch is transparent when CLK= 1, allowing the
input D to flow through to the output Q. The D flip-flop copies D to Q
on the rising edge of CLK. At all other times, latches and flip-flops retain
their old state. A register is a bank of several D flip-flops that share a
common CLK signal.

Example 3.2 FLIP-FLOP AND LATCH COMPARISON

Ben Bitdiddle applies the D and CLK inputs shown in Figure 3.14 to a D latch and
a D flip-flop. Help him determine the output, Q, of each device.

Solution: Figure 3.15 shows the output waveforms, assuming a small delay forQ to
respond to input changes. The arrows indicate the cause of an output change. The
initial value of Q is unknown and could be 0 or 1, as indicated by the pair of hor-
izontal lines. First consider the latch. On the first rising edge of CLK, D= 0, so Q
definitely becomes 0. Each time D changes while CLK= 1, Q also follows. When
D changes while CLK= 0, it is ignored. Now consider the flip-flop. On each rising
edge of CLK, D is copied to Q. At all other times, Q retains its state.

CLK

D

Q (latch)

Q (flop)

Figure 3.14 Example waveforms

CLK

D

Q (latch)

Q (flop)

Figure 3.15 Solution waveforms
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3.3 SYNCHRONOUS LOGIC DESIGN

In general, sequential circuits include all circuits that are not combinational—
that is, those whose output cannot be determined simply by looking at
the current inputs. Some sequential circuits are just plain kooky. This section
begins by examining some of those curious circuits. It then introduces the
notion of synchronous sequential circuits and the dynamic discipline. By dis-
ciplining ourselves to synchronous sequential circuits, we can develop easy,
systematic ways to analyze and design sequential systems.

3 . 3 . 1 Some Problematic Circuits

Example 3.3 ASTABLE CIRCUITS

Alyssa P. Hacker encounters three misbegotten inverters who have tied themselves
in a loop, as shown in Figure 3.16. The output of the third inverter is fed back
to the first inverter. Each inverter has a propagation delay of 1 ns. Help Alyssa
determine what the circuit does.

Solution: Suppose node X is initially 0. Then Y= 1, Z= 0, and hence X= 1, which
is inconsistent with our original assumption. The circuit has no stable states and is
said to be unstable or astable. Figure 3.17 shows the behavior of the circuit. If X
rises at time 0, Y will fall at 1 ns, Z will rise at 2 ns, and X will fall again at 3 ns.
In turn, Y will rise at 4 ns, Z will fall at 5 ns, and X will rise again at 6 ns, and
then the pattern will repeat. Each node oscillates between 0 and 1 with a period
(repetition time) of 6 ns. This circuit is called a ring oscillator.

The period of the ring oscillator depends on the propagation delay of each inver-
ter. This delay depends on how the inverter was manufactured, the power supply
voltage, and even the temperature. Therefore, the ring oscillator period is difficult
to accurately predict. In short, the ring oscillator is a sequential circuit with zero
inputs and one output that changes periodically.

Example 3.4 RACE CONDITIONS

Ben Bitdiddle designed a new D latch that he claims is better than the one in
Figure 3.7 because it uses fewer gates. He has written the truth table to find the

X Y Z

Figure 3.16 Three-inverter loop

X

Y

Z

Time (ns)0 1 2 3 4 5 6 7 8

Figure 3.17 Ring oscillator
waveforms
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output, Q, given the two inputs, D and CLK, and the old state of the latch, Qprev.
Based on this truth table, he has derived Boolean equations. He obtains Qprev by
feeding back the output, Q. His design is shown in Figure 3.18. Does his latch
work correctly, independent of the delays of each gate?

Solution: Figure 3.19 shows that the circuit has a race condition that causes it
to fail when certain gates are slower than others. Suppose CLK=D= 1.
The latch is transparent and passes D through to make Q= 1. Now, CLK falls.
The latch should remember its old value, keeping Q= 1. However, suppose the
delay through the inverter from CLK to CLK is rather long compared to the
delays of the AND and OR gates. Then nodes N1 and Q may both fall before
CLK rises. In such a case, N2 will never rise, and Q becomes stuck at 0.

This is an example of asynchronous circuit design in which outputs are directly
fed back to inputs. Asynchronous circuits are infamous for having race conditions
where the behavior of the circuit depends on which of two paths through logic
gates is fastest. One circuit may work, while a seemingly identical one built from
gates with slightly different delays may not work. Or the circuit may work only at
certain temperatures or voltages at which the delays are just right. These malfunc-
tions are extremely difficult to track down.

3 . 3 . 2 Synchronous Sequential Circuits

The previous two examples contain loops called cyclic paths, in
which outputs are fed directly back to inputs. They are sequential rather
than combinational circuits. Combinational logic has no cyclic paths
and no races. If inputs are applied to combinational logic, the outputs will
always settle to the correct value within a propagation delay. However,
sequential circuits with cyclic paths can have undesirable races or
unstable behavior. Analyzing such circuits for problems is time-consum-
ing, and many bright people have made mistakes.

To avoid these problems, designers break the cyclic paths by insert-
ing registers somewhere in the path. This transforms the circuit into a

Q
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CLK D

0 0
0 0
0 1

Qprev

0
1
0
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0
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1 0
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1 1
1 1

0
1

CLK
D

CLK

Qprev

Q

N1 = CLK·D

N2 = CLK·Qprev

Q = CLK·D + CLK·Qprev

Figure 3.18 An improved (?)
D latch

CLK

N1

N2

Q

CLK

Figure 3.19 Latch waveforms
illustrating race condition
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collection of combinational logic and registers. The registers contain the
state of the system, which changes only at the clock edge, so we say the
state is synchronized to the clock. If the clock is sufficiently slow, so
that the inputs to all registers settle before the next clock edge, all races
are eliminated. Adopting this discipline of always using registers in the
feedback path leads us to the formal definition of a synchronous
sequential circuit.

Recall that a circuit is defined by its input and output terminals
and its functional and timing specifications. A sequential circuit has a
finite set of discrete states {S0, S1,…, Sk−1}. A synchronous sequential
circuit has a clock input, whose rising edges indicate a sequence of
times at which state transitions occur. We often use the terms current
state and next state to distinguish the state of the system at the present
from the state to which it will enter on the next clock edge. The func-
tional specification details the next state and the value of each output
for each possible combination of current state and input values. The
timing specification consists of an upper bound, tpcq, and a lower
bound, tccq, on the time from the rising edge of the clock until the out-
put changes, as well as setup and hold times, tsetup and thold, that indi-
cate when the inputs must be stable relative to the rising edge of the
clock.

The rules of synchronous sequential circuit composition teach us that
a circuit is a synchronous sequential circuit if it consists of interconnected
circuit elements such that

▶ Every circuit element is either a register or a combinational circuit

▶ At least one circuit element is a register

▶ All registers receive the same clock signal

▶ Every cyclic path contains at least one register.

Sequential circuits that are not synchronous are called asynchronous.

A flip-flop is the simplest synchronous sequential circuit. It
has one input, D, one clock, CLK, one output, Q, and two states,
{0, 1}. The functional specification for a flip-flop is that the next
state is D and that the output, Q, is the current state, as shown in
Figure 3.20.

We often call the current state variable S and the next state variable S′.
In this case, the prime after S indicates next state, not inversion. The timing
of sequential circuits will be analyzed in Section 3.5.

Two other common types of synchronous sequential circuits are
called finite state machines and pipelines. These will be covered later in
this chapter.

tpcq stands for the time of
propagation from clock to Q,
where Q indicates the output
of a synchronous sequential
circuit. tccq stands for the time
of contamination from clock to
Q. These are analogous to tpd
and tcd in combinational logic.

This definition of a
synchronous sequential circuit
is sufficient, but more
restrictive than necessary. For
example, in high-performance
microprocessors, some
registers may receive delayed
or gated clocks to squeeze out
the last bit of performance or
power. Similarly, some
microprocessors use latches
instead of registers. However,
the definition is adequate for
all of the synchronous
sequential circuits covered in
this book and for most
commercial digital systems.

D Q
Next
State

Current
State

S ′ S

CLK

Figure 3.20 Flip-flop current
state and next state

3.3 Synchronous Logic Design 121



Example 3.5 SYNCHRONOUS SEQUENTIAL CIRCUITS

Which of the circuits in Figure 3.21 are synchronous sequential circuits?

Solution: Circuit (a) is combinational, not sequential, because it has no registers.
(b) is a simple sequential circuit with no feedback. (c) is neither a combinational
circuit nor a synchronous sequential circuit, because it has a latch that is neither
a register nor a combinational circuit. (d) and (e) are synchronous sequential logic;
they are two forms of finite state machines, which are discussed in Section 3.4.
(f) is neither combinational nor synchronous sequential, because it has a cyclic
path from the output of the combinational logic back to the input of the same
logic but no register in the path. (g) is synchronous sequential logic in the form
of a pipeline, which we will study in Section 3.6. (h) is not, strictly speaking, a syn-
chronous sequential circuit, because the second register receives a different clock
signal than the first, delayed by two inverter delays.

3 . 3 . 3 Synchronous and Asynchronous Circuits

Asynchronous design in theory is more general than synchronous design,
because the timing of the system is not limited by clocked registers. Just as
analog circuits are more general than digital circuits because analog cir-
cuits can use any voltage, asynchronous circuits are more general than
synchronous circuits because they can use any kind of feedback. How-
ever, synchronous circuits have proved to be easier to design and use than
asynchronous circuits, just as digital are easier than analog circuits.
Despite decades of research on asynchronous circuits, virtually all digital
systems are essentially synchronous.

CLCL

CLK

CLCL

CLK

CL

CLK

CL

CL

CLK

CL

CLKCLK

CL

CLK

Latch

CL

CLK

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.21 Example circuits
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Of course, asynchronous circuits are occasionally necessary when
communicating between systems with different clocks or when receiving
inputs at arbitrary times, just as analog circuits are necessary when com-
municating with the real world of continuous voltages. Furthermore,
research in asynchronous circuits continues to generate interesting
insights, some of which can improve synchronous circuits too.

3.4 FINITE STATE MACHINES

Synchronous sequential circuits can be drawn in the forms shown in
Figure 3.22. These forms are called finite state machines (FSMs). They
get their name because a circuit with k registers can be in one of a finite
number (2k) of unique states. An FSM has M inputs, N outputs, and k bits
of state. It also receives a clock and, optionally, a reset signal. An FSM
consists of two blocks of combinational logic, next state logic and output
logic, and a register that stores the state. On each clock edge, the FSM
advances to the next state, which was computed based on the current state
and inputs. There are two general classes of finite state machines, charac-
terized by their functional specifications. In Moore machines, the outputs
depend only on the current state of the machine. In Mealy machines, the
outputs depend on both the current state and the current inputs. Finite state
machines provide a systematic way to design synchronous sequential
circuits given a functional specification. This method will be explained in
the remainder of this section, starting with an example.

3 . 4 . 1 FSM Design Example

To illustrate the design of FSMs, consider the problem of inventing a con-
troller for a traffic light at a busy intersection on campus. Engineering stu-
dents are moseying between their dorms and the labs on Academic Ave.
They are busy reading about FSMs in their favorite textbook and aren’t

CLK

M Nknext
state
logic

output
logic

(a)

inputs outputsstate
next
state

k

(b)

CLK

M Nknext
state
logic

output
logic

inputs outputsstate
next
state k

Figure 3.22 Finite state
machines: (a) Moore machine,
(b) Mealy machine

Moore and Mealy machines
are named after their
promoters, researchers who
developed automata theory,
the mathematical underpinnings
of state machines, at Bell Labs.

Edward F. Moore (1925–
2003), not to be confused with
Intel founder Gordon Moore,
published his seminal article,
Gedanken-experiments on
Sequential Machines in 1956.
He subsequently became a
professor of mathematics and
computer science at the
University of Wisconsin.

George H. Mealy (1927–
2010) published A Method of
Synthesizing Sequential Circuits
in 1955. He subsequently wrote
the first Bell Labs operating
system for the IBM 704
computer. He later joined
Harvard University.
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looking where they are going. Football players are hustling between the
athletic fields and the dining hall on Bravado Boulevard. They are tossing
the ball back and forth and aren’t looking where they are going either.
Several serious injuries have already occurred at the intersection of these
two roads, and the Dean of Students asks Ben Bitdiddle to install a traffic
light before there are fatalities.

Ben decides to solve the problem with an FSM. He installs two traffic
sensors, TA and TB, on Academic Ave. and Bravado Blvd., respectively.
Each sensor indicates TRUE if students are present and FALSE if the
street is empty. He also installs two traffic lights, LA and LB, to control
traffic. Each light receives digital inputs specifying whether it should be
green, yellow, or red. Hence, his FSM has two inputs, TA and TB, and
two outputs, LA and LB. The intersection with lights and sensors is shown
in Figure 3.23. Ben provides a clock with a 5-second period. On each
clock tick (rising edge), the lights may change based on the traffic sensors.
He also provides a reset button so that Physical Plant technicians can put
the controller in a known initial state when they turn it on. Figure 3.24
shows a black box view of the state machine.

Ben’s next step is to sketch the state transition diagram, shown in
Figure 3.25, to indicate all the possible states of the system and the transi-
tions between these states. When the system is reset, the lights are green
on Academic Ave. and red on Bravado Blvd. Every 5 seconds, the control-
ler examines the traffic pattern and decides what to do next. As long as

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

B
ravado

B
lvd.

Dorms

Fields
Athletic

Dining
Hall

Labs

Figure 3.23 Campus map
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TB
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LB

CLK

Reset

Traffic
Light

Controller

Figure 3.24 Black box view of
finite state machine
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traffic is present on Academic Ave., the lights do not change. When there
is no longer traffic on Academic Ave., the light on Academic Ave.
becomes yellow for 5 seconds before it turns red and Bravado Blvd.’s light
turns green. Similarly, the Bravado Blvd. light remains green as long as
traffic is present on the boulevard, then turns yellow and eventually red.

In a state transition diagram, circles represent states and arcs represent
transitions between states. The transitions take place on the rising edge of
the clock; we do not bother to show the clock on the diagram, because it is
always present in a synchronous sequential circuit. Moreover, the clock
simply controls when the transitions should occur, whereas the diagram
indicates which transitions occur. The arc labeled Reset pointing from
outer space into state S0 indicates that the system should enter that state
upon reset, regardless of what previous state it was in. If a state has multi-
ple arcs leaving it, the arcs are labeled to show what input triggers each
transition. For example, when in state S0, the system will remain in that
state if TA is TRUE and move to S1 if TA is FALSE. If a state has a single
arc leaving it, that transition always occurs regardless of the inputs. For
example, when in state S1, the system will always move to S2. The value
that the outputs have while in a particular state are indicated in the state.
For example, while in state S2, LA is red and LB is green.

Ben rewrites the state transition diagram as a state transition table
(Table 3.1), which indicates, for each state and input, what the next state,
S′, should be. Note that the table uses don’t care symbols (X) whenever
the next state does not depend on a particular input. Also note that
Reset is omitted from the table. Instead, we use resettable flip-flops that
always go to state S0 on reset, independent of the inputs.

The state transition diagram is abstract in that it uses states labeled
{S0, S1, S2, S3} and outputs labeled {red, yellow, green}. To build a real
circuit, the states and outputs must be assigned binary encodings. Ben
chooses the simple encodings given in Tables 3.2 and 3.3. Each state
and each output is encoded with two bits: S1:0, LA1:0, and LB1:0.

S0
LA: green
LB: red

LA: red
LB: yellow

LA: yellow
LB: red 

LA: red
LB: green

S1

S3 S2

TA

TA

TB

TB

Reset

Figure 3.25 State transition
diagram

Notice that states are
designated as S0, S1, etc. The
subscripted versions, S0, S1,
etc., refer to the state bits.
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Ben updates the state transition table to use these binary encodings,
as shown in Table 3.4. The revised state transition table is a truth table
specifying the next state logic. It defines next state, S′, as a function of
the current state, S, and the inputs.

From this table, it is straightforward to read off the Boolean equa-
tions for the next state in sum-of-products form.

S′1 = S1S0 + S1S0TB + S1S0TB

S′0 = S1S0TA + S1S0TB

(3.1)

The equations can be simplified using Karnaugh maps, but often
doing it by inspection is easier. For example, the TB and TB terms in
the S′1 equation are clearly redundant. Thus S′1 reduces to an XOR opera-
tion. Equation 3.2 gives the simplified next state equations.

Table 3.3 Output encoding

Output Encoding L1:0

green 00

yellow 01

red 10

Table 3.4 State transition table with binary encodings

Current State Inputs Next State
S1 S0 TA TB S′1 S′0

0 0 0 X 0 1

0 0 1 X 0 0

0 1 X X 1 0

1 0 X 0 1 1

1 0 X 1 1 0

1 1 X X 0 0

Table 3.1 State transition table

Current
State S

Inputs Next State
S′TA TB

S0 0 X S1

S0 1 X S0

S1 X X S2

S2 X 0 S3

S2 X 1 S2

S3 X X S0

Table 3.2 State encoding

State Encoding S1:0

S0 00

S1 01

S2 10

S3 11
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S′1 = S1 ⊕ S0

S′0 = S1S0TA + S1S0TB

(3.2)

Similarly, Ben writes an output table (Table 3.5) indicating, for each
state, what the output should be in that state. Again, it is straightforward
to read off and simplify the Boolean equations for the outputs. For exam-
ple, observe that LA1 is TRUE only on the rows where S1 is TRUE.

LA1 = S1

LA0 = S1S0

LB1 = S1

LB0 = S1S0

(3.3)

Finally, Ben sketches his Moore FSM in the form of Figure 3.22(a).
First, he draws the 2-bit state register, as shown in Figure 3.26(a). On
each clock edge, the state register copies the next state, S′1:0, to become
the state S1:0. The state register receives a synchronous or asynchronous
reset to initialize the FSM at startup. Then, he draws the next state logic,
based on Equation 3.2, which computes the next state from the current
state and inputs, as shown in Figure 3.26(b). Finally, he draws the output
logic, based on Equation 3.3, which computes the outputs from the
current state, as shown in Figure 3.26(c).

Figure 3.27 shows a timing diagram illustrating the traffic light con-
troller going through a sequence of states. The diagram shows CLK, Reset,
the inputs TA and TB, next state S′, state S, and outputs LA and LB. Arrows
indicate causality; for example, changing the state causes the outputs to
change, and changing the inputs causes the next state to change. Dashed
lines indicate the rising edges of CLK when the state changes.

The clock has a 5-second period, so the traffic lights change at most
once every 5 seconds. When the finite state machine is first turned on, its
state is unknown, as indicated by the question marks. Therefore, the sys-
tem should be reset to put it into a known state. In this timing diagram, S

Table 3.5 Output table

Current State Outputs
S1 S0 LA1 LA0 LB1 LB0

0 0 0 0 1 0

0 1 0 1 1 0

1 0 1 0 0 0

1 1 1 0 0 1
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Figure 3.26 State machine circuit for traffic light controller
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Figure 3.27 Timing diagram for traffic light controller

This schematic uses some
AND gates with bubbles on
the inputs. They might be
constructed with AND gates
and input inverters, with NOR
gates and inverters for the
non-bubbled inputs, or with
some other combination of
gates. The best choice depends
on the particular
implementation technology.
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Despite Ben’s best efforts,
students don’t pay attention to
traffic lights and collisions
continue to occur. The Dean
of Students next asks him and
Alyssa to design a catapult to
throw engineering students
directly from their dorm roofs
through the open windows
of the lab, bypassing the
troublesome intersection all
together. But that is the
subject of another textbook.

immediately resets to S0, indicating that asynchronously resettable flip-
flops are being used. In state S0, light LA is green and light LB is red.

In this example, traffic arrives immediately on Academic Ave. There-
fore, the controller remains in state S0, keeping LA green even though
traffic arrives on Bravado Blvd. and starts waiting. After 15 seconds,
the traffic on Academic Ave. has all passed through and TA falls. At the
following clock edge, the controller moves to state S1, turning LA yellow.
In another 5 seconds, the controller proceeds to state S2 in which LA

turns red and LB turns green. The controller waits in state S2 until all
the traffic on Bravado Blvd. has passed through. It then proceeds to state
S3, turning LB yellow. 5 seconds later, the controller enters state S0, turn-
ing LB red and LA green. The process repeats.

3 . 4 . 2 State Encodings

In the previous example, the state and output encodings were selected
arbitrarily. A different choice would have resulted in a different circuit.
A natural question is how to determine the encoding that produces the
circuit with the fewest logic gates or the shortest propagation delay.
Unfortunately, there is no simple way to find the best encoding except
to try all possibilities, which is infeasible when the number of states is
large. However, it is often possible to choose a good encoding by inspec-
tion, so that related states or outputs share bits. Computer-aided design
(CAD) tools are also good at searching the set of possible encodings
and selecting a reasonable one.

One important decision in state encoding is the choice between binary
encoding and one-hot encoding. With binary encoding, as was used in the
traffic light controller example, each state is represented as a binary num-
ber. Because K binary numbers can be represented by log2K bits, a system
with K states only needs log2K bits of state.

In one-hot encoding, a separate bit of state is used for each state. It is
called one-hot because only one bit is “hot” or TRUE at any time. For
example, a one-hot encoded FSMwith three states would have state encod-
ings of 001, 010, and 100. Each bit of state is stored in a flip-flop, so one-
hot encoding requires more flip-flops than binary encoding. However, with
one-hot encoding, the next-state and output logic is often simpler, so fewer
gates are required. The best encoding choice depends on the specific FSM.

Example 3.6 FSM STATE ENCODING

A divide-by-N counter has one output and no inputs. The output Y is HIGH for
one clock cycle out of every N. In other words, the output divides the frequency
of the clock by N. The waveform and state transition diagram for a divide-by-3
counter is shown in Figure 3.28. Sketch circuit designs for such a counter using
binary and one-hot state encodings.
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Solution: Tables 3.6 and 3.7 show the abstract state transition and output tables
before encoding.

Table 3.8 compares binary and one-hot encodings for the three states.

The binary encoding uses two bits of state. Using this encoding, the state transi-
tion table is shown in Table 3.9. Note that there are no inputs; the next state
depends only on the current state. The output table is left as an exercise to the
reader. The next-state and output equations are:

S′1 = S1S0
S′0 = S1S0

(3.4)

Y = S1S0 (3.5)

The one-hot encoding uses three bits of state. The state transition table for this
encoding is shown in Table 3.10 and the output table is again left as an exercise
to the reader. The next-state and output equations are as follows:

S′2 = S1
S′1 = S0
S′0 = S2

(3.6)

Y = S0 (3.7)

Figure 3.29 shows schematics for each of these designs. Note that the hardware
for the binary encoded design could be optimized to share the same gate for
Y and S′0. Also observe that the one-hot encoding requires both settable (s) and
resettable (r) flip-flops to initialize the machine to S0 on reset. The best implemen-
tation choice depends on the relative cost of gates and flip-flops, but the one-hot
design is usually preferable for this specific example.

A related encoding is the one-cold encoding, in which K states are
represented with K bits, exactly one of which is FALSE.

CLK

Y

(a)

S0
Y: 1

S1
Y: 0

S2
Y: 0

Reset

(b)

Figure 3.28 Divide-by-3 counter
(a) waveform and (b) state
transition diagram

Table 3.6 Divide-by-3 counter
state transition table

Current State Next State

S0 S1

S1 S2

S2 S0

Table 3.7 Divide-by-3 counter
output table

Current State Output

S0 1

S1 0

S2 0
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Table 3.8 One-hot and binary encodings for divide-by-3 counter

State
One-Hot Encoding Binary Encoding

S2 S1 S0 S1 S0

S0 0 0 1 0 0

S1 0 1 0 0 1

S2 1 0 0 1 0

Table 3.9 State transition table with binary encoding

Current State Next State
S1 S0 S′1 S′0

0 0 0 1

0 1 1 0

1 0 0 0

Table 3.10 State transition table with one-hot encoding

Current State Next State
S2 S1 S0 S′2 S′1 S′0

0 0 1 0 1 0

0 1 0 1 0 0

1 0 0 0 0 1
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Reset
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r r s
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S'1 S1
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S1 S2 S0

S'0 S0
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Figure 3.29 Divide-by-3 circuits
for (a) binary and (b) one-hot
encodings
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3 . 4 . 3 Moore and Mealy Machines

So far, we have shown examples of Moore machines, in which the output
depends only on the state of the system. Hence, in state transition diagrams
for Moore machines, the outputs are labeled in the circles. Recall that
Mealy machines are much like Moore machines, but the outputs can
depend on inputs as well as the current state. Hence, in state transition dia-
grams for Mealy machines, the outputs are labeled on the arcs instead of in
the circles. The block of combinational logic that computes the outputs
uses the current state and inputs, as was shown in Figure 3.22(b).

Example 3.7 MOORE VERSUS MEALY MACHINES

Alyssa P. Hacker owns a pet robotic snail with an FSM brain. The snail crawls from
left to right along a paper tape containing a sequence of 1’s and 0’s. On each clock
cycle, the snail crawls to the next bit. The snail smiles when the last two bits that
it has crawled over are 01. Design the FSM to compute when the snail should smile.
The input A is the bit underneath the snail’s antennae. The output Y is TRUE when
the snail smiles. Compare Moore andMealy state machine designs. Sketch a timing
diagram for each machine showing the input, states, and output as Alyssa’s snail
crawls along the sequence 0100110111.

Solution: The Moore machine requires three states, as shown in Figure 3.30(a).
Convince yourself that the state transition diagram is correct. In particular, why
is there an arc from S2 to S1 when the input is 0?

In comparison, theMealymachine requires only two states, as shown in Figure 3.30(b).
Each arc is labeled asA/Y.A is the value of the input that causes that transition, andY is
the corresponding output.

Tables 3.11 and 3.12 show the state transition and output tables for the Moore
machine. The Moore machine requires at least two bits of state. Consider using
a binary state encoding: S0= 00, S1= 01, and S2= 10. Tables 3.13 and 3.14
rewrite the state transition and output tables with these encodings.

From these tables, we find the next state and output equations by inspection.
Note that these equations are simplified using the fact that state 11 does not
exist. Thus, the corresponding next state and output for the non-existent state
are don’t cares (not shown in the tables). We use the don’t cares to minimize our
equations.

S′1 = S0A
S′0 = A

(3.8)

Y = S1 (3.9)

An easy way to remember the
difference between the two
types of finite state machines is
that a Moore machine
typically has more states than
a Mealy machine for a given
problem.
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Table 3.15 shows the combined state transition and output table for the Mealy
machine. The Mealy machine requires only one bit of state. Consider using a bin-
ary state encoding: S0= 0 and S1= 1. Table 3.16 rewrites the state transition and
output table with these encodings.

From these tables, we find the next state and output equations by inspection.

S′0=A (3.10)

Y=S0A (3.11)

TheMoore andMealy machine schematics are shown in Figure 3.31. The timing dia-
grams for each machine are shown in Figure 3.32 (see page 135). The two machines
follow a different sequence of states. Moreover, the Mealy machine’s output rises a
cycle sooner because it responds to the input rather than waiting for the state change.
If the Mealy output were delayed through a flip-flop, it would match the Moore
output.When choosing your FSMdesign style, consider when youwant your outputs
to respond.

Table 3.12 Moore output table

Current State
S

Output
Y

S0 0

S1 0

S2 1

Reset

(a)

S0
0

S1
0

S2
1

0

Reset

(b)

0 1

S0 S1

1/1

0/0

1/01 0
1

0/0

Figure 3.30 FSM state transition diagrams: (a) Moore machine, (b) Mealy machine

Table 3.11 Moore state transition table

Current State
S

Input
A

Next State
S′

S0 0 S1

S0 1 S0

S1 0 S1

S1 1 S2

S2 0 S1

S2 1 S0
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3 . 4 . 4 Factoring State Machines

Designing complex FSMs is often easier if they can be broken down into
multiple interacting simpler state machines such that the output of some
machines is the input of others. This application of hierarchy andmodularity
is called factoring of state machines.

Table 3.13 Moore state transition table with state
encodings

Current State Input Next State
S1 S0 A S′1 S′0

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

Table 3.14 Moore output table
with state encodings

Current State Output
S1 S0 Y

0 0 0

0 1 0

1 0 1

Table 3.15 Mealy state transition and output table

Current State
S

Input
A

Next State
S′

Output
Y

S0 0 S1 0

S0 1 S0 0

S1 0 S1 0

S1 1 S0 1

Table 3.16 Mealy state transition and output table with state encodings

Current State
S0

Input
A

Next State
S′0

Output
Y

0 0 1 0

0 1 0 0

1 0 1 0

1 1 0 1
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Example 3.8 UNFACTORED AND FACTORED STATE MACHINES

Modify the traffic light controller from Section 3.4.1 to have a parade mode, which
keeps the Bravado Boulevard light green while spectators and the band march to
football games in scattered groups. The controller receives two more inputs: P
and R. Asserting P for at least one cycle enters parade mode. Asserting R for at least
one cycle leaves parade mode. When in parade mode, the controller proceeds
through its usual sequence until LB turns green, then remains in that state with
LB green until parade mode ends.

First, sketch a state transition diagram for a single FSM, as shown in Figure 3.33(a).
Then, sketch the state transition diagrams for two interacting FSMs, as shown in
Figure 3.33(b). The Mode FSM asserts the output M when it is in parade mode.
The Lights FSM controls the lights based on M and the traffic sensors, TA and TB.

Solution: Figure 3.34(a) shows the single FSM design. States S0 to S3 handle normal
mode. States S4 to S7 handle parade mode. The two halves of the diagram are almost
identical, but in parade mode, the FSM remains in S6 with a green light on Bravado
Blvd. The P and R inputs control movement between these two halves. The FSM is
messy and tedious to design. Figure 3.34(b) shows the factored FSM design. The
mode FSM has two states to track whether the lights are in normal or parade mode.
The Lights FSM is modified to remain in S2 while M is TRUE.
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Figure 3.31 FSM schematics for
(a) Moore and (b) Mealy machines
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3 . 4 . 5 Deriving an FSM from a Schematic

Deriving the state transition diagram from a schematic follows nearly the
reverse process of FSM design. This process can be necessary, for exam-
ple, when taking on an incompletely documented project or reverse engi-
neering somebody else’s system.

▶ Examine circuit, stating inputs, outputs, and state bits.

▶ Write next state and output equations.

▶ Create next state and output tables.

▶ Reduce the next state table to eliminate unreachable states.

▶ Assign each valid state bit combination a name.

▶ Rewrite next state and output tables with state names.

▶ Draw state transition diagram.

▶ State in words what the FSM does.

In the final step, be careful to succinctly describe the overall purpose
and function of the FSM—do not simply restate each transition of the
state transition diagram.

Example 3.9 DERIVING AN FSM FROM ITS CIRCUIT

Alyssa P. Hacker arrives home, but her keypad lock has been rewired and her old
code no longer works. A piece of paper is taped to it showing the circuit diagram
in Figure 3.35. Alyssa thinks the circuit could be a finite state machine and decides
to derive the state transition diagram to see if it helps her get in the door.

Solution: Alyssa begins by examining the circuit. The input is A1:0 and the output
is Unlock. The state bits are already labeled in Figure 3.35. This is a Moore

Unlock

CLK

Reset

r

S ′1 S1

S ′0 S0

A0A1

Figure 3.35 Circuit of found FSM for Example 3.9
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machine because the output depends only on the state bits. From the circuit, she
writes down the next state and output equations directly:

S′1 = S0A1A0

S′0 = S1 S0A1A0

Unlock = S1

(3.12)

Next, she writes down the next state and output tables from the equations, as
shown in Tables 3.17 and 3.18, first placing 1’s in the tables as indicated by Equa-
tion 3.12. She places 0’s everywhere else.

Alyssa reduces the table by removing unused states and combining rows using
don’t cares. The S1:0= 11 state is never listed as a possible next state in Table 3.17,
so rows with this current state are removed. For current state S1:0= 10, the next

Table 3.17 Next state table derived from circuit in Figure 3.35

Current State Input Next State
S1 S0 A1 A0 S′1 S′0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 0

1 1 0 0 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 1 0 0

Table 3.18 Output table derived from circuit
in Figure 3.35

Current State Output
S1 S0 Unlock

0 0 0

0 1 0

1 0 1

1 1 1
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state is always S1:0= 00, independent of the inputs, so don’t cares are inserted for the
inputs. The reduced tables are shown in Tables 3.19 and 3.20.

She assigns names to each state bit combination: S0 is S1:0= 00, S1 is S1:0= 01,
and S2 is S1:0= 10. Tables 3.21 and 3.22 show the next state and output tables
with state names.

Table 3.21 Symbolic next state table

Current State
S

Input
A

Next State
S′

S0 0 S0

S0 1 S0

S0 2 S0

S0 3 S1

S1 0 S0

S1 1 S2

S1 2 S0

S1 3 S0

S2 X S0

Table 3.19 Reduced next state table

Current State Input Next State
S1 S0 A1 A0 S′1 S′0
0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 X X 0 0

Table 3.20 Reduced output table

Current State Output
S1 S0 Unlock

0 0 0

0 1 0

1 0 1

Table 3.22 Symbolic output table

Current State
S

Output
Unlock

S0 0

S1 0

S2 1
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Alyssa writes down the state transition diagram shown in Figure 3.36 using
Tables 3.21 and 3.22. By inspection, she can see that the finite state machine
unlocks the door only after detecting an input value, A1:0, of three followed by
an input value of one. The door is then locked again. Alyssa tries this code on
the door key pad and the door opens!

3 . 4 . 6 FSM Review

Finite state machines are a powerful way to systematically design sequen-
tial circuits from a written specification. Use the following procedure to
design an FSM:

▶ Identify the inputs and outputs.

▶ Sketch a state transition diagram.

▶ For a Moore machine:
– Write a state transition table.
– Write an output table.

▶ For a Mealy machine:
– Write a combined state transition and output table.

▶ Select state encodings—your selection affects the hardware design.

▶ Write Boolean equations for the next state and output logic.

▶ Sketch the circuit schematic.

Reset

S1
0

S0
0

S2
1

A = 3

A = 1

A = 3

A = 1

Figure 3.36 State transition
diagram of found FSM from
Example 3.9
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We will repeatedly use FSMs to design complex digital systems throughout
this book.

3.5 TIMING OF SEQUENTIAL LOGIC

Recall that a flip-flop copies the inputD to the outputQ on the rising edge
of the clock. This process is called sampling D on the clock edge. If D is
stable at either 0 or 1 when the clock rises, this behavior is clearly defined.
But what happens if D is changing at the same time the clock rises?

This problem is similar to that faced by a camera when snapping a
picture. Imagine photographing a frog jumping from a lily pad into the
lake. If you take the picture before the jump, you will see a frog on a lily
pad. If you take the picture after the jump, you will see ripples in the
water. But if you take it just as the frog jumps, you may see a blurred
image of the frog stretching from the lily pad into the water. A camera
is characterized by its aperture time, during which the object must remain
still for a sharp image to be captured. Similarly, a sequential element has
an aperture time around the clock edge, during which the input must be
stable for the flip-flop to produce a well-defined output.

The aperture of a sequential element is defined by a setup time and a
hold time, before and after the clock edge, respectively. Just as the static
discipline limited us to using logic levels outside the forbidden zone, the
dynamic discipline limits us to using signals that change outside the aper-
ture time. By taking advantage of the dynamic discipline, we can think of
time in discrete units called clock cycles, just as we think of signal levels as
discrete 1’s and 0’s. A signal may glitch and oscillate wildly for some
bounded amount of time. Under the dynamic discipline, we are concerned
only about its final value at the end of the clock cycle, after it has settled
to a stable value. Hence, we can simply write A[n], the value of signal A at
the end of the nth clock cycle, where n is an integer, rather than A(t), the
value of A at some instant t, where t is any real number.

The clock period has to be long enough for all signals to settle. This
sets a limit on the speed of the system. In real systems, the clock does
not reach all flip-flops at precisely the same time. This variation in time,
called clock skew, further increases the necessary clock period.

Sometimes it is impossible to satisfy the dynamic discipline, especially
when interfacing with the real world. For example, consider a circuit with
an input coming from a button. A monkey might press the button just as
the clock rises. This can result in a phenomenon called metastability, where
the flip-flop captures a value partway between 0 and 1 that can take an
unlimited amount of time to resolve into a good logic value. The solution
to such asynchronous inputs is to use a synchronizer, which has a very
small (but nonzero) probability of producing an illegal logic value.

We expand on all of these ideas in the rest of this section.
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3 . 5 . 1 The Dynamic Discipline

So far, we have focused on the functional specification of sequential circuits.
Recall that a synchronous sequential circuit, such as a flip-flop or FSM, also
has a timing specification, as illustrated in Figure 3.37. When the clock rises,
the output (or outputs) may start to change after the clock-to-Q contamina-
tion delay, tccq, and must definitely settle to the final value within the clock-
to-Q propagation delay, tpcq. These represent the fastest and slowest delays
through the circuit, respectively. For the circuit to sample its input correctly,
the input (or inputs) must have stabilized at least some setup time, tsetup,
before the rising edge of the clock and must remain stable for at least some
hold time, thold, after the rising edge of the clock. The sum of the setup and
hold times is called the aperture time of the circuit, because it is the total time
for which the input must remain stable.

The dynamic discipline states that the inputs of a synchronous sequen-
tial circuit must be stable during the setup and hold aperture time around
the clock edge. By imposing this requirement, we guarantee that the flip-
flops sample signals while they are not changing. Because we are concerned
only about the final values of the inputs at the time they are sampled, we
can treat signals as discrete in time as well as in logic levels.

3 . 5 . 2 System Timing

The clock period or cycle time, Tc , is the time between rising edges of a
repetitive clock signal. Its reciprocal, fc= 1/Tc , is the clock frequency.
All else being the same, increasing the clock frequency increases the work
that a digital system can accomplish per unit time. Frequency is measured
in units of Hertz (Hz), or cycles per second: 1 megahertz (MHz)= 106 Hz,
and 1 gigahertz (GHz)= 109 Hz.

Figure 3.38(a) illustrates a generic path in a synchronous sequential
circuit whose clock period we wish to calculate. On the rising edge of
the clock, register R1 produces output (or outputs) Q1. These signals
enter a block of combinational logic, producing D2, the input (or inputs)
to register R2. The timing diagram in Figure 3.38(b) shows that each out-
put signal may start to change a contamination delay after its input

CLK

tccq

tpcq

t setup

output(s)

input(s)

t hold

Figure 3.37 Timing specification
for synchronous sequential circuit

In the three decades from when
one of the authors’ families
bought an Apple II+ computer to
the present time of writing,
microprocessor clock frequencies
have increased from 1 MHz to
several GHz, a factor of more
than 1000. This speedup
partially explains the
revolutionary changes computers
have made in society.

142 CHAPTER THREE Sequential Logic Design



changes and settles to the final value within a propagation delay after its
input settles. The gray arrows represent the contamination delay through
R1 and the combinational logic, and the blue arrows represent the propa-
gation delay through R1 and the combinational logic. We analyze the
timing constraints with respect to the setup and hold time of the second
register, R2.

Setup Time Constraint
Figure 3.39 is the timing diagram showing only the maximum delay through
the path, indicated by the blue arrows. To satisfy the setup time of R2, D2
must settle no later than the setup time before the next clock edge. Hence,
we find an equation for the minimum clock period:

Tc ≥ tpcq + tpd + tsetup (3.13)

In commercial designs, the clock period is often dictated by the Director
of Engineering or by the marketing department (to ensure a competitive
product). Moreover, the flip-flop clock-to-Q propagation delay and setup
time, tpcq and tsetup, are specified by the manufacturer. Hence, we rear-
range Equation 3.13 to solve for the maximum propagation delay
through the combinational logic, which is usually the only variable under
the control of the individual designer.

tpd ≤Tc−ðtpcq + tsetupÞ (3.14)

The term in parentheses, tpcq+ tsetup , is called the sequencing over-
head. Ideally, the entire cycle time Tc would be available for useful
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Figure 3.39 Maximum delay for
setup time constraint
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Figure 3.38 Path between
registers and timing diagram
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computation in the combinational logic, tpd. However, the sequencing
overhead of the flip-flop cuts into this time. Equation 3.14 is called the
setup time constraint or max-delay constraint, because it depends on the
setup time and limits the maximum delay through combinational logic.

If the propagation delay through the combinational logic is too great,
D2 may not have settled to its final value by the time R2 needs it to be
stable and samples it. Hence, R2 may sample an incorrect result or even
an illegal logic level, a level in the forbidden region. In such a case, the
circuit will malfunction. The problem can be solved by increasing the
clock period or by redesigning the combinational logic to have a shorter
propagation delay.

Hold Time Constraint
The register R2 in Figure 3.38(a) also has a hold time constraint. Its input,
D2, must not change until some time, thold, after the rising edge of the
clock. According to Figure 3.40, D2 might change as soon as tccq + tcd
after the rising edge of the clock. Hence, we find

tccq + tcd ≥ thold (3.15)

Again, tccq and thold are characteristics of the flip-flop that are usually out-
side the designer’s control. Rearranging, we can solve for the minimum
contamination delay through the combinational logic:

tcd ≥ thold − tccq (3.16)

Equation 3.16 is also called the hold time constraint or min-delay con-
straint because it limits the minimum delay through combinational logic.

We have assumed that any logic elements can be connected to each
other without introducing timing problems. In particular, we would
expect that two flip-flops may be directly cascaded as in Figure 3.41 with-
out causing hold time problems.
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Figure 3.40 Minimum delay for
hold time constraint
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In such a case, tcd= 0 because there is no combinational logic between
flip-flops. Substituting into Equation 3.16 yields the requirement that

thold ≤ tccq (3.17)

In other words, a reliable flip-flop must have a hold time shorter than
its contamination delay. Often, flip-flops are designed with thold= 0, so
that Equation 3.17 is always satisfied. Unless noted otherwise, we will
usually make that assumption and ignore the hold time constraint in this
book.

Nevertheless, hold time constraints are critically important. If they
are violated, the only solution is to increase the contamination delay
through the logic, which requires redesigning the circuit. Unlike setup
time constraints, they cannot be fixed by adjusting the clock period. Rede-
signing an integrated circuit and manufacturing the corrected design takes
months and millions of dollars in today’s advanced technologies, so hold
time violations must be taken extremely seriously.

Putting It All Together
Sequential circuits have setup and hold time constraints that dictate the
maximum and minimum delays of the combinational logic between flip-
flops. Modern flip-flops are usually designed so that the minimum delay
through the combinational logic is 0—that is, flip-flops can be placed
back-to-back. The maximum delay constraint limits the number of conse-
cutive gates on the critical path of a high-speed circuit, because a high
clock frequency means a short clock period.

Example 3.10 TIMING ANALYSIS

Ben Bitdiddle designed the circuit in Figure 3.42. According to the data sheets for
the components he is using, flip-flops have a clock-to-Q contamination delay of
30 ps and a propagation delay of 80 ps. They have a setup time of 50 ps and a
hold time of 60 ps. Each logic gate has a propagation delay of 40 ps and a
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Y '

X

Y

Figure 3.42 Sample circuit for
timing analysis

CLK

Figure 3.41 Back-to-back
flip-flops
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contamination delay of 25 ps. Help Ben determine the maximum clock frequency
and whether any hold time violations could occur. This process is called timing
analysis.

Solution: Figure 3.43(a) shows waveforms illustrating when the signals might
change. The inputs, A to D, are registered, so they only change shortly after
CLK rises.

The critical path occurs when B= 1, C= 0, D= 0, and A rises from 0 to 1, trigger-
ing n1 to rise, X′ to rise, and Y′ to fall, as shown in Figure 3.43(b). This path
involves three gate delays. For the critical path, we assume that each gate requires
its full propagation delay. Y′ must setup before the next rising edge of the CLK.
Hence, the minimum cycle time is

Tc ≥ tpcq +3 tpd + tsetup = 80+ 3× 40+50 = 250ps (3.18)

The maximum clock frequency is fc= 1/Tc = 4 GHz.

A short path occurs when A= 0 and C rises, causing X′ to rise, as shown in
Figure 3.43(c). For the short path, we assume that each gate switches after only
a contamination delay. This path involves only one gate delay, so it may occur
after tccq+ tcd= 30+ 25= 55 ps. But recall that the flip-flop has a hold time of
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Figure 3.43 Timing diagram:
(a) general case, (b) critical path,
(c) short path
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60 ps, meaning that X′ must remain stable for 60 ps after the rising edge of CLK
for the flip-flop to reliably sample its value. In this case, X′= 0 at the first rising
edge of CLK, so we want the flip-flop to capture X= 0. Because X′ did not hold
stable long enough, the actual value of X is unpredictable. The circuit has a hold
time violation and may behave erratically at any clock frequency.

Example 3.11 FIXING HOLD TIME VIOLATIONS

Alyssa P. Hacker proposes to fix Ben’s circuit by adding buffers to slow down the
short paths, as shown in Figure 3.44. The buffers have the same delays as other
gates. Help her determine the maximum clock frequency and whether any hold
time problems could occur.

Solution: Figure 3.45 shows waveforms illustrating when the signals might change.
The critical path from A to Y is unaffected, because it does not pass through any
buffers. Therefore, the maximum clock frequency is still 4 GHz. However, the short
paths are slowed by the contamination delay of the buffer. Now X′ will not change
until tccq+ 2tcd= 30+ 2 × 25= 80 ps. This is after the 60 ps hold time has elapsed,
so the circuit now operates correctly.

This example had an unusually long hold time to illustrate the point of hold time
problems. Most flip-flops are designed with thold< tccq to avoid such problems.
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However, some high-performance microprocessors, including the Pentium 4, use
an element called a pulsed latch in place of a flip-flop. The pulsed latch behaves
like a flip-flop but has a short clock-to-Q delay and a long hold time. In general,
adding buffers can usually, but not always, solve hold time problems without
slowing the critical path.

3 . 5 . 3 Clock Skew*

In the previous analysis, we assumed that the clock reaches all registers at
exactly the same time. In reality, there is some variation in this time. This
variation in clock edges is called clock skew. For example, the wires from
the clock source to different registers may be of different lengths, resulting
in slightly different delays, as shown in Figure 3.46. Noise also results in
different delays. Clock gating, described in Section 3.2.5, further delays
the clock. If some clocks are gated and others are not, there will be sub-
stantial skew between the gated and ungated clocks. In Figure 3.46,
CLK2 is early with respect to CLK1, because the clock wire between
the two registers follows a scenic route. If the clock had been routed dif-
ferently, CLK1 might have been early instead. When doing timing analy-
sis, we consider the worst-case scenario, so that we can guarantee that the
circuit will work under all circumstances.

Figure 3.47 adds skew to the timing diagram from Figure 3.38. The
heavy clock line indicates the latest time at which the clock signal might
reach any register; the hashed lines show that the clock might arrive up
to tskew earlier.

First, consider the setup time constraint shown in Figure 3.48. In the
worst case, R1 receives the latest skewed clock and R2 receives the earliest
skewed clock, leaving as little time as possible for data to propagate
between the registers.

tskew

CLK1

CLK2
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CLK2CLK1

R1 R 2

Q1 D2

CLK
delay

CLK

Figure 3.46 Clock skew caused by
wire delay
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The data propagates through the register and combinational logic
and must setup before R2 samples it. Hence, we conclude that

Tc ≥ tpcq + tpd + tsetup + tskew (3.19)

tpd ≤Tc−ðtpcq + tsetup + tskewÞ (3.20)

Next, consider the hold time constraint shown in Figure 3.49. In the
worst case, R1 receives an early skewed clock, CLK1, and R2 receives a
late skewed clock, CLK2. The data zips through the register and combi-
national logic but must not arrive until a hold time after the late clock.
Thus, we find that

tccq + tcd ≥ thold + tskew (3.21)

tcd ≥ thold + tskew−tccq (3.22)

In summary, clock skew effectively increases both the setup time and the
hold time. It adds to the sequencing overhead, reducing the time available for
useful work in the combinational logic. It also increases the required mini-
mum delay through the combinational logic. Even if thold= 0, a pair of
back-to-back flip-flops will violate Equation 3.22 if tskew> tccq. To prevent

CLK1

Q1

D2

Tc

tpcq tpd t setup t skew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2
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serious hold time failures, designers must not permit too much clock skew.
Sometimes flip-flops are intentionally designed to be particularly slow
(i.e., large tccq), to prevent hold time problems even when the clock skew is
substantial.

Example 3.12 TIMING ANALYSIS WITH CLOCK SKEW

Revisit Example 3.10 and assume that the system has 50 ps of clock skew.

Solution: The critical path remains the same, but the setup time is effectively
increased by the skew. Hence, the minimum cycle time is

Tc ≥ tpcq +3tpd + tsetup + tskew

= 80+ 3×40+ 50+50 = 300ps
(3.23)

The maximum clock frequency is fc= 1/Tc = 3.33 GHz.

The short path also remains the same at 55 ps. The hold time is effectively
increased by the skew to 60+ 50= 110 ps, which is much greater than 55 ps.
Hence, the circuit will violate the hold time and malfunction at any frequency.
The circuit violated the hold time constraint even without skew. Skew in the
system just makes the violation worse.

Example 3.13 FIXING HOLD TIME VIOLATIONS

Revisit Example 3.11 and assume that the system has 50 ps of clock skew.

Solution: The critical path is unaffected, so the maximum clock frequency remains
3.33 GHz.
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Figure 3.49 Hold time constraint
with clock skew
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The short path increases to 80 ps. This is still less than thold+ tskew= 110 ps, so the
circuit still violates its hold time constraint.

To fix the problem, even more buffers could be inserted. Buffers would need to be
added on the critical path as well, reducing the clock frequency. Alternatively, a
better flip-flop with a shorter hold time might be used.

3 . 5 . 4 Metastability

As noted earlier, it is not always possible to guarantee that the input to a
sequential circuit is stable during the aperture time, especially when the
input arrives from the external world. Consider a button connected to
the input of a flip-flop, as shown in Figure 3.50. When the button is
not pressed, D= 0. When the button is pressed, D= 1. A monkey presses
the button at some random time relative to the rising edge of CLK. We
want to know the output Q after the rising edge of CLK. In Case I, when
the button is pressed much before CLK, Q= 1. In Case II, when the but-
ton is not pressed until long after CLK, Q= 0. But in Case III, when the
button is pressed sometime between tsetup before CLK and thold after
CLK, the input violates the dynamic discipline and the output is
undefined.

Metastable State
When a flip-flop samples an input that is changing during its aperture,
the output Q may momentarily take on a voltage between 0 and VDD

that is in the forbidden zone. This is called a metastable state. Even-
tually, the flip-flop will resolve the output to a stable state of either 0
or 1. However, the resolution time required to reach the stable state is
unbounded.

The metastable state of a flip-flop is analogous to a ball on the sum-
mit of a hill between two valleys, as shown in Figure 3.51. The two val-
leys are stable states, because a ball in the valley will remain there as
long as it is not disturbed. The top of the hill is called metastable because
the ball would remain there if it were perfectly balanced. But because
nothing is perfect, the ball will eventually roll to one side or the other.
The time required for this change to occur depends on how nearly well
balanced the ball originally was. Every bistable device has a metastable
state between the two stable states.

Resolution Time
If a flip-flop input changes at a random time during the clock cycle, the
resolution time, tres, required to resolve to a stable state is also a random
variable. If the input changes outside the aperture, then tres = tpcq. But if
the input happens to change within the aperture, tres can be substantially
longer. Theoretical and experimental analyses (see Section 3.5.6) have
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shown that the probability that the resolution time, tres , exceeds some
arbitrary time, t, decreases exponentially with t:

Pðtres > tÞ = T0

Tc
e−

t
τ (3.24)

where Tc is the clock period, and T0 and τ are characteristic of the flip-
flop. The equation is valid only for t substantially longer than tpcq.

Intuitively, T0/Tc describes the probability that the input changes at a
bad time (i.e., during the aperture time); this probability decreases with
the cycle time, Tc . τ is a time constant indicating how fast the flip-flop
moves away from the metastable state; it is related to the delay through
the cross-coupled gates in the flip-flop.

In summary, if the input to a bistable device such as a flip-flop
changes during the aperture time, the output may take on a metastable
value for some time before resolving to a stable 0 or 1. The amount of
time required to resolve is unbounded, because for any finite time, t, the
probability that the flip-flop is still metastable is nonzero. However, this
probability drops off exponentially as t increases. Therefore, if we wait
long enough, much longer than tpcq, we can expect with exceedingly high
probability that the flip-flop will reach a valid logic level.

3 . 5 . 5 Synchronizers

Asynchronous inputs to digital systems from the real world are inevitable.
Human input is asynchronous, for example. If handled carelessly, these
asynchronous inputs can lead to metastable voltages within the system,
causing erratic system failures that are extremely difficult to track down
and correct. The goal of a digital system designer should be to ensure that,
given asynchronous inputs, the probability of encountering a metastable
voltage is sufficiently small. “Sufficiently” depends on the context. For a
cell phone, perhaps one failure in 10 years is acceptable, because the user
can always turn the phone off and back on if it locks up. For a medical
device, one failure in the expected life of the universe (1010 years) is a bet-
ter target. To guarantee good logic levels, all asynchronous inputs should
be passed through synchronizers.

A synchronizer, shown in Figure 3.52, is a device that receives an
asynchronous input D and a clock CLK. It produces an output Q within
a bounded amount of time; the output has a valid logic level with extre-
mely high probability. If D is stable during the aperture, Q should take
on the same value as D. If D changes during the aperture, Q may take
on either a HIGH or LOW value but must not be metastable.

Figure 3.53 shows a simple way to build a synchronizer out of two
flip-flops. F1 samples D on the rising edge of CLK. If D is changing at
that time, the output D2 may be momentarily metastable. If the clock

D Q

CLK

S
Y

N
C

Figure 3.52 Synchronizer
symbol
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period is long enough, D2 will, with high probability, resolve to a valid
logic level before the end of the period. F2 then samples D2, which is
now stable, producing a good output Q.

We say that a synchronizer fails if Q, the output of the synchronizer,
becomes metastable. This may happen if D2 has not resolved to a valid
level by the time it must setup at F2—that is, if tres>Tc − tsetup. According
to Equation 3.24, the probability of failure for a single input change at a
random time is

PðfailureÞ = T0

Tc
e−

Tc−tsetup
τ (3.25)

The probability of failure, P(failure), is the probability that the output Q
will be metastable upon a single change in D. If D changes once per sec-
ond, the probability of failure per second is just P(failure). However, if D
changes N times per second, the probability of failure per second is N
times as great:

PðfailureÞ=sec = NT0

Tc
e−

Tc−tsetup
τ (3.26)

System reliability is usually measured in mean time between failures
(MTBF). As the name suggests, MTBF is the average amount of time
between failures of the system. It is the reciprocal of the probability that
the system will fail in any given second

MTBF = 1
PðfailureÞ=sec = Tc e

Tc−tsetup
τ

NT0
(3.27)

Equation 3.27 shows that the MTBF improves exponentially as the
synchronizer waits for a longer time, Tc. For most systems, a synchronizer
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CLK CLK
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F1 F2

Figure 3.53 Simple synchronizer
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that waits for one clock cycle provides a safe MTBF. In exceptionally
high-speed systems, waiting for more cycles may be necessary.

Example 3.14 SYNCHRONIZER FOR FSM INPUT

The traffic light controller FSM from Section 3.4.1 receives asynchronous inputs
from the traffic sensors. Suppose that a synchronizer is used to guarantee stable
inputs to the controller. Traffic arrives on average 0.2 times per second. The flip-flops
in the synchronizer have the following characteristics: τ= 200 ps, T0= 150 ps, and
tsetup= 500 ps. How long must the synchronizer clock period be for the MTBF to
exceed 1 year?

Solution: 1 year ≈ π × 107 seconds. Solve Equation 3.27.

π × 107 = Tc e
Tc−500×10−12

200×10−12

ð0:2Þð150× 10−12Þ (3.28)

This equation has no closed form solution. However, it is easy enough to solve by
guess and check. In a spreadsheet, try a few values of Tc and calculate the MTBF
until discovering the value of Tc that gives an MTBF of 1 year: Tc = 3.036 ns.

3 . 5 . 6 Derivation of Resolution Time*

Equation 3.24 can be derived using a basic knowledge of circuit theory,
differential equations, and probability. This section can be skipped if
you are not interested in the derivation or if you are unfamiliar with the
mathematics.

A flip-flop output will be metastable after some time, t, if the flip-flop
samples a changing input (causing a metastable condition) and the output
does not resolve to a valid level within that time after the clock edge. Sym-
bolically, this can be expressed as

Pðtres > tÞ = Pðsamples changing inputÞ×PðunresolvedÞ (3.29)

We consider each probability term individually. The asynchronous
input signal switches between 0 and 1 in some time, tswitch, as shown in
Figure 3.54. The probability that the input changes during the aperture
around the clock edge is

Pðsamples changing inputÞ = tswitch + tsetup + thold
Tc

(3.30)

If the flip-flop does enter metastability—that is, with probability
P(samples changing input)—the time to resolve from metastability
depends on the inner workings of the circuit. This resolution time deter-
mines P(unresolved), the probability that the flip-flop has not yet resolved
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to a valid logic level after a time t. The remainder of this section analyzes
a simple model of a bistable device to estimate this probability.

A bistable device uses storage with positive feedback. Figure 3.55(a)
shows this feedback implemented with a pair of inverters; this circuit’s
behavior is representative of most bistable elements. A pair of inverters
behaves like a buffer. Let us model the buffer as having the symmetric
DC transfer characteristics shown in Figure 3.55(b), with a slope of G.
The buffer can deliver only a finite amount of output current; we can model
this as an output resistance, R. All real circuits also have some capacitance
C that must be charged up. Charging the capacitor through the resistor
causes an RC delay, preventing the buffer from switching instantaneously.
Hence, the complete circuit model is shown in Figure 3.55(c), where vout(t)
is the voltage of interest conveying the state of the bistable device.

The metastable point for this circuit is vout(t)= vin(t)=VDD/2; if the
circuit began at exactly that point, it would remain there indefinitely in
the absence of noise. Because voltages are continuous variables, the
chance that the circuit will begin at exactly the metastable point is vanish-
ingly small. However, the circuit might begin at time 0 near metastability
at vout(0)=VDD/2+ ΔV for some small offset ΔV. In such a case, the posi-
tive feedback will eventually drive vout(t) to VDD if ΔV> 0 and to 0 if
ΔV < 0. The time required to reach VDD or 0 is the resolution time of
the bistable device.

The DC transfer characteristic is nonlinear, but it appears linear near
the metastable point, which is the region of interest to us. Specifically, if
vin(t)=VDD/2+ ΔV/G, then vout(t)=VDD/2+ ΔV for small ΔV. The current
through the resistor is i(t)= (vout(t) − vin(t))/R. The capacitor charges at a
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rate dvin(t)/dt= i(t)/C. Putting these facts together, we find the governing
equation for the output voltage.

dvoutðtÞ
dt

=
ðG−1Þ
RC

�
voutðtÞ−VDD

2

�
(3.31)

This is a linear first-order differential equation. Solving it with the initial
condition vout(0)=VDD/2+ ΔV gives

voutðtÞ = VDD

2
+ΔVe

ðG−1Þt
RC (3.32)

Figure 3.56 plots trajectories for vout(t) given various starting points.
vout(t) moves exponentially away from the metastable point VDD/2 until it
saturates at VDD or 0. The output eventually resolves to 1 or 0. The
amount of time this takes depends on the initial voltage offset (ΔV) from
the metastable point (VDD/2).

Solving Equation 3.32 for the resolution time tres, such that vout(tres)=
VDD or 0, gives

jΔV je
ðG−1Þtres

RC = VDD

2
(3.33)

tres =
RC
G−1

ln VDD

2 jΔV j (3.34)

In summary, the resolution time increases if the bistable device has high
resistance or capacitance that causes the output to change slowly. It
decreases if the bistable device has high gain, G. The resolution time also
increases logarithmically as the circuit starts closer to the metastable point
(ΔV→ 0).

Define τ as RC
G−1 . Solving Equation 3.34 for ΔV finds the initial offset,

ΔVres, that gives a particular resolution time, tres:

ΔVres =
VDD

2
e−tres/τ (3.35)

Suppose that the bistable device samples the input while it is changing.
It measures a voltage, vin(0), which we will assume is uniformly distributed
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VDD/2

VDD
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vout(t)

Figure 3.56 Resolution
trajectories
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between 0 and VDD. The probability that the output has not resolved to a
legal value after time tres depends on the probability that the initial offset is
sufficiently small. Specifically, the initial offset on vout must be less than
ΔVres, so the initial offset on vin must be less than ΔVres/G. Then the prob-
ability that the bistable device samples the input at a time to obtain a suffi-
ciently small initial offset is

PðunresolvedÞ = P vinð0Þ−VDD

2

����<ΔVres

G

�
= 2ΔVres

GVDD

����
�

(3.36)

Putting this all together, the probability that the resolution time exceeds
some time t is given by the following equation:

Pðtres > tÞ = tswitch + tsetup + thold
GTc

e−t
τ (3.37)

Observe that Equation 3.37 is in the form of Equation 3.24, where
T0= (tswitch+ tsetup + thold)/G and τ=RC/(G− 1). In summary, we have
derived Equation 3.24 and shown how T0 and τ depend on physical prop-
erties of the bistable device.

3.6 PARALLELISM

The speed of a system is characterized by the latency and throughput of
information moving through it. We define a token to be a group of inputs
that are processed to produce a group of outputs. The term conjures up
the notion of placing subway tokens on a circuit diagram and moving
them around to visualize data moving through the circuit. The latency
of a system is the time required for one token to pass through the system
from start to end. The throughput is the number of tokens that can be
produced per unit time.

Example 3.15 COOKIE THROUGHPUT AND LATENCY

Ben Bitdiddle is throwing a milk and cookies party to celebrate the installation of
his traffic light controller. It takes him 5 minutes to roll cookies and place them on
his tray. It then takes 15 minutes for the cookies to bake in the oven. Once the
cookies are baked, he starts another tray. What is Ben’s throughput and latency
for a tray of cookies?

Solution: In this example, a tray of cookies is a token. The latency is 1/3 hour per
tray. The throughput is 3 trays/hour.

As you might imagine, the throughput can be improved by processing
several tokens at the same time. This is called parallelism, and it comes in
two forms: spatial and temporal. With spatial parallelism, multiple copies
of the hardware are provided so that multiple tasks can be done at the
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same time. With temporal parallelism, a task is broken into stages, like an
assembly line.Multiple tasks can be spread across the stages. Although each
taskmust pass through all stages, a different task will be in each stage at any
given time so multiple tasks can overlap. Temporal parallelism is commonly
called pipelining. Spatial parallelism is sometimes just called parallelism,
but we will avoid that naming convention because it is ambiguous.

Example 3.16 COOKIE PARALLELISM

Ben Bitdiddle has hundreds of friends coming to his party and needs to bake
cookies faster. He is considering using spatial and/or temporal parallelism.

Spatial Parallelism: Ben asks Alyssa P. Hacker to help out. She has her own cookie
tray and oven.

Temporal Parallelism: Ben gets a second cookie tray. Once he puts one cookie tray
in the oven, he starts rolling cookies on the other tray rather than waiting for the
first tray to bake.

What is the throughput and latency using spatial parallelism? Using temporal par-
allelism? Using both?

Solution: The latency is the time required to complete one task from start to finish.
In all cases, the latency is 1/3 hour. If Ben starts with no cookies, the latency is the
time needed for him to produce the first cookie tray.

The throughput is the number of cookie trays per hour. With spatial parallelism,
Ben and Alyssa each complete one tray every 20 minutes. Hence, the throughput
doubles, to 6 trays/hour. With temporal parallelism, Ben puts a new tray in the
oven every 15 minutes, for a throughput of 4 trays/hour. These are illustrated in
Figure 3.57.

If Ben and Alyssa use both techniques, they can bake 8 trays/hour.

Consider a task with latency L. In a system with no parallelism, the
throughput is 1/L. In a spatially parallel system with N copies of the hard-
ware, the throughput is N/L. In a temporally parallel system, the task is
ideally broken into N steps, or stages, of equal length. In such a case,
the throughput is also N/L, and only one copy of the hardware is
required. However, as the cookie example showed, finding N steps of
equal length is often impractical. If the longest step has a latency L1, the
pipelined throughput is 1/L1.

Pipelining (temporal parallelism) is particularly attractive because it
speeds up a circuit without duplicating the hardware. Instead, registers
are placed between blocks of combinational logic to divide the logic into
shorter stages that can run with a faster clock. The registers prevent a
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token in one pipeline stage from catching up with and corrupting the
token in the next stage.

Figure 3.58 shows an example of a circuit with no pipelining. It con-
tains four blocks of logic between the registers. The critical path passes
through blocks 2, 3, and 4. Assume that the register has a clock-to-Q pro-
pagation delay of 0.3 ns and a setup time of 0.2 ns. Then the cycle time is
Tc= 0.3+ 3+ 2+ 4+ 0.2= 9.5 ns. The circuit has a latency of 9.5 ns and
a throughput of 1/9.5 ns= 105 MHz.

Figure 3.59 shows the same circuit partitioned into a two-stage pipe-
line by adding a register between blocks 3 and 4. The first stage has a
minimum clock period of 0.3+ 3+ 2+ 0.2= 5.5 ns. The second stage
has a minimum clock period of 0.3+ 4+ 0.2= 4.5 ns. The clock must
be slow enough for all stages to work. Hence, Tc= 5.5 ns. The latency
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Figure 3.57 Spatial and temporal parallelism in the cookie kitchen
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is two clock cycles, or 11 ns. The throughput is 1/5.5 ns= 182 MHz. This
example shows that, in a real circuit, pipelining with two stages almost
doubles the throughput and slightly increases the latency. In comparison,
ideal pipelining would exactly double the throughput at no penalty in
latency. The discrepancy comes about because the circuit cannot be
divided into two exactly equal halves and because the registers introduce
more sequencing overhead.

Figure 3.60 shows the same circuit partitioned into a three-stage pipe-
line. Note that two more registers are needed to store the results of blocks
1 and 2 at the end of the first pipeline stage. The cycle time is now limited
by the third stage to 4.5 ns. The latency is three cycles, or 13.5 ns. The through-
put is 1/4.5 ns=222MHz. Again, adding a pipeline stage improves throughput
at the expense of some latency.

Although these techniques are powerful, they do not apply to all
situations. The bane of parallelism is dependencies. If a current task is
dependent on the result of a prior task, rather than just prior steps in
the current task, the task cannot start until the prior task has completed.
For example, if Ben wants to check that the first tray of cookies tastes
good before he starts preparing the second, he has a dependency that pre-
vents pipelining or parallel operation. Parallelism is one of the most
important techniques for designing high-performance digital systems.
Chapter 7 discusses pipelining further and shows examples of handling
dependencies.
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3.7 SUMMARY

This chapter has described the analysis and design of sequential logic. In
contrast to combinational logic, whose outputs depend only on the cur-
rent inputs, sequential logic outputs depend on both current and prior
inputs. In other words, sequential logic remembers information about
prior inputs. This memory is called the state of the logic.

Sequential circuits can be difficult to analyze and are easy to design
incorrectly, so we limit ourselves to a small set of carefully designed build-
ing blocks. The most important element for our purposes is the flip-flop,
which receives a clock and an input D and produces an output Q. The
flip-flop copies D to Q on the rising edge of the clock and otherwise
remembers the old state of Q. A group of flip-flops sharing a common
clock is called a register. Flip-flops may also receive reset or enable con-
trol signals.

Although many forms of sequential logic exist, we discipline our-
selves to use synchronous sequential circuits because they are easy to
design. Synchronous sequential circuits consist of blocks of combinational
logic separated by clocked registers. The state of the circuit is stored in the
registers and updated only on clock edges.

Finite state machines are a powerful technique for designing sequen-
tial circuits. To design an FSM, first identify the inputs and outputs of
the machine and sketch a state transition diagram, indicating the states
and the transitions between them. Select an encoding for the states, and
rewrite the diagram as a state transition table and output table, indicating
the next state and output given the current state and input. From these
tables, design the combinational logic to compute the next state and out-
put, and sketch the circuit.

Synchronous sequential circuits have a timing specification including
the clock-to-Q propagation and contamination delays, tpcq and tccq, and
the setup and hold times, tsetup and thold. For correct operation, their
inputs must be stable during an aperture time that starts a setup time
before the rising edge of the clock and ends a hold time after the rising
edge of the clock. The minimum cycle time Tc of the system is equal to
the propagation delay tpd through the combinational logic plus tpcq+
tsetup of the register. For correct operation, the contamination delay
through the register and combinational logic must be greater than thold.
Despite the common misconception to the contrary, hold time does not
affect the cycle time.

Overall system performance is measured in latency and throughput.
The latency is the time required for a token to pass from start to end.
The throughput is the number of tokens that the system can process per
unit time. Parallelism improves system throughput.

Anyone who could invent
logic whose outputs depend on
future inputs would be
fabulously wealthy!
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Exercises

Exercise 3.1 Given the input waveforms shown in Figure 3.61, sketch the output,
Q, of an SR latch.

Exercise 3.2 Given the input waveforms shown in Figure 3.62, sketch the output,
Q, of an SR latch.

Exercise 3.3 Given the input waveforms shown in Figure 3.63, sketch the output,
Q, of a D latch.

Exercise 3.4 Given the input waveforms shown in Figure 3.64, sketch the output,
Q, of a D latch.

CLK

D

Figure 3.63 Input waveforms of D latch or flip-flop for Exercises 3.3 and 3.5

S

R

Figure 3.62 Input waveforms of SR latch for Exercise 3.2

S

R

Figure 3.61 Input waveforms of SR latch for Exercise 3.1

CLK

D

Figure 3.64 Input waveforms of D latch or flip-flop for Exercises 3.4 and 3.6
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Exercise 3.5 Given the input waveforms shown in Figure 3.63, sketch the output,
Q, of a D flip-flop.

Exercise 3.6 Given the input waveforms shown in Figure 3.64, sketch the output,
Q, of a D flip-flop.

Exercise 3.7 Is the circuit in Figure 3.65 combinational logic or sequential logic?
Explain in a simple fashion what the relationship is between the inputs and
outputs. What would you call this circuit?

Exercise 3.8 Is the circuit in Figure 3.66 combinational logic or sequential logic?
Explain in a simple fashion what the relationship is between the inputs and
outputs. What would you call this circuit?

Exercise 3.9 The toggle (T) flip-flop has one input, CLK, and one output, Q. On
each rising edge of CLK, Q toggles to the complement of its previous value. Draw
a schematic for a T flip-flop using a D flip-flop and an inverter.

Exercise 3.10 A JK flip-flop receives a clock and two inputs, J and K. On the rising
edge of the clock, it updates the output, Q. If J and K are both 0, Q retains its old
value. If only J is 1,Q becomes 1. If only K is 1,Q becomes 0. If both J and K are 1,
Q becomes the opposite of its present state.

(a) Construct a JK flip-flop using a D flip-flop and some combinational logic.

(b) Construct a D flip-flop using a JK flip-flop and some combinational logic.

(c) Construct a T flip-flop (see Exercise 3.9) using a JK flip-flop.
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Figure 3.66 Mystery circuit
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Figure 3.65 Mystery circuit
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Exercise 3.11 The circuit in Figure 3.67 is called a Muller C-element. Explain in a
simple fashion what the relationship is between the inputs and output.

Exercise 3.12 Design an asynchronously resettable D latch using logic gates.

Exercise 3.13 Design an asynchronously resettable D flip-flop using logic gates.

Exercise 3.14 Design a synchronously settable D flip-flop using logic gates.

Exercise 3.15 Design an asynchronously settable D flip-flop using logic gates.

Exercise 3.16 Suppose a ring oscillator is built from N inverters connected in a
loop. Each inverter has a minimum delay of tcd and a maximum delay of tpd. If N
is odd, determine the range of frequencies at which the oscillator might operate.

Exercise 3.17 Why must N be odd in Exercise 3.16?

Exercise 3.18 Which of the circuits in Figure 3.68 are synchronous sequential
circuits? Explain.

Exercise 3.19 You are designing an elevator controller for a building with 25
floors. The controller has two inputs: UP and DOWN. It produces an output
indicating the floor that the elevator is on. There is no floor 13. What is the
minimum number of bits of state in the controller?
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Figure 3.67 Muller C-element
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Exercise 3.20 You are designing an FSM to keep track of the mood of four
students working in the digital design lab. Each student’s mood is either HAPPY
(the circuit works), SAD (the circuit blew up), BUSY (working on the circuit),
CLUELESS (confused about the circuit), or ASLEEP (face down on the circuit
board). How many states does the FSM have? What is the minimum number of
bits necessary to represent these states?

Exercise 3.21 How would you factor the FSM from Exercise 3.20 into multiple
simpler machines? How many states does each simpler machine have? What is the
minimum total number of bits necessary in this factored design?

Exercise 3.22 Describe in words what the state machine in Figure 3.69 does. Using
binary state encodings, complete a state transition table and output table for the
FSM. Write Boolean equations for the next state and output and sketch a
schematic of the FSM.

Exercise 3.23 Describe in words what the state machine in Figure 3.70 does. Using
binary state encodings, complete a state transition table and output table for the
FSM. Write Boolean equations for the next state and output and sketch a
schematic of the FSM.

Exercise 3.24 Accidents are still occurring at the intersection of Academic Avenue
and Bravado Boulevard. The football team is rushing into the intersection the
moment light B turns green. They are colliding with sleep-deprived CS majors
who stagger into the intersection just before light A turns red. Extend the traffic
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Figure 3.69 State transition diagram
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Figure 3.70 State transition diagram
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light controller from Section 3.4.1 so that both lights are red for 5 seconds before
either light turns green again. Sketch your improved Moore machine state
transition diagram, state encodings, state transition table, output table, next state
and output equations, and your FSM schematic.

Exercise 3.25 Alyssa P. Hacker’s snail from Section 3.4.3 has a daughter with a
Mealy machine FSM brain. The daughter snail smiles whenever she slides over the
pattern 1101 or the pattern 1110. Sketch the state transition diagram for this
happy snail using as few states as possible. Choose state encodings and write a
combined state transition and output table using your encodings. Write the next
state and output equations and sketch your FSM schematic.

Exercise 3.26 You have been enlisted to design a soda machine dispenser for your
department lounge. Sodas are partially subsidized by the student chapter of the
IEEE, so they cost only 25 cents. The machine accepts nickels, dimes, and quarters.
When enough coins have been inserted, it dispenses the soda and returns any
necessary change. Design an FSM controller for the soda machine. The FSM inputs
are Nickel, Dime, and Quarter, indicating which coin was inserted. Assume that
exactly one coin is inserted on each cycle. The outputs areDispense, ReturnNickel,
ReturnDime, and ReturnTwoDimes. When the FSM reaches 25 cents, it asserts
Dispense and the necessary Return outputs required to deliver the appropriate
change. Then it should be ready to start accepting coins for another soda.

Exercise 3.27 Gray codes have a useful property in that consecutive numbers
differ in only a single bit position. Table 3.23 lists a 3-bit Gray code representing
the numbers 0 to 7. Design a 3-bit modulo 8 Gray code counter FSM with no
inputs and three outputs. (A modulo N counter counts from 0 to N − 1, then

Table 3.23 3-bit Gray code

Number Gray code

0 0 0 0

1 0 0 1

2 0 1 1

3 0 1 0

4 1 1 0

5 1 1 1

6 1 0 1

7 1 0 0
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repeats. For example, a watch uses a modulo 60 counter for the minutes and
seconds that counts from 0 to 59.) When reset, the output should be 000. On each
clock edge, the output should advance to the next Gray code. After reaching 100,
it should repeat with 000.

Exercise 3.28 Extend your modulo 8 Gray code counter from Exercise 3.27 to be
an UP/DOWN counter by adding an UP input. If UP= 1, the counter advances to
the next number. If UP= 0, the counter retreats to the previous number.

Exercise 3.29 Your company, Detect-o-rama, would like to design an FSM that
takes two inputs, A and B, and generates one output, Z. The output in cycle n, Zn,
is either the Boolean AND or OR of the corresponding input An and the previous
input An-1, depending on the other input, Bn:

Zn= An An−1 if Bn= 0
Zn= An +An−1 if Bn= 1

(a) Sketch the waveform for Z given the inputs shown in Figure 3.71.

(b) Is this FSM a Moore or a Mealy machine?

(c) Design the FSM. Show your state transition diagram, encoded state transition
table, next state and output equations, and schematic.

Exercise 3.30 Design an FSM with one input, A, and two outputs, X and Y.
X should be 1 if A has been 1 for at least three cycles altogether (not necessarily
consecutively). Y should be 1 if A has been 1 for at least two consecutive cycles.
Show your state transition diagram, encoded state transition table, next state and
output equations, and schematic.

Exercise 3.31 Analyze the FSM shown in Figure 3.72. Write the state transition
and output tables and sketch the state transition diagram. Describe in words what
the FSM does.

CLK
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B

Figure 3.71 FSM input waveforms
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Exercise 3.32 Repeat Exercise 3.31 for the FSM shown in Figure 3.73. Recall that
the s and r register inputs indicate set and reset, respectively.

Exercise 3.33 Ben Bitdiddle has designed the circuit in Figure 3.74 to compute a
registered four-input XOR function. Each two-input XOR gate has a propagation
delay of 100 ps and a contamination delay of 55 ps. Each flip-flop has a setup
time of 60 ps, a hold time of 20 ps, a clock-to-Q maximum delay of 70 ps, and a
clock-to-Q minimum delay of 50 ps.

(a) If there is no clock skew, what is themaximum operating frequency of the circuit?

(b) How much clock skew can the circuit tolerate if it must operate at 2 GHz?

(c) How much clock skew can the circuit tolerate before it might experience a
hold time violation?

(d) Alyssa P. Hacker points out that she can redesign the combinational logic
between the registers to be faster and tolerate more clock skew. Her improved
circuit also uses three two-input XORs, but they are arranged differently.
What is her circuit? What is its maximum frequency if there is no clock skew?
How much clock skew can the circuit tolerate before it might experience a
hold time violation?
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Figure 3.74 Registered four-input
XOR circuit
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Figure 3.72 FSM schematic
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Exercise 3.34 You are designing an adder for the blindingly fast 2-bit RePentium
Processor. The adder is built from two full adders such that the carry out of the first
adder is the carry in to the second adder, as shown in Figure 3.75. Your adder has
input and output registers and must complete the addition in one clock cycle. Each
full adder has the following propagation delays: 20 ps from Cin to Cout or to Sum
(S), 25 ps from A or B to Cout, and 30 ps from A or B to S. The adder has a
contamination delay of 15 ps from Cin to either output and 22 ps from A or B to
either output. Each flip-flop has a setup time of 30 ps, a hold time of 10 ps, a clock-
to-Q propagation delay of 35 ps, and a clock-to-Q contamination delay of 21 ps.

(a) If there is no clock skew, what is the maximum operating frequency of the
circuit?

(b) How much clock skew can the circuit tolerate if it must operate at 8 GHz?

(c) How much clock skew can the circuit tolerate before it might experience a
hold time violation?

Exercise 3.35 A field programmable gate array (FPGA) uses configurable logic
blocks (CLBs) rather than logic gates to implement combinational logic. The
Xilinx Spartan 3 FPGA has propagation and contamination delays of 0.61 and
0.30 ns, respectively, for each CLB. It also contains flip-flops with propagation
and contamination delays of 0.72 and 0.50 ns, and setup and hold times of 0.53
and 0 ns, respectively.

(a) If you are building a system that needs to run at 40 MHz, how many con-
secutive CLBs can you use between two flip-flops? Assume there is no clock
skew and no delay through wires between CLBs.

(b) Suppose that all paths between flip-flops pass through at least one CLB. How
much clock skew can the FPGA have without violating the hold time?

Exercise 3.36 A synchronizer is built from a pair of flip-flops with tsetup= 50 ps,
T0= 20 ps, and τ= 30 ps. It samples an asynchronous input that changes
108 times per second. What is the minimum clock period of the synchronizer
to achieve a mean time between failures (MTBF) of 100 years?
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Figure 3.75 2-bit adder schematic
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Exercise 3.37 You would like to build a synchronizer that can receive
asynchronous inputs with an MTBF of 50 years. Your system is running at 1 GHz,
and you use sampling flip-flops with τ= 100 ps, T0= 110 ps, and tsetup = 70 ps.
The synchronizer receives a new asynchronous input on average 0.5 times per
second (i.e., once every 2 seconds). What is the required probability of failure to
satisfy this MTBF? How many clock cycles would you have to wait before reading
the sampled input signal to give that probability of error?

Exercise 3.38 You are walking down the hallway when you run into your lab
partner walking in the other direction. The two of you first step one way and are
still in each other’s way. Then you both step the other way and are still in each
other’s way. Then you both wait a bit, hoping the other person will step aside.
You can model this situation as a metastable point and apply the same theory that
has been applied to synchronizers and flip-flops. Suppose you create a
mathematical model for yourself and your lab partner. You start the unfortunate
encounter in the metastable state. The probability that you remain in this state
after t seconds is e−

t
τ: τ indicates your response rate; today, your brain has been

blurred by lack of sleep and has τ= 20 seconds.

(a) How long will it be until you have 99% certainty that you will have resolved
from metastability (i.e., figured out how to pass one another)?

(b) You are not only sleepy, but also ravenously hungry. In fact, you will starve
to death if you don’t get going to the cafeteria within 3 minutes. What is the
probability that your lab partner will have to drag you to the morgue?

Exercise 3.39 You have built a synchronizer using flip-flops with T0= 20 ps and
τ= 30 ps. Your boss tells you that you need to increase the MTBF by a factor of
10. By how much do you need to increase the clock period?

Exercise 3.40 Ben Bitdiddle invents a new and improved synchronizer in Figure 3.76
that he claims eliminates metastability in a single cycle. He explains that the circuit in
box M is an analog “metastability detector” that produces a HIGH output if the
input voltage is in the forbidden zone between VIL and VIH. The metastability
detector checks to determine whether the first flip-flop has produced a metastable
output onD2. If so, it asynchronously resets the flip-flop to produce a good 0 atD2.
The second flip-flop then samples D2, always producing a valid logic level on Q.
Alyssa P. Hacker tells Ben that there must be a bug in the circuit, because eliminating
metastability is just as impossible as building a perpetual motion machine. Who is
right? Explain, showing Ben’s error or showing why Alyssa is wrong.
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D2Figure 3.76 “New and improved”
synchronizer
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Interview Questions

The following exercises present questions that have been asked at interviews for
digital design jobs.

Question 3.1 Draw a state machine that can detect when it has received the serial
input sequence 01010.

Question 3.2 Design a serial (one bit at a time) two’s complementer FSM with two
inputs, Start and A, and one output, Q. A binary number of arbitrary length is
provided to input A, starting with the least significant bit. The corresponding bit
of the output appears at Q on the same cycle. Start is asserted for one cycle to
initialize the FSM before the least significant bit is provided.

Question 3.3 What is the difference between a latch and a flip-flop? Under what
circumstances is each one preferable?

Question 3.4 Design a 5-bit counter finite state machine.

Question 3.5 Design an edge detector circuit. The output should go HIGH for one
cycle after the input makes a 0 → 1 transition.

Question 3.6 Describe the concept of pipelining and why it is used.

Question 3.7 Describe what it means for a flip-flop to have a negative hold time.

Question 3.8 Given signal A, shown in Figure 3.77, design a circuit that produces
signal B.

Question 3.9 Consider a block of logic between two registers. Explain the timing
constraints. If you add a buffer on the clock input of the receiver (the second flip-
flop), does the setup time constraint get better or worse?

A

B

Figure 3.77 Signal waveforms
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