

2Combinational Logic Design

2.1 INTRODUCTION

In digital electronics, a circuit is a network that processes discrete-valued
variables. A circuit can be viewed as a black box, shown in Figure 2.1, with

▶ one or more discrete-valued input terminals

▶ one or more discrete-valued output terminals

▶ a functional specification describing the relationship between inputs
and outputs

▶ a timing specification describing the delay between inputs changing
and outputs responding.

Peering inside the black box, circuits are composed of nodes and ele-
ments. An element is itself a circuit with inputs, outputs, and a specifica-
tion. A node is a wire, whose voltage conveys a discrete-valued variable.
Nodes are classified as input, output, or internal. Inputs receive values
from the external world. Outputs deliver values to the external world.
Wires that are not inputs or outputs are called internal nodes. Figure 2.2

A E1

E2

E3B

C

n1

Y

Z

Figure 2.2 Elements and nodes

2.1 Introduction

2.2 Boolean Equations

2.3 Boolean Algebra

2.4 From Logic to Gates

2.5 Multilevel Combinational
Logic

2.6 X’s and Z’s, Oh My

2.7 Karnaugh Maps

2.8 Combinational Building
Blocks

2.9 Timing

2.10 Summary

Exercises

Interview Questions

inputs outputs
functional spec

timing spec

Figure 2.1 Circuit as a black box with inputs, outputs, and specifications

Physics

Devices

Analog
Circuits

Digital
Circuits

+

+−

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

Digital Design and Computer Architecture, Second Edition. DOI: 10.1016/B978-0-12-394424-5.00002-1
© 2013 Elsevier, Inc. All rights reserved.

55

http://dx.doi.org/10.1016/B978-0-12-394424-5.00002-1

illustrates a circuit with three elements, E1, E2, and E3, and six nodes.
Nodes A, B, and C are inputs. Y and Z are outputs. n1 is an internal node
between E1 and E3.

Digital circuits are classified as combinational or sequential. A com-
binational circuit’s outputs depend only on the current values of the
inputs; in other words, it combines the current input values to compute
the output. For example, a logic gate is a combinational circuit.
A sequential circuit’s outputs depend on both current and previous
values of the inputs; in other words, it depends on the input sequence.
A combinational circuit is memoryless, but a sequential circuit has mem-
ory. This chapter focuses on combinational circuits, and Chapter 3
examines sequential circuits.

The functional specification of a combinational circuit expresses the
output values in terms of the current input values. The timing specifica-
tion of a combinational circuit consists of lower and upper bounds on
the delay from input to output. We will initially concentrate on the func-
tional specification, then return to the timing specification later in this
chapter.

Figure 2.3 shows a combinational circuit with two inputs and one
output. On the left of the figure are the inputs, A and B, and on the right
is the output, Y. The symbol CL inside the box indicates that it is imple-
mented using only combinational logic. In this example, the function
F is specified to be OR: Y= F(A, B)=A+B. In words, we say the output
Y is a function of the two inputs, A and B, namely Y=A OR B.

Figure 2.4 shows two possible implementations for the combinational
logic circuit in Figure 2.3. As we will see repeatedly throughout the book,
there are often many implementations for a single function. You choose
which to use given the building blocks at your disposal and your design
constraints. These constraints often include area, speed, power, and
design time.

Figure 2.5 shows a combinational circuit with multiple outputs. This
particular combinational circuit is called a full adder and we will revisit
it in Section 5.2.1. The two equations specify the function of the outputs,
S and Cout, in terms of the inputs, A, B, and Cin.

To simplify drawings, we often use a single line with a slash through
it and a number next to it to indicate a bus, a bundle of multiple signals.
The number specifies how many signals are in the bus. For example,
Figure 2.6(a) represents a block of combinational logic with three inputs
and two outputs. If the number of bits is unimportant or obvious from
the context, the slash may be shown without a number. Figure 2.6(b)
indicates two blocks of combinational logic with an arbitrary number of
outputs from one block serving as inputs to the second block.

The rules of combinational composition tell us how we can build a
large combinational circuit from smaller combinational circuit elements.

A
B Y

Y = F(A, B) = A + B

CL

Figure 2.3 Combinational
logic circuit

A
B

Y

(a)

Y

(b)

A
B

Figure 2.4 Two OR
implementations

A S

S = A ⊕ B ⊕ Cin
Cout = AB + ACin + BCin

B
Cin

CL Cout

Figure 2.5 Multiple-output
combinational circuit

CL3

(a)

CL CL

(b)

2

Figure 2.6 Slash notation for
multiple signals

56 CHAPTER TWO Combinational Logic Design

A circuit is combinational if it consists of interconnected circuit elements
such that

▶ Every circuit element is itself combinational.

▶ Every node of the circuit is either designated as an input to the circuit
or connects to exactly one output terminal of a circuit element.

▶ The circuit contains no cyclic paths: every path through the circuit
visits each circuit node at most once.

Example 2.1 COMBINATIONAL CIRCUITS

Which of the circuits in Figure 2.7 are combinational circuits according to the
rules of combinational composition?

Solution: Circuit (a) is combinational. It is constructed from two combinational
circuit elements (inverters I1 and I2). It has three nodes: n1, n2, and n3. n1 is
an input to the circuit and to I1; n2 is an internal node, which is the output of
I1 and the input to I2; n3 is the output of the circuit and of I2. (b) is not combina-
tional, because there is a cyclic path: the output of the XOR feeds back to one of
its inputs. Hence, a cyclic path starting at n4 passes through the XOR to n5,
which returns to n4. (c) is combinational. (d) is not combinational, because node
n6 connects to the output terminals of both I3 and I4. (e) is combinational, illus-
trating two combinational circuits connected to form a larger combinational
circuit. (f) does not obey the rules of combinational composition because it has a
cyclic path through the two elements. Depending on the functions of the elements,
it may or may not be a combinational circuit.

Large circuits such as microprocessors can be very complicated, so we
use the principles from Chapter 1 to manage the complexity. Viewing a
circuit as a black box with a well-defined interface and function is an
application of abstraction and modularity. Building the circuit out of

(a)

n1 n2 n3I1 I2

(c)

CL
CL

(e)

n4
n5

(b)

n6
I3

I4

(d)

CL
CL

(f)

Figure 2.7 Example circuits

The rules of combinational
composition are sufficient but
not strictly necessary. Certain
circuits that disobey these
rules are still combinational,
so long as the outputs depend
only on the current values of
the inputs. However,
determining whether oddball
circuits are combinational is
more difficult, so we will
usually restrict ourselves to
combinational composition as
a way to build combinational
circuits.

2.1 Introduction 57

smaller circuit elements is an application of hierarchy. The rules of com-
binational composition are an application of discipline.

The functional specification of a combinational circuit is usually
expressed as a truth table or a Boolean equation. In the next sections,
we describe how to derive a Boolean equation from any truth table and
how to use Boolean algebra and Karnaugh maps to simplify equations.
We show how to implement these equations using logic gates and how
to analyze the speed of these circuits.

2.2 BOOLEAN EQUATIONS

Boolean equations deal with variables that are either TRUE or FALSE, so
they are perfect for describing digital logic. This section defines some
terminology commonly used in Boolean equations, then shows how to
write a Boolean equation for any logic function given its truth table.

2 . 2 . 1 Terminology

The complement of a variable A is its inverse A. The variable or its
complement is called a literal. For example, A, A, B, and B are literals.
We call A the true form of the variable and A the complementary form;
“true form” does not mean that A is TRUE, but merely that A does not
have a line over it.

The AND of one or more literals is called a product or an implicant.AB,
ABC, and B are all implicants for a function of three variables. Aminterm is
a product involving all of the inputs to the function. ABC is a minterm for a
function of the three variables A, B, and C, but AB is not, because it does
not involve C. Similarly, the OR of one or more literals is called a sum.
A maxterm is a sum involving all of the inputs to the function. A+B+C
is a maxterm for a function of the three variables A, B, and C.

The order of operations is important when interpreting Boolean
equations. Does Y=A+BC mean Y= (A OR B) AND C or Y=A OR
(B AND C)? In Boolean equations, NOT has the highest precedence,
followed by AND, then OR. Just as in ordinary equations, products are per-
formed before sums. Therefore, the equation is read as Y=A OR (B AND C).
Equation 2.1 gives another example of order of operations.

AB+BCD = ððAÞBÞ+ ðBCðDÞÞ (2.1)

2 . 2 . 2 Sum-of-Products Form

A truth table ofN inputs contains 2N rows, one for each possible value of the
inputs. Each row in a truth table is associated with a minterm that is TRUE
for that row. Figure 2.8 shows a truth table of two inputs, A and B. Each
row shows its corresponding minterm. For example, the minterm for the
first row is AB because AB is TRUE when A= 0, B= 0. The minterms are

0

A B Y
0 0
0 1
1 0
1 1

0
1
0

minterm
minterm

name

A B
A B

m0
m1
m2
m3

A B
A B

Figure 2.8 Truth table and
minterms

58 CHAPTER TWO Combinational Logic Design

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B

A B
A B
A B

minterm
name
m0
m1
m2
m3

Figure 2.9 Truth table with
multiple TRUE minterms

Canonical form is just a fancy
word for standard form. You
can use the term to impress your
friends and scare your enemies.

numbered starting with 0; the top row corresponds to minterm 0, m0, the
next row to minterm 1, m1, and so on.

We can write a Boolean equation for any truth table by summing
each of the minterms for which the output, Y, is TRUE. For example, in
Figure 2.8, there is only one row (or minterm) for which the output Y is
TRUE, shown circled in blue. Thus, Y=AB. Figure 2.9 shows a truth
table with more than one row in which the output is TRUE. Taking the
sum of each of the circled minterms gives Y = AB+AB:

This is called the sum-of-products canonical form of a function because
it is the sum (OR) of products (ANDs forming minterms). Although there
are many ways to write the same function, such as Y = BA+BA, we will
sort the minterms in the same order that they appear in the truth table, so
that we always write the same Boolean expression for the same truth table.

The sum-of-products canonical form can also be written in sigma
notation using the summation symbol, Σ. With this notation, the function
from Figure 2.9 would be written as:

FðA,BÞ = Σðm1,m3Þ
or (2.2)

FðA,BÞ = Σð1,3Þ

Example 2.2 SUM-OF-PRODUCTS FORM

Ben Bitdiddle is having a picnic. He won’t enjoy it if it rains or if there are ants.
Design a circuit that will output TRUE only if Ben enjoys the picnic.

Solution: First define the inputs and outputs. The inputs are A and R, which indi-
cate if there are ants and if it rains. A is TRUE when there are ants and FALSE
when there are no ants. Likewise, R is TRUE when it rains and FALSE when
the sun smiles on Ben. The output is E, Ben’s enjoyment of the picnic. E is TRUE
if Ben enjoys the picnic and FALSE if he suffers. Figure 2.10 shows the truth table
for Ben’s picnic experience.

Using sum-of-products form, we write the equation as: E = AR or E = Σð0Þ. We
can build the equation using two inverters and a two-input AND gate, shown in
Figure 2.11(a). You may recognize this truth table as the NOR function from
Section 1.5.5: E=A NOR R = A+R: Figure 2.11(b) shows the NOR implementa-
tion. In Section 2.3, we show that the two equations, AR and A+R, are equivalent.

The sum-of-products form provides a Boolean equation for any truth
table with any number of variables. Figure 2.12 shows a random three-
input truth table. The sum-of-products form of the logic function is

Y = ABC+ABC+ABC
or (2.3)

Y = Σð0, 4,5Þ

A R E
0 0
0 1
1 0
1 1

1
0
0
0

Figure 2.10 Ben’s truth table

2.2 Boolean Equations 59

Unfortunately, sum-of-products form does not necessarily generate
the simplest equation. In Section 2.3 we show how to write the same
function using fewer terms.

2 . 2 . 3 Product-of-Sums Form

An alternative way of expressing Boolean functions is the product-
of-sums canonical form. Each row of a truth table corresponds to a max-
term that is FALSE for that row. For example, the maxterm for the first
row of a two-input truth table is (A+B) because (A +B) is FALSE when
A= 0, B= 0. We can write a Boolean equation for any circuit directly
from the truth table as the AND of each of the maxterms for which the
output is FALSE. The product-of-sums canonical form can also be written
in pi notation using the product symbol, Π.

Example 2.3 PRODUCT-OF-SUMS FORM

Write an equation in product-of-sums form for the truth table in Figure 2.13.

Solution: The truth table has two rows in which the output is FALSE. Hence, the
function can be written in product-of-sums form as Y = ðA+BÞðA+BÞ or, using pi
notation, Y = ΠðM0,M2Þ or Y = Πð0, 2Þ. The first maxterm, (A+B), guarantees that
Y= 0 for A= 0, B= 0, because any value AND 0 is 0. Likewise, the second maxterm,
ðA+BÞ, guarantees that Y= 0 for A= 1, B= 0. Figure 2.13 is the same truth table as
Figure 2.9, showing that the same function can be written in more than one way.

Similarly, a Boolean equation for Ben’s picnic from Figure 2.10 can be
written in product-of-sums form by circling the three rows of 0’s to obtain
E = ðA+RÞðA+RÞðA+RÞ or E = Πð1, 2,3Þ. This is uglier than the sum-
of-products equation,E = AR, but the twoequations are logically equivalent.

Sum-of-products produces a shorter equation when the output is
TRUE on only a few rows of a truth table; product-of-sums is simpler
when the output is FALSE on only a few rows of a truth table.

2.3 BOOLEAN ALGEBRA

In the previous section, we learned how to write a Boolean expression given
a truth table. However, that expression does not necessarily lead to the
simplest set of logic gates. Just as you use algebra to simplify mathematical
equations, you can use Boolean algebra to simplify Boolean equations. The
rules of Boolean algebra are much like those of ordinary algebra but are in
some cases simpler, because variables have only two possible values: 0 or 1.

Boolean algebra is based on a set of axioms that we assume are
correct. Axioms are unprovable in the sense that a definition cannot be
proved. From these axioms, we prove all the theorems of Boolean algebra.

A

R

E

(a)

A
R

E

(b)

Figure 2.11 Ben’s circuit

B C Y
0 0
0 1
1 0
1 1

1
0
0
0

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0

Figure 2.12 Random three-input
truth table

A + B

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

maxterm
name
M0
M1
M2
M3

Figure 2.13 Truth table with
multiple FALSE maxterms

60 CHAPTER TWO Combinational Logic Design

These theorems have great practical significance, because they teach us how
to simplify logic to produce smaller and less costly circuits.

Axioms and theorems of Boolean algebra obey the principle of duality.
If the symbols 0 and 1 and the operators • (AND) and+ (OR) are inter-
changed, the statement will still be correct. We use the prime symbol (′)
to denote the dual of a statement.

2 . 3 . 1 Axioms

Table 2.1 states the axioms of Boolean algebra. These five axioms and
their duals define Boolean variables and the meanings of NOT, AND,
and OR. Axiom A1 states that a Boolean variable B is 0 if it is not 1.
The axiom’s dual, A1′, states that the variable is 1 if it is not 0. Together,
A1 and A1′ tell us that we are working in a Boolean or binary field of 0’s
and 1’s. Axioms A2 and A2′ define the NOT operation. Axioms A3 to A5
define AND; their duals, A3′ to A5′ define OR.

2 . 3 . 2 Theorems of One Variable

Theorems T1 to T5 in Table 2.2 describe how to simplify equations invol-
ving one variable.

The identity theorem, T1, states that for any Boolean variable B,
B AND 1=B. Its dual states that B OR 0=B. In hardware, as shown
in Figure 2.14, T1 means that if one input of a two-input AND gate is
always 1, we can remove the AND gate and replace it with a wire con-
nected to the variable input (B). Likewise, T1′ means that if one input
of a two-input OR gate is always 0, we can replace the OR gate with a
wire connected to B. In general, gates cost money, power, and delay, so
replacing a gate with a wire is beneficial.

The null element theorem, T2, says that B AND 0 is always equal to 0.
Therefore, 0 is called the null element for the AND operation, because it
nullifies the effect of any other input. The dual states that B OR 1 is always
equal to 1. Hence, 1 is the null element for the OR operation. In hardware,

Table 2.1 Axioms of Boolean algebra

Axiom Dual Name

A1 B= 0 if B ≠ 1 A1′ B= 1 if B ≠ 0 Binary field

A2 0= 1 A2′ 1 = 0 NOT

A3 0 • 0= 0 A3′ 1+ 1= 1 AND/OR

A4 1 • 1= 1 A4′ 0+ 0= 0 AND/OR

A5 0 • 1= 1 • 0= 0 A5′ 1+ 0= 0+ 1= 1 AND/OR

1 =

(a)

B B

=0
B

B

(b)

Figure 2.14 Identity theorem in
hardware: (a) T1, (b) T1′

The null element theorem
leads to some outlandish
statements that are actually
true! It is particularly
dangerous when left in the
hands of advertisers: YOU
WILL GET A MILLION
DOLLARS or we’ll send you a
toothbrush in the mail. (You’ll
most likely be receiving a
toothbrush in the mail.)

2.3 Boolean Algebra 61

as shown in Figure 2.15, if one input of an AND gate is 0, we can replace the
ANDgatewith awire that is tied LOW(to 0). Likewise, if one input of anOR
gate is 1, we can replace the OR gate with a wire that is tied HIGH (to 1).

Idempotency, T3, says that a variable AND itself is equal to just
itself. Likewise, a variable OR itself is equal to itself. The theorem gets
its name from the Latin roots: idem (same) and potent (power). The
operations return the same thing you put into them. Figure 2.16 shows
that idempotency again permits replacing a gate with a wire.

Involution, T4, is a fancy way of saying that complementing a vari-
able twice results in the original variable. In digital electronics, two
wrongs make a right. Two inverters in series logically cancel each other
out and are logically equivalent to a wire, as shown in Figure 2.17. The
dual of T4 is itself.

The complement theorem, T5 (Figure 2.18), states that a variable
AND its complement is 0 (because one of them has to be 0). And by dua-
lity, a variable OR its complement is 1 (because one of them has to be 1).

2 . 3 . 3 Theorems of Several Variables

Theorems T6 to T12 in Table 2.3 describe how to simplify equations
involving more than one Boolean variable.

Commutativity and associativity, T6 and T7, work the same as in tra-
ditional algebra. By commutativity, the order of inputs for an AND or
OR function does not affect the value of the output. By associativity,
the specific groupings of inputs do not affect the value of the output.

The distributivity theorem, T8, is the same as in traditional algebra,
but its dual, T8′, is not. By T8, AND distributes over OR, and by T8′,
OR distributes over AND. In traditional algebra, multiplication distri-
butes over addition but addition does not distribute over multiplication,
so that (B+C) × (B+D) ≠B + (C×D).

The covering, combining, and consensus theorems, T9 to T11, permit
us to eliminate redundant variables. With some thought, you should be
able to convince yourself that these theorems are correct.

Table 2.2 Boolean theorems of one variable

Theorem Dual Name

T1 Β • 1= Β T1′ Β+ 0= Β Identity

T2 Β • 0= 0 T2′ Β+ 1= 1 Null Element

T3 Β • Β= Β T3′ Β+ Β= Β Idempotency

T4 B= Β Involution

T5 Β • B= 0 T5′ Β+B= 1 Complements

0 =

(a)

B 0

=1
B 1

(b)

Figure 2.15 Null element theorem
in hardware: (a) T2, (b) T2′

B =

(a)

B B

=B
B B

(b)

Figure 2.16 Idempotency theorem
in hardware: (a) T3, (b) T3′

= BB

Figure 2.17 Involution theorem in
hardware: T4

B
=

(a)

B
0

=
B

B
1

(b)

Figure 2.18 Complement theorem
in hardware: (a) T5, (b) T5′

62 CHAPTER TWO Combinational Logic Design

De Morgan’s Theorem, T12, is a particularly powerful tool in digital
design. The theorem explains that the complement of the product of all
the terms is equal to the sum of the complement of each term. Likewise,
the complement of the sum of all the terms is equal to the product of the
complement of each term.

According to De Morgan’s theorem, a NAND gate is equivalent to an
OR gate with inverted inputs. Similarly, a NOR gate is equivalent to an
AND gate with inverted inputs. Figure 2.19 shows these De Morgan
equivalent gates for NAND and NOR gates. The two symbols shown
for each function are called duals. They are logically equivalent and can
be used interchangeably.

The inversion circle is called a bubble. Intuitively, you can imagine that
“pushing” a bubble through the gate causes it to come out at the other side

Table 2.3 Boolean theorems of several variables

Theorem Dual Name

T6 B • C=C • B T6′ Β+C=C+ Β Commutativity

T7 (Β • C) • D= Β • (C • D) T7′ (B+C)+D=B+ (C+D) Associativity

T8 (Β • C)+ (Β • D)= Β • (C+D) T8′ (B+C) • (B+D)=B+ (C • D) Distributivity

T9 Β • (Β+C)= Β T9′ B+ (B • C)= B Covering

T10 (Β • C)+ (B • C)= Β T10′ (B+C) • (B+C)=B Combining

T11 (Β • C)+ (B • D)+ (C • D)
= B • C+B • D

T11′ (B+C) • (B+D) • (C+D)
= (B+C) • (B+D)

Consensus

T12 B0 •B1 •B2…
= ðB0 +B1 +B2…Þ T12′ B0 +B1 +B2…

= ðB0 •B1 •B2…Þ
De Morgan’s
Theorem

Augustus De Morgan, died 1871.
A British mathematician, born
in India. Blind in one eye. His
father died when he was 10.
Attended Trinity College,
Cambridge, at age 16, and was
appointed Professor of
Mathematics at the newly
founded London University
at age 22. Wrote widely on
many mathematical subjects,
including logic, algebra, and
paradoxes. De Morgan’s
crater on the moon is named
for him. He proposed a riddle
for the year of his birth: “I was
x years of age in the year x2.”

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

NAND
A
B Y

A
B Y

NOR
A
B Y

A
B Y

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Y = A + B = A BY = AB = A + B

Figure 2.19 De Morgan equivalent gates

2.3 Boolean Algebra 63

A B Y
0 0
0 1
1 0
1 1

0
0
1
1

Y
1
1
0
0

Figure 2.20 Truth table showing
Y and Ȳ̄

A B Y
0 0
0 1
1 0
1 1

0
0
1
1

Y
1
1
0
0

minterm

A B
A B
A B

A B

Figure 2.21 Truth table showing
minterms for Ȳ̄

and flips the body of the gate from AND to OR or vice versa. For example,
the NAND gate in Figure 2.19 consists of an AND body with a bubble on
the output. Pushing the bubble to the left results in an OR body with bub-
bles on the inputs. The underlying rules for bubble pushing are

▶ Pushing bubbles backward (from the output) or forward (from the
inputs) changes the body of the gate from AND to OR or vice versa.

▶ Pushing a bubble from the output back to the inputs puts bubbles on
all gate inputs.

▶ Pushing bubbles on all gate inputs forward toward the output puts a
bubble on the output.

Section 2.5.2 uses bubble pushing to help analyze circuits.

Example 2.4 DERIVE THE PRODUCT-OF-SUMS FORM

Figure 2.20 shows the truth table for a Boolean function Y and its complement Y:
Using De Morgan’s Theorem, derive the product-of-sums canonical form of Y from
the sum-of-products form of Y:

Solution: Figure 2.21 shows the minterms (circled) contained in Y: The sum-of-
products canonical form of Y is

Y = AB+AB (2.4)

Taking the complement of both sides and applying De Morgan’s Theorem twice,
we get:

Y = Y = AB+AB = ðABÞðABÞ = ðA+BÞðA+BÞ (2.5)

2 . 3 . 4 The Truth Behind It All

The curious readermight wonder how to prove that a theorem is true. In Boo-
lean algebra, proofs of theorems with a finite number of variables are easy:
just show that the theorem holds for all possible values of these variables.
This method is called perfect induction and can be done with a truth table.

Example 2.5 PROVING THE CONSENSUS THEOREM USING
PERFECT INDUCTION

Prove the consensus theorem, T11, from Table 2.3.

Solution: Check both sides of the equation for all eight combinations of B, C,
and D. The truth table in Figure 2.22 illustrates these combinations. Because
BC+BD+CD = BC+BD for all cases, the theorem is proved.

64 CHAPTER TWO Combinational Logic Design

2 . 3 . 5 Simplifying Equations

The theorems of Boolean algebra help us simplify Boolean equations. For
example, consider the sum-of-products expression from the truth table of
Figure 2.9: Y = AB+AB: By Theorem T10, the equation simplifies to
Y = B: This may have been obvious looking at the truth table. In general,
multiple steps may be necessary to simplify more complex equations.

The basic principle of simplifying sum-of-products equations is to
combine terms using the relationship PA+PA = P, where P may be any
implicant. How far can an equation be simplified? We define an equation
in sum-of-products form to beminimized if it uses the fewest possible impli-
cants. If there are several equations with the same number of implicants, the
minimal one is the one with the fewest literals.

An implicant is called a prime implicant if it cannot be combined with
any other implicants in the equation to form a new implicant with fewer
literals. The implicants in a minimal equation must all be prime implicants.
Otherwise, they could be combined to reduce the number of literals.

Example 2.6 EQUATION MINIMIZATION

Minimize Equation 2.3: ABC+ABC+ABC:

Solution: We start with the original equation and apply Boolean theorems step by
step, as shown in Table 2.4.

Have we simplified the equation completely at this point? Let’s take a closer look.
From the original equation, the minterms ABC and ABC differ only in the
variable A. So we combined the minterms to form BC: However, if we look at
the original equation, we note that the last two minterms ABC and ABC also differ
by a single literal (C and C). Thus, using the same method, we could have combined
these two minterms to form the minterm AB: We say that implicants BC and AB
share the minterm ABC:

So, are we stuck with simplifying only one of the minterm pairs, or can we simplify
both? Using the idempotency theorem, we can duplicate terms as many times as
we want: B=B+B+ B+ B… . Using this principle, we simplify the equation com-
pletely to its two prime implicants, BC+AB, as shown in Table 2.5.

0 0
0 1
1 0
1 1

B C D
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

BC + BD BC + BD + CD
0
1
0
1
0
0
1
1

0
1
0
1
0
0
1
1

Figure 2.22 Truth table
proving T11

2.3 Boolean Algebra 65

Although it is a bit counterintuitive, expanding an implicant (for
example, turning AB into ABC +ABC) is sometimes useful in minimizing
equations. By doing this, you can repeat one of the expanded minterms to
be combined (shared) with another minterm.

You may have noticed that completely simplifying a Boolean equa-
tion with the theorems of Boolean algebra can take some trial and error.
Section 2.7 describes a methodical technique called Karnaugh maps that
makes the process easier.

Why bother simplifying a Boolean equation if it remains logically
equivalent? Simplifying reduces the number of gates used to physically
implement the function, thus making it smaller, cheaper, and possibly fas-
ter. The next section describes how to implement Boolean equations with
logic gates.

2.4 FROM LOGIC TO GATES

A schematic is a diagram of a digital circuit showing the elements and
the wires that connect them together. For example, the schematic in
Figure 2.23 shows a possible hardware implementation of our favorite
logic function, Equation 2.3:

Y = ABC+ABC+ABC

Table 2.4 Equation minimization

Step Equation Justification

ABC+ABC+ABC

1 BCðA+AÞ+ABC T8: Distributivity

2 BCð1Þ+ABC T5: Complements

3 BC+ABC T1: Identity

Table 2.5 Improved equation minimization

Step Equation Justification

ABC+ABC+ABC

1 ABC+ABC+ABC+ABC T3: Idempotency

2 BCðA+AÞ+ABðC+CÞ T8: Distributivity

3 BCð1Þ+ABð1Þ T5: Complements

4 BC+AB T1: Identity

The labs that accompany this
textbook (see Preface) show
how to use computer-aided
design (CAD) tools to design,
simulate, and test digital
circuits.

66 CHAPTER TWO Combinational Logic Design

By drawing schematics in a consistent fashion, we make them easier
to read and debug. We will generally obey the following guidelines:

▶ Inputs are on the left (or top) side of a schematic.

▶ Outputs are on the right (or bottom) side of a schematic.

▶ Whenever possible, gates should flow from left to right.

▶ Straight wires are better to use than wires with multiple corners
(jagged wires waste mental effort following the wire rather than
thinking of what the circuit does).

▶ Wires always connect at a T junction.

▶ A dot where wires cross indicates a connection between the wires.

▶ Wires crossing without a dot make no connection.

The last three guidelines are illustrated in Figure 2.24.
Any Boolean equation in sum-of-products form can be drawn as a

schematic in a systematic way similar to Figure 2.23. First, draw columns
for the inputs. Place inverters in adjacent columns to provide the comple-
mentary inputs if necessary. Draw rows of AND gates for each of the
minterms. Then, for each output, draw an OR gate connected to the min-
terms related to that output. This style is called a programmable logic
array (PLA) because the inverters, AND gates, and OR gates are arrayed
in a systematic fashion. PLAs will be discussed further in Section 5.6.

Figure 2.25 shows an implementation of the simplified equation we
found using Boolean algebra in Example 2.6. Notice that the simplified
circuit has significantly less hardware than that of Figure 2.23. It may also
be faster, because it uses gates with fewer inputs.

We can reduce the number of gates even further (albeit by a single
inverter) by taking advantage of inverting gates. Observe that BC is an

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Figure 2.23 Schematic of
Y = A B C +AB C +ABC

wires connect
at a T junction

wires connect
at a dot

wires crossing
without a dot do

not connect

Figure 2.24 Wire connections

A B C

Y

Figure 2.25 Schematic of
Y = B C +AB

2.4 From Logic to Gates 67

AND with inverted inputs. Figure 2.26 shows a schematic using this
optimization to eliminate the inverter on C. Recall that by De Morgan’s
theorem the AND with inverted inputs is equivalent to a NOR gate.
Depending on the implementation technology, it may be cheaper to use
the fewest gates or to use certain types of gates in preference to others.
For example, NANDs and NORs are preferred over ANDs and ORs in
CMOS implementations.

Many circuits have multiple outputs, each of which computes a sepa-
rate Boolean function of the inputs. We can write a separate truth table
for each output, but it is often convenient to write all of the outputs on
a single truth table and sketch one schematic with all of the outputs.

Example 2.7 MULTIPLE-OUTPUT CIRCUITS

The dean, the department chair, the teaching assistant, and the dorm social
chair each use the auditorium from time to time. Unfortunately, they occasion-
ally conflict, leading to disasters such as the one that occurred when the dean’s
fundraising meeting with crusty trustees happened at the same time as the
dorm’s BTB1 party. Alyssa P. Hacker has been called in to design a room reser-
vation system.

The system has four inputs, A3, . . . , A0, and four outputs, Y3, . . . , Y0. These signals
can also be written as A3:0 and Y3:0. Each user asserts her input when she requests
the auditorium for the next day. The system asserts at most one output, granting the
auditorium to the highest priority user. The dean, who is paying for the system,
demands highest priority (3). The department chair, teaching assistant, and dorm
social chair have decreasing priority.

Write a truth table and Boolean equations for the system. Sketch a circuit that
performs this function.

Solution: This function is called a four-input priority circuit. Its symbol and truth
table are shown in Figure 2.27.

We could write each output in sum-of-products form and reduce the equations
using Boolean algebra. However, the simplified equations are clear by inspec-
tion from the functional description (and the truth table): Y3 is TRUE whenever
A3 is asserted, so Y3 = Α3. Y2 is TRUE if A2 is asserted and A3 is not asserted, so
Y2 = A3A2:Y1 is TRUE if A1 is asserted and neither of the higher priority inputs
is asserted: Y1 = A3A2A1: And Y0 is TRUE whenever A0 and no other input is
asserted: Y0 = A3A2A1A0: The schematic is shown in Figure 2.28. An experi-
enced designer can often implement a logic circuit by inspection. Given a clear
specification, simply turn the words into equations and the equations into gates.

1 Black light, twinkies, and beer.

Y

A CB

Figure 2.26 Schematic using
fewer gates

68 CHAPTER TWO Combinational Logic Design

X is an overloaded symbol
that means “don’t care” in
truth tables and “contention”
in logic simulation (see Section
2.6.1). Think about the
context so you don’t mix up
the meanings. Some authors
use D or ? instead for “don’t
care” to avoid this ambiguity.

Notice that if A3 is asserted in the priority circuit, the outputs don’t
care what the other inputs are. We use the symbol X to describe inputs
that the output doesn’t care about. Figure 2.29 shows that the four-input
priority circuit truth table becomes much smaller with don’t cares. From
this truth table, we can easily read the Boolean equations in sum-of-
products form by ignoring inputs with X’s. Don’t cares can also appear
in truth table outputs, as we will see in Section 2.7.3.

2.5 MULTILEVEL COMBINATIONAL LOGIC

Logic in sum-of-products form is called two-level logic because it consists
of literals connected to a level of AND gates connected to a level of
OR gates. Designers often build circuits with more than two levels of logic

A0

A1

Priority
Circuit

A2

A3

0 0
0 1
1 0
1 1

0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
0

Y0

Y1

Y2

Y3

0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

A1 A0A3 A2 Y2 Y1 Y0Y3

Figure 2.27 Priority circuit

A1 A0

0 0
0 1
1 X
X X

0
0
0
0

0
0
0
1

0
0
1
0

0
1
0
0

A3 A2

0 0
0 0
0 0
0 1

X X 1 0 0 01 X

Y1 Y0Y3 Y2

Figure 2.29 Priority circuit truth table with
don’t cares (X’s)

A3A2A1A0
Y3

Y2

Y1

Y0

Figure 2.28 Priority circuit schematic

2.5 Multilevel Combinational Logic 69

gates. These multilevel combinational circuits may use less hardware than
their two-level counterparts. Bubble pushing is especially helpful in ana-
lyzing and designing multilevel circuits.

2 . 5 . 1 Hardware Reduction

Some logic functions require an enormous amount of hardware when
built using two-level logic. A notable example is the XOR function of
multiple variables. For example, consider building a three-input XOR
using the two-level techniques we have studied so far.

Recall that an N-input XOR produces a TRUE output when an odd
number of inputs are TRUE. Figure 2.30 shows the truth table for a three-
input XOR with the rows circled that produce TRUE outputs. From the
truth table, we read off a Boolean equation in sum-of-products form in
Equation 2.6. Unfortunately, there is no way to simplify this equation
into fewer implicants.

Y = ABC+ABC+ABC+ABC (2.6)

On the other hand, A ⊕ B ⊕ C = (A ⊕ B) ⊕ C (prove this to your-
self by perfect induction if you are in doubt). Therefore, the three-input
XOR can be built out of a cascade of two-input XORs, as shown in
Figure 2.31.

Similarly, an eight-input XOR would require 128 eight-input AND
gates and one 128-input OR gate for a two-level sum-of-products imple-
mentation. A much better option is to use a tree of two-input XOR gates,
as shown in Figure 2.32.

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
1
1
0
1
0
0
1

Y

XOR3

Y = A ⊕ B ⊕ C

A
B Y
C

BA C

Y
(b)(a)

Figure 2.30 Three-input XOR:
(a) functional specification and
(b) two-level logic implementation

70 CHAPTER TWO Combinational Logic Design

Selecting the best multilevel implementation of a specific logic function
is not a simple process. Moreover, “best” has many meanings: fewest
gates, fastest, shortest design time, least cost, least power consumption.
In Chapter 5, you will see that the “best” circuit in one technology is not
necessarily the best in another. For example, we have been using ANDs
and ORs, but in CMOS, NANDs and NORs are more efficient. With some
experience, you will find that you can create a good multilevel design by
inspection for most circuits. You will develop some of this experience as
you study circuit examples through the rest of this book. As you are
learning, explore various design options and think about the trade-offs.
Computer-aided design (CAD) tools are also available to search a vast
space of possible multilevel designs and seek the one that best fits your con-
straints given the available building blocks.

2 . 5 . 2 Bubble Pushing

You may recall from Section 1.7.6 that CMOS circuits prefer NANDs
and NORs over ANDs and ORs. But reading the equation by inspection
from a multilevel circuit with NANDs and NORs can get pretty hairy.
Figure 2.33 shows a multilevel circuit whose function is not immediately
clear by inspection. Bubble pushing is a helpful way to redraw these cir-
cuits so that the bubbles cancel out and the function can be more easily
determined. Building on the principles from Section 2.3.3, the guidelines
for bubble pushing are as follows:

▶ Begin at the output of the circuit and work toward the inputs.

▶ Push any bubbles on the final output back toward the inputs so that
you can read an equation in terms of the output (for example, Y)
instead of the complement of the output ðYÞ.

▶ Working backward, draw each gate in a form so that bubbles cancel.
If the current gate has an input bubble, draw the preceding gate with
an output bubble. If the current gate does not have an input bubble,
draw the preceding gate without an output bubble.

Figure 2.34 shows how to redraw Figure 2.33 according to the
bubble pushing guidelines. Starting at the output Y, the NAND gate
has a bubble on the output that we wish to eliminate. We push the
output bubble back to form an OR with inverted inputs, shown in

A
B

YC

Figure 2.31 Three-input XOR
using two-input XORs

Figure 2.32 Eight-input XOR using
seven two-input XORs

A
B

C

D

Y

Figure 2.33 Multilevel circuit
using NANDs and NORs

2.5 Multilevel Combinational Logic 71

Figure 2.34(a). Working to the left, the rightmost gate has an input
bubble that cancels with the output bubble of the middle NAND gate,
so no change is necessary, as shown in Figure 2.34(b). The middle gate
has no input bubble, so we transform the leftmost gate to have no
output bubble, as shown in Figure 2.34(c). Now all of the bubbles in
the circuit cancel except at the inputs, so the function can be read by
inspection in terms of ANDs and ORs of true or complementary inputs:
Y = ABC+D:

For emphasis of this last point, Figure 2.35 shows a circuit logically
equivalent to the one in Figure 2.34. The functions of internal nodes are
labeled in blue. Because bubbles in series cancel, we can ignore the bub-
bles on the output of the middle gate and on one input of the rightmost
gate to produce the logically equivalent circuit of Figure 2.35.

A
B

C Y

D
(a)

no output
bubble

bubble on
input and outputA

B

C

D

Y

(b)

A
B

C

D

Y

(c)
Y = ABC + D

no bubble on
input and output

Figure 2.34 Bubble-pushed
circuit

A
B

C

D

Y

AB

ABC

Y = ABC + D

Figure 2.35 Logically equivalent
bubble-pushed circuit

72 CHAPTER TWO Combinational Logic Design

Example 2.8 BUBBLE PUSHING FOR CMOS LOGIC

Most designers think in terms of AND and OR gates, but suppose you would like
to implement the circuit in Figure 2.36 in CMOS logic, which favors NAND and
NOR gates. Use bubble pushing to convert the circuit to NANDs, NORs, and
inverters.

Solution: A brute force solution is to just replace each AND gate with a NAND
and an inverter, and each OR gate with a NOR and an inverter, as shown in
Figure 2.37. This requires eight gates. Notice that the inverter is drawn with the
bubble on the front rather than back, to emphasize how the bubble can cancel
with the preceding inverting gate.

For a better solution, observe that bubbles can be added to the output of a gate
and the input of the next gate without changing the function, as shown in Figure
2.38(a). The final AND is converted to a NAND and an inverter, as shown in
Figure 2.38(b). This solution requires only five gates.

2.6 X’S AND Z’S, OH MY

Boolean algebra is limited to 0’s and 1’s. However, real circuits can also
have illegal and floating values, represented symbolically by X and Z.

2 . 6 . 1 Illegal Value: X

The symbol X indicates that the circuit node has an unknown or illegal
value. This commonly happens if it is being driven to both 0 and 1 at
the same time. Figure 2.39 shows a case where node Y is driven both
HIGH and LOW. This situation, called contention, is considered to be

Figure 2.36 Circuit using ANDs
and ORs

A = 1

Y = X

B = 0

Figure 2.39 Circuit with
contention

Figure 2.37 Poor circuit using
NANDs and NORs

(a) (b)

Figure 2.38 Better circuit using
NANDs and NORs

2.6 X’s and Z’s, Oh My 73

an error and must be avoided. The actual voltage on a node with conten-
tion may be somewhere between 0 and VDD, depending on the relative
strengths of the gates driving HIGH and LOW. It is often, but not always,
in the forbidden zone. Contention also can cause large amounts of power
to flow between the fighting gates, resulting in the circuit getting hot and
possibly damaged.

X values are also sometimes used by circuit simulators to indicate
an uninitialized value. For example, if you forget to specify the value
of an input, the simulator may assume it is an X to warn you of the
problem.

As mentioned in Section 2.4, digital designers also use the symbol X
to indicate “don’t care” values in truth tables. Be sure not to mix up the
two meanings. When X appears in a truth table, it indicates that the
value of the variable in the truth table is unimportant (can be either 0
or 1). When X appears in a circuit, it means that the circuit node has
an unknown or illegal value.

2 . 6 . 2 Floating Value: Z

The symbol Z indicates that a node is being driven neither HIGH nor
LOW. The node is said to be floating, high impedance, or high Z. A typi-
cal misconception is that a floating or undriven node is the same as a logic
0. In reality, a floating node might be 0, might be 1, or might be at some
voltage in between, depending on the history of the system. A floating
node does not always mean there is an error in the circuit, so long as some
other circuit element does drive the node to a valid logic level when the
value of the node is relevant to circuit operation.

One common way to produce a floating node is to forget to connect
a voltage to a circuit input, or to assume that an unconnected input is
the same as an input with the value of 0. This mistake may cause the
circuit to behave erratically as the floating input randomly changes
from 0 to 1. Indeed, touching the circuit may be enough to trigger the
change by means of static electricity from the body. We have seen cir-
cuits that operate correctly only as long as the student keeps a finger
pressed on a chip.

The tristate buffer, shown in Figure 2.40, has three possible output
states: HIGH (1), LOW (0), and floating (Z). The tristate buffer has
an input A, output Y, and enable E. When the enable is TRUE, the
tristate buffer acts as a simple buffer, transferring the input value
to the output. When the enable is FALSE, the output is allowed to
float (Z).

The tristate buffer in Figure 2.40 has an active high enable. That is,
when the enable is HIGH (1), the buffer is enabled. Figure 2.41 shows a
tristate buffer with an active low enable. When the enable is LOW (0),

E A Y
0 0 Z
0 1 Z
1 0 0
1 1 1

Tristate
Buffer

A

E

Y

Figure 2.40 Tristate buffer

E A Y
0 0 0
0 1 1
1 0 Z
1 1 Z

A

E

Y

Figure 2.41 Tristate buffer
with active low enable

74 CHAPTER TWO Combinational Logic Design

the buffer is enabled. We show that the signal is active low by putting a
bubble on its input wire. We often indicate an active low input by draw-
ing a bar over its name, E, or appending the letters “b” or “bar” after its
name, Eb or Ebar.

Tristate buffers are commonly used on busses that connect multiple
chips. For example, a microprocessor, a video controller, and an Ethernet
controller might all need to communicate with the memory system in a
personal computer. Each chip can connect to a shared memory bus using
tristate buffers, as shown in Figure 2.42. Only one chip at a time is
allowed to assert its enable signal to drive a value onto the bus. The other
chips must produce floating outputs so that they do not cause contention
with the chip talking to the memory. Any chip can read the information
from the shared bus at any time. Such tristate busses were once common.
However, in modern computers, higher speeds are possible with point-
to-point links, in which chips are connected to each other directly rather
than over a shared bus.

2.7 KARNAUGH MAPS

After working through several minimizations of Boolean equations using
Boolean algebra, you will realize that, if you’re not careful, you sometimes
end up with a completely different equation instead of a simplified
equation. Karnaugh maps (K-maps) are a graphical method for simplifying
Boolean equations. They were invented in 1953 by Maurice Karnaugh, a
telecommunications engineer at Bell Labs. K-maps work well for problems

en1

to bus

from bus

en2

to bus

from bus

en3

to bus

from bus

en4

to bus

from bus

Processor

Video

Ethernet
shared bus

Memory

Figure 2.42 Tristate bus
connecting multiple chips

Maurice Karnaugh, 1924–.
Graduated with a bachelor’s
degree in physics from the City
College of New York in 1948
and earned a Ph.D. in physics
from Yale in 1952.

Worked at Bell Labs and
IBM from 1952 to 1993 and as
a computer science professor
at the Polytechnic University
of New York from 1980 to
1999.

2.7 Karnaugh Maps 75

with up to four variables. More important, they give insight into manipu-
lating Boolean equations.

Recall that logic minimization involves combining terms. Two terms
containing an implicant P and the true and complementary forms of some
variable A are combined to eliminate A: PA+PA = P: Karnaugh maps
make these combinable terms easy to see by putting them next to each
other in a grid.

Figure 2.43 shows the truth table and K-map for a three-input
function. The top row of the K-map gives the four possible values
for the A and B inputs. The left column gives the two possible values
for the C input. Each square in the K-map corresponds to a row in
the truth table and contains the value of the output Y for that row.
For example, the top left square corresponds to the first row in the truth
table and indicates that the output value Y = 1 when ABC = 000. Just
like each row in a truth table, each square in a K-map represents a sin-
gle minterm. For the purpose of explanation, Figure 2.43(c) shows the
minterm corresponding to each square in the K-map.

Each square, or minterm, differs from an adjacent square by a change
in a single variable. This means that adjacent squares share all the same
literals except one, which appears in true form in one square and in com-
plementary form in the other. For example, the squares representing the
minterms ABC and ABC are adjacent and differ only in the variable
C. You may have noticed that the A and B combinations in the top row
are in a peculiar order: 00, 01, 11, 10. This order is called a Gray code.
It differs from ordinary binary order (00, 01, 10, 11) in that adjacent
entries differ only in a single variable. For example, 01 : 11 only changes
A from 0 to 1, while 01 : 10 would change A from 0 to 1 and B from 1 to 0.
Hence, writing the combinations in binary order would not have
produced our desired property of adjacent squares differing only in one
variable.

The K-map also “wraps around.” The squares on the far right are
effectively adjacent to the squares on the far left, in that they differ only
in one variable, A. In other words, you could take the map and roll it into
a cylinder, then join the ends of the cylinder to form a torus (i.e., a donut),
and still guarantee that adjacent squares would differ only in one
variable.

2 . 7 . 1 Circular Thinking

In the K-map in Figure 2.43, only two minterms are present in the equa-
tion, ABC and ABC, as indicated by the 1’s in the left column. Reading
the minterms from the K-map is exactly equivalent to reading equations
in sum-of-products form directly from the truth table.

Gray codes were patented
(U.S. Patent 2,632,058) by
Frank Gray, a Bell Labs
researcher, in 1953. They are
especially useful in mechanical
encoders because a slight
misalignment causes an error
in only one bit.

Gray codes generalize to
any number of bits. For
example, a 3-bit Gray code
sequence is:

000, 001, 011, 010,
110, 111, 101, 100

Lewis Carroll posed a related
puzzle in Vanity Fair in 1879.

“The rules of the Puzzle are
simple enough. Two words are
proposed, of the same length;
and the puzzle consists of
linking these together by
interposing other words, each
of which shall differ from the
next word in one letter only.
That is to say, one letter may
be changed in one of the given
words, then one letter in the
word so obtained, and so on,
till we arrive at the other given
word.”

For example, SHIP to DOCK:

SHIP, SLIP, SLOP,
SLOT, SOOT, LOOT,
LOOK, LOCK, DOCK.

Can you find a shorter
sequence?

76 CHAPTER TWO Combinational Logic Design

As before, we can use Boolean algebra to minimize equations in sum-of-
products form.

Y = ABC+ABC = ABðC+CÞ = AB (2.7)

K-maps help us do this simplification graphically by circling 1’s in
adjacent squares, as shown in Figure 2.44. For each circle, we write the cor-
responding implicant. Remember from Section 2.2 that an implicant is the
product of one or more literals. Variables whose true and complementary
forms are both in the circle are excluded from the implicant. In this case,
the variable C has both its true form (1) and its complementary form (0) in
the circle, so we do not include it in the implicant. In other words,Y is TRUE
whenA=B= 0, independent of C. So the implicant isAB: The K-map gives
the same answer we reached using Boolean algebra.

2 . 7 . 2 Logic Minimization with K-Maps

K-maps provide an easy visual way to minimize logic. Simply circle all the
rectangular blocks of 1’s in the map, using the fewest possible number of
circles. Each circle should be as large as possible. Then read off the impli-
cants that were circled.

More formally, recall that a Boolean equation is minimized when it is
written as a sum of the fewest number of prime implicants. Each circle on
the K-map represents an implicant. The largest possible circles are prime
implicants.

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0
0
0
0
0

Y

(a)

C 00 01

0

1

Y

11 10
AB

1

1

0

0

0

0

0

0

(b)

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

(c)

Figure 2.43 Three-input function: (a) truth table, (b) K-map, (c) K-map showing minterms

C 00 01

0

1

Y

11 10
AB

1

0

0

0

0

0

0

1 Figure 2.44 K-map minimization

2.7 Karnaugh Maps 77

For example, in the K-map of Figure 2.44, ABC and ABC are impli-
cants, but not prime implicants. Only AB is a prime implicant in that
K-map. Rules for finding aminimized equation from a K-map are as follows:

▶ Use the fewest circles necessary to cover all the 1’s.

▶ All the squares in each circle must contain 1’s.

▶ Each circle must span a rectangular block that is a power of 2 (i.e.,
1, 2, or 4) squares in each direction.

▶ Each circle should be as large as possible.

▶ A circle may wrap around the edges of the K-map.

▶ A 1 in a K-map may be circled multiple times if doing so allows fewer
circles to be used.

Example 2.9 MINIMIZATION OF A THREE-VARIABLE FUNCTION
USING A K-MAP

Suppose we have the function Y= F(A, B, C) with the K-map shown in Figure
2.45. Minimize the equation using the K-map.

Solution: Circle the 1’s in the K-map using as few circles as possible, as shown in
Figure 2.46. Each circle in the K-map represents a prime implicant, and the dimen-
sion of each circle is a power of two (2 × 1 and 2 × 2). We form the prime impli-
cant for each circle by writing those variables that appear in the circle only in true
or only in complementary form.

For example, in the 2 × 1 circle, the true and complementary forms of B are
included in the circle, so we do not include B in the prime implicant. However,
only the true form of A (A) and complementary form of C ðCÞ are in this circle,
so we include these variables in the prime implicant AC: Similarly, the 2 × 2 circle
covers all squares where B= 0, so the prime implicant is B:

Notice how the top-right square (minterm) is covered twice to make the prime
implicant circles as large as possible. As we saw with Boolean algebra techniques,
this is equivalent to sharing a minterm to reduce the size of the implicant. Also
notice how the circle covering four squares wraps around the sides of the K-map.

00 01

Y

11 10
AB

1

1

0

0

1

0

1

1

0

1

CFigure 2.45 K-map for
Example 2.9

78 CHAPTER TWO Combinational Logic Design

00 01

Y

11 10
AB

1

1

0

0

1

0

1

1

0

1

C

AC

Y = AC + B
B

Figure 2.46 Solution for
Example 2.9

Example 2.10 SEVEN-SEGMENT DISPLAY DECODER

A seven-segment display decoder takes a 4-bit data input D3:0 and produces seven
outputs to control light-emitting diodes to display a digit from 0 to 9. The seven
outputs are often called segments a through g, or Sa–Sg, as defined in Figure
2.47. The digits are shown in Figure 2.48. Write a truth table for the outputs,
and use K-maps to find Boolean equations for outputs Sa and Sb. Assume that ille-
gal input values (10–15) produce a blank readout.

Solution: The truth table is given in Table 2.6. For example, an input of 0000
should turn on all segments except Sg.

Each of the seven outputs is an independent function of four variables. The
K-maps for outputs Sa and Sb are shown in Figure 2.49. Remember that adjacent
squares may differ in only a single variable, so we label the rows and columns in
Gray code order: 00, 01, 11, 10. Be careful to also remember this ordering when
entering the output values into the squares.

Next, circle the prime implicants. Use the fewest number of circles necessary to
cover all the 1’s. A circle can wrap around the edges (vertical and horizontal),
and a 1 may be circled more than once. Figure 2.50 shows the prime implicants
and the simplified Boolean equations.

Note that the minimal set of prime implicants is not unique. For example, the
0000 entry in the Sa K-map was circled along with the 1000 entry to produce
the D2D1D0 minterm. The circle could have included the 0010 entry instead, pro-
ducing a D3D2D0 minterm, as shown with dashed lines in Figure 2.51.

Figure 2.52 (see page 82) illustrates a common error in which a nonprime implicant
was chosen to cover the 1 in the upper left corner. This minterm,D3D2D1D0, gives a
sum-of-products equation that is not minimal. The minterm could have been com-
bined with either of the adjacent ones to form a larger circle, as was done in the
previous two figures.

4 7

7-segment
display
decoder

a

b

c

d

g

e

f

D S

Figure 2.47 Seven-segment
display decoder icon

2.7 Karnaugh Maps 79

0 1 2 3 4 5 6 7 8 9

Figure 2.48 Seven-segment
display digits

Table 2.6 Seven-segment display decoder truth table

D3:0 Sa Sb Sc Sd Se Sf Sg

0000 1 1 1 1 1 1 0

0001 0 1 1 0 0 0 0

0010 1 1 0 1 1 0 1

0011 1 1 1 1 0 0 1

0100 0 1 1 0 0 1 1

0101 1 0 1 1 0 1 1

0110 1 0 1 1 1 1 1

0111 1 1 1 0 0 0 0

1000 1 1 1 1 1 1 1

1001 1 1 1 0 0 1 1

others 0 0 0 0 0 0 0

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

0

11

10

D3:2
00

00

10 01 11

1

1

1

0

0

0

1

101

1

1

1

0

0

0

0

0

11

10

00

00

10D1:0

D3:2
D1:0

Sa Sb

Figure 2.49 Karnaugh maps for
Sa and Sb

80 CHAPTER TWO Combinational Logic Design

2 . 7 . 3 Don’t Cares

Recall that “don’t care” entries for truth table inputs were introduced in
Section 2.4 to reduce the number of rows in the table when some vari-
ables do not affect the output. They are indicated by the symbol X, which
means that the entry can be either 0 or 1.

Don’t cares also appear in truth table outputs where the output value
is unimportant or the corresponding input combination can never

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

0

11

10

00

00

10
D3:2

D1:0

Sa = D3D1 + D3D2D0 + D3D2D1 + D2D1D0

D3D1

D3D2D0

D2D1D0

Sa

D3D2D1

01 11

1

1

1

0

0

0

1

101

1

1

1

0

0

0

0

0

11

10

00

00

10
D3:2

D1:0

Sb = D3D2 + D2D1 + D3D1D0 + D3D1D0

D3D2

D2D1

Sb

D3D1D0

D3D1D0

Figure 2.50 K-map solution for Example 2.10

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

0

11

10

00

00

10
D3:2

D1:0

Sa = D3D1 + D3D2D0 + D3D2D1 + D3D2D0

D3D1

D3D2D0 D3D2D1

D3D2D0

Sa

Figure 2.51 Alternative K-map for
Sa showing different set of prime
implicants

2.7 Karnaugh Maps 81

happen. Such outputs can be treated as either 0’s or 1’s at the designer’s
discretion.

In a K-map, X’s allow for even more logic minimization. They can be
circled if they help cover the 1’s with fewer or larger circles, but they do
not have to be circled if they are not helpful.

Example 2.11 SEVEN-SEGMENT DISPLAY DECODER WITH DON’T CARES

Repeat Example 2.10 if we don’t care about the output values for illegal input
values of 10 to 15.

Solution: The K-map is shown in Figure 2.53 with X entries representing don’t care.
Because don’t cares can be 0 or 1, we circle a don’t care if it allows us to cover the 1’s
with fewer or bigger circles. Circled don’t cares are treated as 1’s, whereas uncircled
don’t cares are 0’s. Observe how a 2× 2 square wrapping around all four corners is
circled for segment Sa. Use of don’t cares simplifies the logic substantially.

2 . 7 . 4 The Big Picture

Boolean algebra and Karnaugh maps are two methods of logic simplifica-
tion. Ultimately, the goal is to find a low-cost method of implementing a
particular logic function.

In modern engineering practice, computer programs called logic
synthesizers produce simplified circuits from a description of the logic
function, as we will see in Chapter 4. For large problems, logic synthe-
sizers are much more efficient than humans. For small problems, a

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

0

11

10

00

00

10
D3:2

D1:0

Sa

D3D1

D3D2D0 D3D2D1

D3D2D1D0

Sa = D3D1 + D3D2D0 + D3D2D1 + D3D2D1D0

Figure 2.52 Alternative K-map for
Sa showing incorrect nonprime
implicant

82 CHAPTER TWO Combinational Logic Design

human with a bit of experience can find a good solution by inspection.
Neither of the authors has ever used a Karnaugh map in real life to
solve a practical problem. But the insight gained from the principles
underlying Karnaugh maps is valuable. And Karnaugh maps often
appear at job interviews!

2.8 COMBINATIONAL BUILDING BLOCKS

Combinational logic is often grouped into larger building blocks to build
more complex systems. This is an application of the principle of abstrac-
tion, hiding the unnecessary gate-level details to emphasize the function of
the building block. We have already studied three such building blocks:
full adders (from Section 2.1), priority circuits (from Section 2.4), and
seven-segment display decoders (from Section 2.7). This section intro-
duces two more commonly used building blocks: multiplexers and deco-
ders. Chapter 5 covers other combinational building blocks.

2 . 8 . 1 Multiplexers

Multiplexers are among the most commonly used combinational circuits.
They choose an output from among several possible inputs based on the value
of a select signal. A multiplexer is sometimes affectionately called a mux.

2:1 Multiplexer
Figure 2.54 shows the schematic and truth table for a 2:1 multiplexer
with two data inputs D0 and D1, a select input S, and one output Y.
The multiplexer chooses between the two data inputs based on the select:
if S= 0, Y =D0, and if S= 1, Y=D1. S is also called a control signal
because it controls what the multiplexer does.

A 2:1 multiplexer can be built from sum-of-products logic as shown
in Figure 2.55. The Boolean equation for the multiplexer may be derived

D3:2

D1:0

D3:2

D1:0

Sa Sb

01 11

1

0

0

1

X

X

1

101

1

1

1

1

X

X

X

X

11

10

00

00

10 01 11

1

1

1

0

X

X

1

101

1

1

1

0

X

X

X

X

11

10

00

00

10

Sa = D3 + D2D0 + D2D0 + D1 Sb = D2 + D1D0 + D1D0

Figure 2.53 K-map solution with
don’t cares

Y
0 0
0 1
1 0
1 1

0
1
0
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0

1

S

D0
Y

D1

D1 D0S

Figure 2.54 2:1 multiplexer
symbol and truth table

2.8 Combinational Building Blocks 83

with a Karnaugh map or read off by inspection (Y is 1 if S= 0 AND D0 is
1 OR if S= 1 AND D1 is 1).

Alternatively, multiplexers can be built from tristate buffers as shown
in Figure 2.56. The tristate enables are arranged such that, at all times,
exactly one tristate buffer is active. When S= 0, tristate T0 is enabled,
allowing D0 to flow to Y. When S= 1, tristate T1 is enabled, allowing
D1 to flow to Y.

Wider Multiplexers
A 4:1 multiplexer has four data inputs and one output, as shown in
Figure 2.57. Two select signals are needed to choose among the four data
inputs. The 4:1 multiplexer can be built using sum-of-products logic,
tristates, or multiple 2:1 multiplexers, as shown in Figure 2.58.

The product terms enabling the tristates can be formed using AND
gates and inverters. They can also be formed using a decoder, which we
will introduce in Section 2.8.2.

Wider multiplexers, such as 8:1 and 16:1 multiplexers, can be built
by expanding the methods shown in Figure 2.58. In general, an N:1 mul-
tiplexer needs log2N select lines. Again, the best implementation choice
depends on the target technology.

Multiplexer Logic
Multiplexers can be used as lookup tables to perform logic functions.
Figure 2.59 shows a 4:1 multiplexer used to implement a two-input

D1

Y

D0

S

S 00 01

0

1

Y

11 10
D1:0

0

0

1

0

1

1

0

1

Y = D0S + D1S
Figure 2.55 2:1 multiplexer
implementation using two-level
logic

Y

D0

S

T0

T1

Y = D0S + D1S

D1

Figure 2.56 Multiplexer using
tristate buffers

00

S1:0

D0
D1 Y

01

10

11

D2
D3

2

Figure 2.57 4:1 multiplexer

Shorting together the outputs of
multiple gates technically violates
the rules for combinational
circuits given in Section 2.1.
But because exactly one of the
outputs is driven at any time,
this exception is allowed.

84 CHAPTER TWO Combinational Logic Design

AND gate. The inputs, A and B, serve as select lines. The multiplexer data
inputs are connected to 0 or 1 according to the corresponding row of the
truth table. In general, a 2N-input multiplexer can be programmed to per-
form any N-input logic function by applying 0’s and 1’s to the appropri-
ate data inputs. Indeed, by changing the data inputs, the multiplexer can
be reprogrammed to perform a different function.

With a little cleverness, we can cut the multiplexer size in half, using
only a 2N–1-input multiplexer to perform any N-input logic function.
The strategy is to provide one of the literals, as well as 0’s and 1’s, to
the multiplexer data inputs.

To illustrate this principle, Figure 2.60 shows two-input AND and
XOR functions implemented with 2:1 multiplexers. We start with an
ordinary truth table, and then combine pairs of rows to eliminate the right-
most input variable by expressing the output in terms of this variable.
For example, in the case of AND, whenA = 0, Y= 0, regardless of B. When
A= 1, Y= 0 if B= 0 and Y= 1 if B= 1, so Y=B. We then use the multi-
plexer as a lookup table according to the new, smaller truth table.

Example 2.12 LOGIC WITH MULTIPLEXERS

Alyssa P. Hacker needs to implement the function Y = AB+BC+ABC to finish
her senior project, but when she looks in her lab kit, the only part she has left is
an 8:1 multiplexer. How does she implement the function?

Solution: Figure 2.61 shows Alyssa’s implementation using a single 8:1 multi-
plexer. The multiplexer acts as a lookup table where each row in the truth table
corresponds to a multiplexer input.

(a)
Y

D0

D1

D2

D3

(b) (c)

S0

Y

0

1

0

1

0

1

S1

D0

D1

D2

D3

Y

S1S0

S1S0

S1S0

S1S0

D0

D2

D3

D1

S1 S0

Figure 2.58 4:1 multiplexer
implementations: (a) two-level
logic, (b) tristates, (c) hierarchical

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB

00

Y01
10

11

A B

Figure 2.59 4:1 multiplexer
implementation of two-input AND
function

2.8 Combinational Building Blocks 85

Example 2.13 LOGIC WITH MULTIPLEXERS, REPRISED

Alyssa turns on her circuit one more time before the final presentation and blows
up the 8:1 multiplexer. (She accidently powered it with 20 V instead of 5 V after
not sleeping all night.) She begs her friends for spare parts and they give her a 4:1
multiplexer and an inverter. Can she build her circuit with only these parts?

Solution: Alyssa reduces her truth table to four rows by letting the output depend
on C. (She could also have chosen to rearrange the columns of the truth table to
let the output depend on A or B.) Figure 2.62 shows the new design.

2 . 8 . 2 Decoders

A decoder has N inputs and 2N outputs. It asserts exactly one of its
outputs depending on the input combination. Figure 2.63 shows a
2:4 decoder. When A1:0= 00, Y0 is 1. When A1:0= 01, Y1 is 1. And so
forth. The outputs are called one-hot, because exactly one is “hot”
(HIGH) at a given time.

(a)

(b)

Y = A ⊕ B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A Y

0

1 B

B 0

1

A

B
Y

B

Y = AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A Y

0

1

0 0

1

A

B
Y

B

Figure 2.60 Multiplexer logic
using variable inputs

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0

C

(a)
Y = AB + BC + ABC

CA B

(b)

000
001
010
011
100
101
110
111

Y
Figure 2.61 Alyssa’s circuit:
(a) truth table, (b) 8:1 multiplexer
implementation

86 CHAPTER TWO Combinational Logic Design

Example 2.14 DECODER IMPLEMENTATION

Implement a 2:4 decoder with AND, OR, and NOT gates.

Solution: Figure 2.64 shows an implementation for the 2:4 decoder using four
AND gates. Each gate depends on either the true or the complementary form of
each input. In general, an N:2N decoder can be constructed from 2N N-input
AND gates that accept the various combinations of true or complementary inputs.
Each output in a decoder represents a single minterm. For example, Y0 represents
the minterm A1A0: This fact will be handy when using decoders with other digital
building blocks.

Decoder Logic
Decoders can be combined with OR gates to build logic functions. Figure
2.65 shows the two-input XNOR function using a 2:4 decoder and a
single OR gate. Because each output of a decoder represents a single min-
term, the function is built as the OR of all the minterms in the function. In
Figure 2.65, Y = AB+AB = A⊕B:

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0

C

(a)

A Y
0 0
0 1
1 0 1
1 1 0

B
C
C

00

Y01
10

11

A B

C

(b) (c)

Figure 2.62 Alyssa’s new circuit

A1 A0

Y3

Y2

Y1

Y0

Figure 2.64 2:4 decoder implementation

2:4
Decoder

A1

A0

Y3
Y2
Y1
Y000

01
10
11

0 0
0 1
1 0
1 1

0
0
0
1

Y3 Y2 Y1 Y0A0A1

0
0
1
0

0
1
0
0

1
0
0
0

Figure 2.63 2:4 decoder

2:4
Decoder

A
B

00
01
10
11

Y = A B

Y

AB
AB
AB
AB

Minterm

⊕

Figure 2.65 Logic function using
decoder

2.8 Combinational Building Blocks 87

When using decoders to build logic, it is easiest to express functions
as a truth table or in canonical sum-of-products form. An N-input
function with M 1’s in the truth table can be built with an N:2N decoder
and an M-input OR gate attached to all of the minterms containing 1’s in
the truth table. This concept will be applied to the building of Read Only
Memories (ROMs) in Section 5.5.6.

2.9 TIMING

In previous sections, we have been concerned primarily with whether the
circuit works—ideally, using the fewest gates. However, as any seasoned
circuit designer will attest, one of the most challenging issues in circuit
design is timing: making a circuit run fast.

An output takes time to change in response to an input change.
Figure 2.66 shows the delay between an input change and the subsequent
output change for a buffer. The figure is called a timing diagram; it por-
trays the transient response of the buffer circuit when an input changes.
The transition from LOW to HIGH is called the rising edge. Similarly,
the transition from HIGH to LOW (not shown in the figure) is called the
falling edge. The blue arrow indicates that the rising edge of Y is caused
by the rising edge of A. We measure delay from the 50% point of the input
signal, A, to the 50% point of the output signal, Y. The 50% point is the
point at which the signal is half-way (50%) between its LOW and HIGH
values as it transitions.

2 . 9 . 1 Propagation and Contamination Delay

Combinational logic is characterized by its propagation delay and
contamination delay. The propagation delay tpd is the maximum time
from when an input changes until the output or outputs reach their final
value. The contamination delay tcd is the minimum time from when an
input changes until any output starts to change its value.

A

Y

Time

delay

A Y

Figure 2.66 Circuit delay

When designers speak of
calculating the delay of a
circuit, they generally are
referring to the worst-case
value (the propagation delay),
unless it is clear otherwise
from the context.

88 CHAPTER TWO Combinational Logic Design

Figure 2.67 illustrates a buffer’s propagation delay and contamina-
tion delay in blue and gray, respectively. The figure shows that A is initi-
ally either HIGH or LOW and changes to the other state at a particular
time; we are interested only in the fact that it changes, not what value it
has. In response, Y changes some time later. The arcs indicate that Y
may start to change tcd after A transitions and that Y definitely settles to
its new value within tpd.

The underlying causes of delay in circuits include the time required to
charge the capacitance in a circuit and the speed of light. tpd and tcd may
be different for many reasons, including

▶ different rising and falling delays

▶ multiple inputs and outputs, some of which are faster than others

▶ circuits slowing down when hot and speeding up when cold

Calculating tpd and tcd requires delving into the lower levels of
abstraction beyond the scope of this book. However, manufacturers nor-
mally supply data sheets specifying these delays for each gate.

Along with the factors already listed, propagation and contamination
delays are also determined by the path a signal takes from input to out-
put. Figure 2.68 shows a four-input logic circuit. The critical path, shown
in blue, is the path from input A or B to output Y. It is the longest, and

Circuit delays are ordinarily
on the order of picoseconds
(1 ps = 10−12 seconds) to
nanoseconds (1 ns = 10−9

seconds). Trillions of
picoseconds have elapsed in
the time you spent reading this
sidebar.

A
B

C

D Y

Critical Path

Short Path

n1

n2 Figure 2.68 Short path and
critical path

A Y

A

Y

Time

tpd

tcd

Figure 2.67 Propagation and
contamination delay

2.9 Timing 89

therefore the slowest, path, because the input travels through three gates
to the output. This path is critical because it limits the speed at which
the circuit operates. The short path through the circuit, shown in gray,
is from input D to output Y. This is the shortest, and therefore the fastest,
path through the circuit, because the input travels through only a single
gate to the output.

The propagation delay of a combinational circuit is the sum of
the propagation delays through each element on the critical path. The
contamination delay is the sum of the contamination delays through each
element on the short path. These delays are illustrated in Figure 2.69 and
are described by the following equations:

tpd = 2tpd�AND + tpd�OR (2.8)

tcd = tcd�AND (2.9)

Example 2.15 FINDING DELAYS

Ben Bitdiddle needs to find the propagation delay and contamination delay of the
circuit shown in Figure 2.70. According to his data book, each gate has a propa-
gation delay of 100 picoseconds (ps) and a contamination delay of 60 ps.

A = 1 0

Y = 1 0

D

Y

delay

Time

A

Y

delay

A = 1
B = 1

C = 0

D = 1 0 Y = 1 0

Short Path

Critical Path

Time

n1

n2

n1

n2

n1

n2

B = 1

C = 0

D = 1

Figure 2.69 Critical and short path waveforms

Although we are ignoring wire
delay in this analysis, digital
circuits are now so fast that
the delay of long wires can be
as important as the delay of
the gates. The speed of light
delay in wires is covered in
Appendix A.

90 CHAPTER TWO Combinational Logic Design

Solution: Ben begins by finding the critical path and the shortest path through the
circuit. The critical path, highlighted in blue in Figure 2.71, is from input A or B
through three gates to the output Y. Hence, tpd is three times the propagation
delay of a single gate, or 300 ps.

The shortest path, shown in gray in Figure 2.72, is from inputC,D, orE through two
gates to the output Y. There are only two gates in the shortest path, so tcd is 120 ps.

Example 2.16 MULTIPLEXER TIMING: CONTROL-CRITICAL
VS. DATA-CRITICAL

Compare the worst-case timing of the three four-input multiplexer designs shown
in Figure 2.58 in Section 2.8.1. Table 2.7 lists the propagation delays for the com-
ponents. What is the critical path for each design? Given your timing analysis,
why might you choose one design over the other?

Solution: One of the critical paths for each of the three design options is high-
lighted in blue in Figures 2.73 and 2.74. tpd_sy indicates the propagation delay
from input S to output Y; tpd_dy indicates the propagation delay from input D
to output Y; tpd is the worst of the two: max(tpd_sy, tpd_dy).

For both the two-level logic and tristate implementations in Figure 2.73, the criti-
cal path is from one of the control signals S to the output Y: tpd= tpd_sy. These
circuits are control critical, because the critical path is from the control signals
to the output. Any additional delay in the control signals will add directly to the
worst-case delay. The delay from D to Y in Figure 2.73(b) is only 50 ps, compared
with the delay from S to Y of 125 ps.

A
B

C

D
E

Y Figure 2.70 Ben’s circuit

A
B

C

D
E

Y Figure 2.71 Ben’s critical path

A
B

C

D
E

Y Figure 2.72 Ben’s shortest path

2.9 Timing 91

Figure 2.74 shows the hierarchical implementation of the 4:1 multiplexer using
two stages of 2:1 multiplexers. The critical path is from any of the D inputs to
the output. This circuit is data critical, because the critical path is from the data
input to the output: tpd= tpd_dy.

If data inputs arrive well before the control inputs, we would prefer the design
with the shortest control-to-output delay (the hierarchical design in Figure
2.74). Similarly, if the control inputs arrive well before the data inputs, we would
prefer the design with the shortest data-to-output delay (the tristate design in
Figure 2.73(b)).

The best choice depends not only on the critical path through the circuit and the
input arrival times, but also on the power, cost, and availability of parts.

2 . 9 . 2 Glitches

So far we have discussed the case where a single input transition causes a
single output transition. However, it is possible that a single input transi-
tion can cause multiple output transitions. These are called glitches or
hazards. Although glitches usually don’t cause problems, it is important
to realize that they exist and recognize them when looking at timing dia-
grams. Figure 2.75 shows a circuit with a glitch and the Karnaugh map of
the circuit.

The Boolean equation is correctly minimized, but let’s look at what
happens when A= 0, C = 1, and B transitions from 1 to 0. Figure 2.76
(see page 94) illustrates this scenario. The short path (shown in gray) goes
through two gates, the AND and OR gates. The critical path (shown in
blue) goes through an inverter and two gates, the AND and OR gates.

Table 2.7 Timing specifications for multiplexer
circuit elements

Gate tpd (ps)

NOT 30

2-input AND 60

3-input AND 80

4-input OR 90

tristate (A to Y) 50

tristate (enable to Y) 35

Hazards have another meaning
related to microarchitecture
in Chapter 7, so we will stick
with the term glitches for
multiple output transitions to
avoid confusion.

92 CHAPTER TWO Combinational Logic Design

As B transitions from 1 to 0, n2 (on the short path) falls before n1 (on
the critical path) can rise. Until n1 rises, the two inputs to the OR gate are 0,
and the output Y drops to 0. When n1 eventually rises, Y returns to 1. As
shown in the timing diagram of Figure 2.76, Y starts at 1 and ends at 1
but momentarily glitches to 0.

tpd_sy = tpd_INV + tpd_AND3 + tpd_OR4

= 30 ps + 80 ps + 90 ps

= 200 ps

S1

D0

D1

D2

D3

Out

S0

(a)
tpd_dy = tpd_AND3 + tpd_OR4

= 170 ps

D2

D3

Out

S1 S0

tpd_sy = tpd_INV + tpd_AND2 + tpd_TRI_sy

 = 30 ps + 60 ps + 35 ps

 = 125 ps(b)
tpd_dy = tpd_TRI_ay

= 50 ps

D0

D1 Figure 2.73 4:1 multiplexer
propagation delays:
(a) two-level logic,
(b) tristate

S0

D0

D1

D2

D3

S1

Y

t pd_s0y = t pd_TRI_sy + t pd_TRI_ay = 85 ps

2:1 mux

2:1 mux

2:1 mux

t pd_dy = 2 t pd_TRI_ay = 100 ps

Figure 2.74 4:1 multiplexer propagation
delays: hierarchical using 2:1 multiplexers

A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

Figure 2.75 Circuit with a glitch

2.9 Timing 93

As long as we wait for the propagation delay to elapse before we
depend on the output, glitches are not a problem, because the output
eventually settles to the right answer.

If we choose to, we can avoid this glitch by adding another gate to the
implementation. This is easiest to understand in terms of the K-map.
Figure 2.77 shows how an input transition on B from ABC = 011 to
ABC= 001 moves from one prime implicant circle to another. The transi-
tion across the boundary of two prime implicants in the K-map indicates
a possible glitch.

As we saw from the timing diagram in Figure 2.76, if the circuitry
implementing one of the prime implicants turns off before the circuitry
of the other prime implicant can turn on, there is a glitch. To fix this,
we add another circle that covers that prime implicant boundary, as
shown in Figure 2.78. You might recognize this as the consensus theorem,
where the added term, AC, is the consensus or redundant term.

A = 0

C = 1

B = 1 0
Y = 1 0 1

Short Path

Critical Path

B

Y

Time

1 0

0 1

glitch

n1

n2

n2

n1

Figure 2.76 Timing of a glitch

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

Figure 2.77 Input change crosses
implicant boundary

94 CHAPTER TWO Combinational Logic Design

Figure 2.79 shows the glitch-proof circuit. The added AND gate is
highlighted in blue. Now a transition on B when A= 0 and C = 1 does
not cause a glitch on the output, because the blue AND gate outputs 1
throughout the transition.

In general, a glitch can occur when a change in a single variable
crosses the boundary between two prime implicants in a K-map. We
can eliminate the glitch by adding redundant implicants to the K-map to
cover these boundaries. This of course comes at the cost of extra
hardware.

However, simultaneous transitions on multiple inputs can also cause
glitches. These glitches cannot be fixed by adding hardware. Because
the vast majority of interesting systems have simultaneous (or near-
simultaneous) transitions on multiple inputs, glitches are a fact of life in
most circuits. Although we have shown how to eliminate one kind of
glitch, the point of discussing glitches is not to eliminate them but to be
aware that they exist. This is especially important when looking at timing
diagrams on a simulator or oscilloscope.

2.10 SUMMARY

A digital circuit is a module with discrete-valued inputs and outputs and a
specification describing the function and timing of the module. This chap-
ter has focused on combinational circuits, circuits whose outputs depend
only on the current values of the inputs.

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + AC AC

Figure 2.78 K-map without glitch

B = 1 0
Y = 1

A = 0

C = 1 Figure 2.79 Circuit without glitch

2.10 Summary 95

The function of a combinational circuit can be given by a truth table
or a Boolean equation. The Boolean equation for any truth table can be
obtained systematically using sum-of-products or product-of-sums form.
In sum-of-products form, the function is written as the sum (OR) of
one or more implicants. Implicants are the product (AND) of literals.
Literals are the true or complementary forms of the input variables.

Boolean equations can be simplified using the rules of Boolean alge-
bra. In particular, they can be simplified into minimal sum-of-products
form by combining implicants that differ only in the true and complemen-
tary forms of one of the literals: PA+PA = P: Karnaugh maps are a
visual tool for minimizing functions of up to four variables. With practice,
designers can usually simplify functions of a few variables by inspection.
Computer-aided design tools are used for more complicated functions;
such methods and tools are discussed in Chapter 4.

Logic gates are connected to create combinational circuits that per-
form the desired function. Any function in sum-of-products form can
be built using two-level logic: NOT gates form the complements of
the inputs, AND gates form the products, and OR gates form the sum.
Depending on the function and the building blocks available, multilevel
logic implementations with various types of gates may be more efficient.
For example, CMOS circuits favor NAND and NOR gates because these
gates can be built directly from CMOS transistors without requiring
extra NOT gates. When using NAND and NOR gates, bubble pushing
is helpful to keep track of the inversions.

Logic gates are combined to produce larger circuits such as multiplex-
ers, decoders, and priority circuits. A multiplexer chooses one of the data
inputs based on the select input. A decoder sets one of the outputs HIGH
according to the inputs. A priority circuit produces an output indicating
the highest priority input. These circuits are all examples of combina-
tional building blocks. Chapter 5 will introduce more building blocks,
including other arithmetic circuits. These building blocks will be used
extensively to build a microprocessor in Chapter 7.

The timing specification of a combinational circuit consists of the
propagation and contamination delays through the circuit. These indicate
the longest and shortest times between an input change and the conse-
quent output change. Calculating the propagation delay of a circuit
involves identifying the critical path through the circuit, then adding up
the propagation delays of each element along that path. There are many
different ways to implement complicated combinational circuits; these
ways offer trade-offs between speed and cost.

The next chapter will move to sequential circuits, whose outputs
depend on current as well as previous values of the inputs. In other
words, sequential circuits have memory of the past.

96 CHAPTER TWO Combinational Logic Design

Exercises

Exercise 2.1 Write a Boolean equation in sum-of-products canonical form for
each of the truth tables in Figure 2.80.

Exercise 2.2 Write a Boolean equation in sum-of-products canonical form for
each of the truth tables in Figure 2.81.

B C Y
0 0
0 1
1 0
1 1

1
0
1
0

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
1

B C Y
0 0
0 1
1 0
1 1

1
0
0
0

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
1

A B Y
0 0
0 1
1 0
1 1

1
0
1
1

C D Y
0 0
0 1
1 0
1 1

1
1
1
1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0

A

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

1
0
1
0
0
0
1
0

C D Y
0 0
0 1
1 0
1 1

1
0
0
1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
1
1
0

A

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
1
1
0
1
0
0
1

(a) (b) (c) (d) (e)

Figure 2.80 Truth tables for Exercises 2.1 and 2.3

AA BAB C YB C YA B Y C D Y C D YBA
0 0
0 1
1 0
1 1

0
1
0
0

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0 0
0 1
1 0
1 1

0
1
1
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
0
1
0

0 0
0 1
1 0
1 1

0
1
1
1

0 0
0 1
1 0
1 1

1
0
1
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

1
0
1
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

1
1
1
1
0
0
0
0

(a) (b) (c) (d) (e)

Figure 2.81 Truth tables for Exercises 2.2 and 2.4

Exercises 97

Exercise 2.3 Write a Boolean equation in product-of-sums canonical form for the
truth tables in Figure 2.80.

Exercise 2.4 Write a Boolean equation in product-of-sums canonical form for the
truth tables in Figure 2.81.

Exercise 2.5 Minimize each of the Boolean equations from Exercise 2.1.

Exercise 2.6 Minimize each of the Boolean equations from Exercise 2.2.

Exercise 2.7 Sketch a reasonably simple combinational circuit implementing each
of the functions from Exercise 2.5. Reasonably simple means that you are not
wasteful of gates, but you don’t waste vast amounts of time checking every
possible implementation of the circuit either.

Exercise 2.8 Sketch a reasonably simple combinational circuit implementing each
of the functions from Exercise 2.6.

Exercise 2.9 Repeat Exercise 2.7 using only NOT gates and AND and OR gates.

Exercise 2.10 Repeat Exercise 2.8 using only NOT gates and AND and OR gates.

Exercise 2.11 Repeat Exercise 2.7 using only NOT gates and NAND and NOR
gates.

Exercise 2.12 Repeat Exercise 2.8 using only NOT gates and NAND and NOR
gates.

Exercise 2.13 Simplify the following Boolean equations using Boolean theorems.
Check for correctness using a truth table or K-map.

(a) Y = AC+ABC

(b) Y = AB+ABC+ ðA+CÞ
(c) Y = ABCD+ABC+ABCD+ABD+ABCD+BCD+A

Exercise 2.14 Simplify the following Boolean equations using Boolean theorems.
Check for correctness using a truth table or K-map.

(a) Y = ABC+ABC

(b) Y = ABC +AB

(c) Y = ABCD+ABCD + ðA+B+C+DÞ

98 CHAPTER TWO Combinational Logic Design

Exercise 2.15 Sketch a reasonably simple combinational circuit implementing
each of the functions from Exercise 2.13.

Exercise 2.16 Sketch a reasonably simple combinational circuit implementing
each of the functions from Exercise 2.14.

Exercise 2.17 Simplify each of the following Boolean equations. Sketch a
reasonably simple combinational circuit implementing the simplified equation.

(a) Y = BC+ABC+BC

(b) Y = A+AB+AB +A+B

(c) Y = ABC+ABD+ABE+ACD+ACE+ ðA+D+EÞ+BCD
+BCE+BDE+CDE

Exercise 2.18 Simplify each of the following Boolean equations. Sketch a
reasonably simple combinational circuit implementing the simplified equation.

(a) Y = ABC+BC +BC

(b) Y = ðA+B+CÞD+AD+B

(c) Y = ABCD+ABCD+ ðB+DÞE

Exercise 2.19 Give an example of a truth table requiring between 3 billion and
5 billion rows that can be constructed using fewer than 40 (but at least 1)
two-input gates.

Exercise 2.20 Give an example of a circuit with a cyclic path that is nevertheless
combinational.

Exercise 2.21 Alyssa P. Hacker says that any Boolean function can be written
in minimal sum-of-products form as the sum of all of the prime implicants of
the function. Ben Bitdiddle says that there are some functions whose minimal
equation does not involve all of the prime implicants. Explain why Alyssa is right
or provide a counterexample demonstrating Ben’s point.

Exercise 2.22 Prove that the following theorems are true using perfect induction.
You need not prove their duals.

(a) The idempotency theorem (T3)

(b) The distributivity theorem (T8)

(c) The combining theorem (T10)

Exercises 99

Exercise 2.23 Prove De Morgan’s Theorem (T12) for three variables, B2, B1, B0,
using perfect induction.

Exercise 2.24 Write Boolean equations for the circuit in Figure 2.82. You need not
minimize the equations.

Exercise 2.25 Minimize the Boolean equations from Exercise 2.24 and sketch an
improved circuit with the same function.

Exercise 2.26 Using De Morgan equivalent gates and bubble pushing methods,
redraw the circuit in Figure 2.83 so that you can find the Boolean equation by
inspection. Write the Boolean equation.

A B C D

Y Z

Figure 2.82 Circuit schematic

A
B

C
D
E Y

Figure 2.83 Circuit schematic

100 CHAPTER TWO Combinational Logic Design

Exercise 2.27 Repeat Exercise 2.26 for the circuit in Figure 2.84.

Exercise 2.28 Find a minimal Boolean equation for the function in Figure 2.85.
Remember to take advantage of the don’t care entries.

Exercise 2.29 Sketch a circuit for the function from Exercise 2.28.

Exercise 2.30 Does your circuit from Exercise 2.29 have any potential glitches
when one of the inputs changes? If not, explain why not. If so, show how to
modify the circuit to eliminate the glitches.

Exercise 2.31 Find a minimal Boolean equation for the function in Figure 2.86.
Remember to take advantage of the don’t care entries.

A
B
C

D

E

F
G

Y

Figure 2.84 Circuit schematic

C D Y
0 0 X
0 1 X
1 0 X
1 1 0

B

0 0
0 1
1 0
1 1

0
X
0
X

0
0
0
0
1
1
1
1

A
0
0
0
0
0
0
0
0

0 0 1
0 1 0
1 0 X
1 1 1
0 0
0 1
1 0
1 1

1
1
X
1

0
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1

Figure 2.85 Truth table for Exercise 2.28

Exercises 101

Exercise 2.32 Sketch a circuit for the function from Exercise 2.31.

Exercise 2.33 Ben Bitdiddle will enjoy his picnic on sunny days that have no ants.
He will also enjoy his picnic any day he sees a hummingbird, as well as on days
where there are ants and ladybugs. Write a Boolean equation for his enjoyment
(E) in terms of sun (S), ants (A), hummingbirds (H), and ladybugs (L).

Exercise 2.34 Complete the design of the seven-segment decoder segments Sc
through Sg (see Example 2.10):

(a) Derive Boolean equations for the outputs Sc through Sg assuming that inputs
greater than 9 must produce blank (0) outputs.

(b) Derive Boolean equations for the outputs Sc through Sg assuming that inputs
greater than 9 are don’t cares.

(c) Sketch a reasonably simple gate-level implementation of part (b). Multiple
outputs can share gates where appropriate.

Exercise 2.35 A circuit has four inputs and two outputs. The inputs Α3:0 represent
a number from 0 to 15. Output P should be TRUE if the number is prime (0 and 1
are not prime, but 2, 3, 5, and so on, are prime). Output D should be TRUE if the
number is divisible by 3. Give simplified Boolean equations for each output and
sketch a circuit.

Exercise 2.36 A priority encoder has 2N inputs. It produces an N-bit binary
output indicating the most significant bit of the input that is TRUE, or 0 if none of
the inputs are TRUE. It also produces an output NONE that is TRUE if none of

C D Y
0 0 0
0 1 1
1 0 X
1 1 X

B

0 0
0 1
1 0
1 1

0
X
X
X

0
0
0
0
1
1
1
1

A
0
0
0
0
0
0
0
0

0 0 1
0 1 0
1 0 0
1 1 1
0 0
0 1
1 0
1 1

0
1
X
1

0
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1

Figure 2.86 Truth table for Exercise 2.31

102 CHAPTER TWO Combinational Logic Design

the inputs are TRUE. Design an eight-input priority encoder with inputs A7:0 and
outputs Y2.0 and NONE. For example, if the input is 00100000, the output Y
should be 101 and NONE should be 0. Give a simplified Boolean equation for
each output, and sketch a schematic.

Exercise 2.37 Design a modified priority encoder (see Exercise 2.36) that receives
an 8-bit input, A7:0, and produces two 3-bit outputs, Y2:0 and Z2:0 Y indicates the
most significant bit of the input that is TRUE. Z indicates the second most
significant bit of the input that is TRUE. Y should be 0 if none of the inputs are
TRUE. Z should be 0 if no more than one of the inputs is TRUE. Give a simplified
Boolean equation for each output, and sketch a schematic.

Exercise 2.38 An M-bit thermometer code for the number k consists of k 1’s in the
least significant bit positions and M – k 0’s in all the more significant bit positions.
A binary-to-thermometer code converter has N inputs and 2N–1 outputs. It
produces a 2N–1 bit thermometer code for the number specified by the input.
For example, if the input is 110, the output should be 0111111. Design a 3:7
binary-to-thermometer code converter. Give a simplified Boolean equation for
each output, and sketch a schematic.

Exercise 2.39 Write a minimized Boolean equation for the function performed by
the circuit in Figure 2.87.

Exercise 2.40 Write a minimized Boolean equation for the function performed
by the circuit in Figure 2.88.

0

1

00

C, D

01
10

11

A

Y

Figure 2.87 Multiplexer circuit

00

C, D

01
10

11

Y

00

A, B

01
10

11

Figure 2.88 Multiplexer circuit

Exercises 103

Exercise 2.41 Implement the function from Figure 2.80(b) using

(a) an 8:1 multiplexer

(b) a 4:1 multiplexer and one inverter

(c) a 2:1 multiplexer and two other logic gates

Exercise 2.42 Implement the function from Exercise 2.17(a) using

(a) an 8:1 multiplexer

(b) a 4:1 multiplexer and no other gates

(c) a 2:1 multiplexer, one OR gate, and an inverter

Exercise 2.43 Determine the propagation delay and contamination delay of the
circuit in Figure 2.83. Use the gate delays given in Table 2.8.

Exercise 2.44 Determine the propagation delay and contamination delay of the
circuit in Figure 2.84. Use the gate delays given in Table 2.8.

Exercise 2.45 Sketch a schematic for a fast 3:8 decoder. Suppose gate delays are
given in Table 2.8 (and only the gates in that table are available). Design your
decoder to have the shortest possible critical path, and indicate what that path is.
What are its propagation delay and contamination delay?

Table 2.8 Gate delays for Exercises 2.43–2.47

Gate tpd (ps) tcd (ps)

NOT 15 10

2-input NAND 20 15

3-input NAND 30 25

2-input NOR 30 25

3-input NOR 45 35

2-input AND 30 25

3-input AND 40 30

2-input OR 40 30

3-input OR 55 45

2-input XOR 60 40

104 CHAPTER TWO Combinational Logic Design

Exercise 2.46 Design an 8:1 multiplexer with the shortest possible delay from the
data inputs to the output. You may use any of the gates from Table 2.7 on page 92.
Sketch a schematic. Using the gate delays from the table, determine this delay.

Exercise 2.47 Redesign the circuit from Exercise 2.35 to be as fast as possible. Use
only the gates from Table 2.8. Sketch the new circuit and indicate the critical path.
What are its propagation delay and contamination delay?

Exercise 2.48 Redesign the priority encoder from Exercise 2.36 to be as fast as
possible. You may use any of the gates from Table 2.8. Sketch the new circuit and
indicate the critical path. What are its propagation delay and contamination
delay?

Exercises 105

Interview Questions

The following exercises present questions that have been asked at interviews for
digital design jobs.

Question 2.1 Sketch a schematic for the two-input XOR function using only
NAND gates. How few can you use?

Question 2.2 Design a circuit that will tell whether a given month has 31 days in it.
The month is specified by a 4-bit input Α3:0. For example, if the inputs are 0001,
the month is January, and if the inputs are 1100, the month is December. The
circuit output Y should be HIGH only when the month specified by the inputs has
31 days in it. Write the simplified equation, and draw the circuit diagram using a
minimum number of gates. (Hint: Remember to take advantage of don’t cares.)

Question 2.3 What is a tristate buffer? How and why is it used?

Question 2.4 A gate or set of gates is universal if it can be used to construct any
Boolean function. For example, the set {AND, OR, NOT} is universal.

(a) Is an AND gate by itself universal? Why or why not?

(b) Is the set {OR, NOT} universal? Why or why not?

(c) Is a NAND gate by itself universal? Why or why not?

Question 2.5 Explain why a circuit’s contamination delay might be less than
(instead of equal to) its propagation delay.

106 CHAPTER TWO Combinational Logic Design

	Outline placeholder
	2.1 Introduction
	2.2 Boolean Equations
	2.2.1 Terminology
	2.2.2 Sum-of-Products Form
	2.2.3 Product-of-Sums Form

	2.3 Boolean Algebra
	2.3.1 Axioms
	2.3.2 Theorems of One Variable
	2.3.3 Theorems of Several Variables
	2.3.4 The Truth Behind It All
	2.3.5 Simplifying Equations

	2.4 From Logic to Gates
	2.5 Multilevel Combinational Logic
	2.5.1 Hardware Reduction
	2.5.2 Bubble Pushing

	2.6 X’s and Z’s, Oh My
	2.6.1 Illegal Value: X
	2.6.2 Floating Value: Z

	2.7 Karnaugh Maps
	2.7.1 Circular Thinking
	2.7.2 Logic Minimization with K-Maps
	2.7.3 Don't Cares
	2.7.4 The Big Picture

	2.8 Combinational Building Blocks
	2.8.1 Multiplexers
	2:1 Multiplexer
	Wider Multiplexers
	Multiplexer Logic

	2.8.2 Decoders
	Decoder Logic

	2.9 Timing
	2.9.1 Propagation and Contamination Delay
	2.9.2 Glitches

	2.10 Summary
	Exercises
	Interview Questions

