

1From Zero to One

1.1 THE GAME PLAN

Microprocessors have revolutionized our world during the past three dec-
ades. A laptop computer today has far more capability than a room-sized
mainframe of yesteryear. A luxury automobile contains about 100 micro-
processors. Advances in microprocessors have made cell phones and the
Internet possible, have vastly improved medicine, and have transformed
how war is waged. Worldwide semiconductor industry sales have grown
from US $21 billion in 1985 to $306 billion in 2013, and microprocessors
are a major segment of these sales. We believe that microprocessors are
not only technically, economically, and socially important, but are also
an intrinsically fascinating human invention. By the time you finish read-
ing this book, you will know how to design and build your own micro-
processor. The skills you learn along the way will prepare you to design
many other digital systems.

We assume that you have a basic familiarity with electricity, some
prior programming experience, and a genuine interest in understanding
what goes on under the hood of a computer. This book focuses on the
design of digital systems, which operate on 1’s and 0’s. We begin with
digital logic gates that accept 1’s and 0’s as inputs and produce 1’s and
0’s as outputs. We then explore how to combine logic gates into more
complicated modules such as adders and memories. Then we shift gears
to programming in assembly language, the native tongue of the micropro-
cessor. Finally, we put gates together to build a microprocessor that runs
these assembly language programs.

A great advantage of digital systems is that the building blocks are
quite simple: just 1’s and 0’s. They do not require grungy mathematics
or a profound knowledge of physics. Instead, the designer’s challenge is
to combine these simple blocks into complicated systems. A microproces-
sor may be the first system that you build that is too complex to fit in

1.1 The Game Plan

1.2 The Art of Managing
Complexity

1.3 The Digital Abstraction

1.4 Number Systems

1.5 Logic Gates

1.6 Beneath the Digital
Abstraction

1.7 CMOS Transistors*

1.8 Power Consumption*

1.9 Summary and a Look Ahead

Exercises

Interview Questions

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

Digital Design and Computer Architecture, Second Edition. DOI: 10.1016/B978-0-12-394424-5.00001-X
© 2013 Elsevier, Inc. All rights reserved.

3

http://dx.doi.org/10.1016/B978-0-12-394424-5.00001-X

your head all at once. One of the major themes weaved through this book
is how to manage complexity.

1.2 THE ART OF MANAGING COMPLEXITY

One of the characteristics that separates an engineer or computer scientist
from a layperson is a systematic approach to managing complexity. Mod-
ern digital systems are built from millions or billions of transistors. No
human being could understand these systems by writing equations
describing the movement of electrons in each transistor and solving all
of the equations simultaneously. You will need to learn to manage com-
plexity to understand how to build a microprocessor without getting
mired in a morass of detail.

1 . 2 . 1 Abstraction

The critical technique for managing complexity is abstraction: hiding
details when they are not important. A system can be viewed from many
different levels of abstraction. For example, American politicians abstract
the world into cities, counties, states, and countries. A county contains
multiple cities and a state contains many counties. When a politician is
running for president, the politician is mostly interested in how the state
as a whole will vote, rather than how each county votes, so the state is
the most useful level of abstraction. On the other hand, the Census
Bureau measures the population of every city, so the agency must con-
sider the details of a lower level of abstraction.

Figure 1.1 illustrates levels of abstraction for an electronic computer
system along with typical building blocks at each level. At the lowest level
of abstraction is the physics, the motion of electrons. The behavior of
electrons is described by quantum mechanics and Maxwell’s equations.
Our system is constructed from electronic devices such as transistors (or
vacuum tubes, once upon a time). These devices have well-defined con-
nection points called terminals and can be modeled by the relationship
between voltage and current as measured at each terminal. By abstracting
to this device level, we can ignore the individual electrons. The next level
of abstraction is analog circuits, in which devices are assembled to create
components such as amplifiers. Analog circuits input and output a contin-
uous range of voltages. Digital circuits such as logic gates restrict the vol-
tages to discrete ranges, which we will use to indicate 0 and 1. In logic
design, we build more complex structures, such as adders or memories,
from digital circuits.

Microarchitecture links the logic and architecture levels of abstraction.
The architecture level of abstraction describes a computer from the pro-
grammer’s perspective. For example, the Intel x86 architecture used by
microprocessors in most personal computers (PCs) is defined by a set of

Physics

Devices

Analog
Circuits

Digital
Circuits

+

+−

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

Electrons

Transistors
Diodes

Amplifiers
Filters

AND Gates
NOT Gates

Adders
Memories

Datapaths
Controllers

Instructions
Registers

Device
Drivers

Programs
>”hello
world!”

Figure 1.1 Levels of abstraction
for an electronic computing system

4 CHAPTER ONE From Zero to One

instructions and registers (memory for temporarily storing variables) that
the programmer is allowed to use. Microarchitecture involves combining
logic elements to execute the instructions defined by the architecture.
A particular architecture can be implemented by one of many different
microarchitectures with different price/performance/power trade-offs. For
example, the Intel Core i7, the Intel 80486, and the AMD Athlon all imple-
ment the x86 architecture with different microarchitectures.

Moving into the software realm, the operating system handles low-
level details such as accessing a hard drive or managing memory. Finally,
the application software uses these facilities provided by the operating sys-
tem to solve a problem for the user. Thanks to the power of abstraction,
your grandmother can surf the Web without any regard for the quantum
vibrations of electrons or the organization of the memory in her computer.

This book focuses on the levels of abstraction from digital circuits
through computer architecture. When you are working at one level of
abstraction, it is good to know something about the levels of abstraction
immediately above and below where you are working. For example, a
computer scientist cannot fully optimize code without understanding the
architecture for which the program is being written. A device engineer
cannot make wise trade-offs in transistor design without understanding
the circuits in which the transistors will be used. We hope that by the time
you finish reading this book, you can pick the level of abstraction appro-
priate to solving your problem and evaluate the impact of your design
choices on other levels of abstraction.

1 . 2 . 2 Discipline

Discipline is the act of intentionally restricting your design choices so that
you can work more productively at a higher level of abstraction. Using
interchangeable parts is a familiar application of discipline. One of the
first examples of interchangeable parts was in flintlock rifle manufactur-
ing. Until the early 19th century, rifles were individually crafted by hand.
Components purchased from many different craftsmen were carefully
filed and fit together by a highly skilled gunmaker. The discipline of inter-
changeable parts revolutionized the industry. By limiting the components
to a standardized set with well-defined tolerances, rifles could be assembled
and repaired much faster and with less skill. The gunmaker no longer con-
cerned himself with lower levels of abstraction such as the specific shape of
an individual barrel or gunstock.

In the context of this book, the digital discipline will be very impor-
tant. Digital circuits use discrete voltages, whereas analog circuits use con-
tinuous voltages. Therefore, digital circuits are a subset of analog circuits
and in some sense must be capable of less than the broader class of analog
circuits. However, digital circuits are much simpler to design. By limiting

Each chapter in this book
begins with an abstraction
icon indicating the focus of the
chapter in deep blue, with
secondary topics shown in
lighter shades of blue.

1.2 The Art of Managing Complexity 5

ourselves to digital circuits, we can easily combine components into
sophisticated systems that ultimately outperform those built from analog
components in many applications. For example, digital televisions, com-
pact disks (CDs), and cell phones are replacing their analog predecessors.

1 . 2 . 3 The Three-Y’s

In addition to abstraction and discipline, designers use the three “-y’s” to
manage complexity: hierarchy, modularity, and regularity. These princi-
ples apply to both software and hardware systems.

▶ Hierarchy involves dividing a system into modules, then further sub-
dividing each of these modules until the pieces are easy to understand.

▶ Modularity states that the modules have well-defined functions and
interfaces, so that they connect together easily without unanticipated
side effects.

▶ Regularity seeks uniformity among the modules. Common modules
are reused many times, reducing the number of distinct modules that
must be designed.

To illustrate these “-y’s” we return to the example of rifle manufac-
turing. A flintlock rifle was one of the most intricate objects in common
use in the early 19th century. Using the principle of hierarchy, we can
break it into components shown in Figure 1.2: the lock, stock, and barrel.

The barrel is the long metal tube through which the bullet is fired.
The lock is the firing mechanism. And the stock is the wooden body that
holds the parts together and provides a secure grip for the user. In turn,
the lock contains the trigger, hammer, flint, frizzen, and pan. Each of
these components could be hierarchically described in further detail.

Modularity teaches that each component should have a well-defined
function and interface. A function of the stock is to mount the barrel
and lock. Its interface consists of its length and the location of its mount-
ing pins. In a modular rifle design, stocks from many different manufac-
turers can be used with a particular barrel as long as the stock and
barrel are of the correct length and have the proper mounting mechanism.
A function of the barrel is to impart spin to the bullet so that it travels
more accurately. Modularity dictates that there should be no side effects:
the design of the stock should not impede the function of the barrel.

Regularity teaches that interchangeable parts are a good idea. With
regularity, a damaged barrel can be replaced by an identical part. The
barrels can be efficiently built on an assembly line, instead of being pains-
takingly hand-crafted.

We will return to these principles of hierarchy, modularity, and regu-
larity throughout the book.

Captain Meriwether Lewis of
the Lewis and Clark
Expedition was one of the
early advocates of
interchangeable parts for
rifles. In 1806, he explained:

The guns of Drewyer and Sergt.
Pryor were both out of order.
The first was repared with a
new lock, the old one having
become unfit for use; the second
had the cock screw broken
which was replaced by a
duplicate which had been pre-
pared for the lock at Harpers
Ferry where she was manufac-
tured. But for the precaution
taken in bringing on those extra
locks, and parts of locks, in
addition to the ingenuity of
John Shields, most of our guns
would at this moment be
entirely unfit for use; but
fortunately for us I have it in
my power here to record that
they are all in good order.

See Elliott Coues, ed., The
History of the Lewis and
Clark Expedition… (4 vols),
New York: Harper, 1893;
reprint, 3 vols, New York:
Dover, 3:817.

6 CHAPTER ONE From Zero to One

1.3 THE DIGITAL ABSTRACTION

Most physical variables are continuous. For example, the voltage on a
wire, the frequency of an oscillation, or the position of a mass are all con-
tinuous quantities. Digital systems, on the other hand, represent informa-
tion with discrete-valued variables—that is, variables with a finite number
of distinct values.

An early digital system using variables with ten discrete values was
Charles Babbage’s Analytical Engine. Babbage labored from 1834 to
1871, designing and attempting to build this mechanical computer. The
Analytical Engine used gears with ten positions labeled 0 through 9, much
like a mechanical odometer in a car. Figure 1.3 shows a prototype of the
Analytical Engine, in which each row processes one digit. Babbage chose
25 rows of gears, so the machine has 25-digit precision.

Barrel

Stoc

Lock

Expanded view of Lock

k

Flint
Cock

Pan

Spring

String

Figure 1.2 Flintlock rifle with
a close-up view of the lock
(Image by Euroarms Italia.
www.euroarms.net © 2006.)

Charles Babbage, 1791–1871.
Attended Cambridge University
and married Georgiana
Whitmore in 1814. Invented the
Analytical Engine, the world’s
first mechanical computer. Also
invented the cowcatcher and the
universal postage rate. Interested
in lock-picking, but abhorred
street musicians (image courtesy
of Fourmilab Switzerland,
www.fourmilab.ch).

1.3 The Digital Abstraction 7

http://www.euroarms.net
http://www.fourmilab.ch

Unlike Babbage’s machine, most electronic computers use a binary
(two-valued) representation in which a high voltage indicates a '1' and a
low voltage indicates a '0', because it is easier to distinguish between
two voltages than ten.

The amount of information D in a discrete valued variable with N
distinct states is measured in units of bits as

D = log2N bits (1.1)

A binary variable conveys log22= 1 bit of information. Indeed, the word
bit is short for binary digit. Each of Babbage’s gears carried log210= 3.322
bits of information because it could be in one of 23.322= 10 unique positions.
A continuous signal theoretically contains an infinite amount of information
because it can take on an infinite number of values. In practice, noise and
measurement error limit the information to only 10 to 16 bits for most con-
tinuous signals. If the measurement must be made rapidly, the information
content is lower (e.g., 8 bits).

This book focuses on digital circuits using binary variables: 1’s and 0’s.
George Boole developed a system of logic operating on binary variables
that is now known as Boolean logic. Each of Boole’s variables could be
TRUE or FALSE. Electronic computers commonly use a positive voltage
to represent '1' and zero volts to represent '0'. In this book, we will use
the terms '1', TRUE, and HIGH synonymously. Similarly, we will use '0',
FALSE, and LOW interchangeably.

The beauty of the digital abstraction is that digital designers can focus
on 1’s and 0’s, ignoring whether the Boolean variables are physically repre-
sented with specific voltages, rotating gears, or even hydraulic fluid levels.
A computer programmer can work without needing to know the intimate

Figure 1.3 Babbage’s Analytical
Engine, under construction at the
time of his death in 1871
(image courtesy of Science
Museum/Science and Society
Picture Library)

George Boole, 1815–1864. Born to
working-class parents and unable
to afford a formal education,
Boole taught himself
mathematics and joined the
faculty of Queen’s College in
Ireland. He wrote An
Investigation of the Laws of
Thought (1854), which
introduced binary variables and
the three fundamental logic
operations: AND, OR, and NOT
(image courtesy of the American
Institute of Physics).

8 CHAPTER ONE From Zero to One

details of the computer hardware. On the other hand, understanding the
details of the hardware allows the programmer to optimize the software
better for that specific computer.

An individual bit doesn’t carry much information. In the next section,
we examine how groups of bits can be used to represent numbers. In later
chapters, we will also use groups of bits to represent letters and programs.

1.4 NUMBER SYSTEMS

You are accustomed to working with decimal numbers. In digital systems
consisting of 1’s and 0’s, binary or hexadecimal numbers are often more
convenient. This section introduces the various number systems that will
be used throughout the rest of the book.

1 . 4 . 1 Decimal Numbers

In elementary school, you learned to count and do arithmetic in decimal.
Just as you (probably) have ten fingers, there are ten decimal digits: 0, 1,
2, …, 9. Decimal digits are joined together to form longer decimal num-
bers. Each column of a decimal number has ten times the weight of the
previous column. From right to left, the column weights are 1, 10, 100,
1000, and so on. Decimal numbers are referred to as base 10. The base
is indicated by a subscript after the number to prevent confusion when
working in more than one base. For example, Figure 1.4 shows how the
decimal number 974210 is written as the sum of each of its digits multi-
plied by the weight of the corresponding column.

An N-digit decimal number represents one of 10N possibilities: 0, 1,
2, 3, …, 10N− 1. This is called the range of the number. For example, a
three-digit decimal number represents one of 1000 possibilities in the
range of 0 to 999.

1 . 4 . 2 Binary Numbers

Bits represent one of two values, 0 or 1, and are joined together to form
binary numbers. Each column of a binary number has twice the weight
of the previous column, so binary numbers are base 2. In binary, the

974210 = 9 × 103 + 7 × 102 + 4 × 101 + 2 × 100

nine
thousands

10's colum
n

100's colum
n

1000's colum
n

seven
hundreds

four
tens

two
ones

1's colum
n

Figure 1.4 Representation
of a decimal number

1.4 Number Systems 9

column weights (again from right to left) are 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, and so on. If
you work with binary numbers often, you’ll save time if you remember
these powers of two up to 216.

AnN-bit binary number represents one of 2N possibilities: 0, 1, 2, 3,…,
2N− 1. Table 1.1 shows 1, 2, 3, and 4-bit binary numbers and their decimal
equivalents.

Example 1.1 BINARY TO DECIMAL CONVERSION

Convert the binary number 101102 to decimal.

Solution: Figure 1.5 shows the conversion.

Table 1.1 Binary numbers and their decimal equivalent

1-Bit
Binary

Numbers

2-Bit
Binary

Numbers

3-Bit
Binary

Numbers

4-Bit
Binary

Numbers
Decimal

Equivalents

0 00 000 0000 0

1 01 001 0001 1

10 010 0010 2

11 011 0011 3

100 0100 4

101 0101 5

110 0110 6

111 0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

10 CHAPTER ONE From Zero to One

Example 1.2 DECIMAL TO BINARY CONVERSION

Convert the decimal number 8410 to binary.

Solution: Determine whether each column of the binary result has a 1 or a 0. We
can do this starting at either the left or the right column.

Working from the left, start with the largest power of 2 less than or equal to the
number (in this case, 64). 84≥ 64, so there is a 1 in the 64’s column, leaving
84− 64= 20. 20< 32, so there is a 0 in the 32’s column. 20≥ 16, so there is a 1
in the 16’s column, leaving 20− 16= 4. 4< 8, so there is a 0 in the 8’s column.
4≥ 4, so there is a 1 in the 4’s column, leaving 4− 4= 0. Thus there must be 0’s
in the 2’s and 1’s column. Putting this all together, 8410= 10101002.

Working from the right, repeatedly divide the number by 2. The remainder goes in
each column. 84/2= 42, so 0 goes in the 1’s column. 42/2= 21, so 0 goes in the
2’s column. 21/2= 10 with a remainder of 1 going in the 4’s column. 10/2= 5,
so 0 goes in the 8’s column. 5/2= 2 with a remainder of 1 going in the 16’s
column. 2/2= 1, so 0 goes in the 32’s column. Finally 1/2= 0 with a remainder
of 1 going in the 64’s column. Again, 8410= 10101002.

1 . 4 . 3 Hexadecimal Numbers

Writing long binary numbers becomes tedious and prone to error. A group
of four bits represents one of 24= 16 possibilities. Hence, it is sometimes
more convenient to work in base 16, called hexadecimal. Hexadecimal
numbers use the digits 0 to 9 along with the letters A to F, as shown
in Table 1.2. Columns in base 16 have weights of 1, 16, 162 (or 256),
163 (or 4096), and so on.

Example 1.3 HEXADECIMAL TO BINARY AND DECIMAL CONVERSION

Convert the hexadecimal number 2ED16 to binary and to decimal.

Solution: Conversion between hexadecimal and binary is easy because each hexa-
decimal digit directly corresponds to four binary digits. 216= 00102, E16= 11102
and D16= 11012, so 2ED16= 0010111011012. Conversion to decimal requires
the arithmetic shown in Figure 1.6.

101102 = 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21+ 0 × 20 = 2210
one

sixteen

1's colum
n

no
eight

one
four

one
two

no
one

2's colum
n

4's colum
n

8's colum
n

16's colum
n Figure 1.5 Conversion of a binary

number to decimal

“Hexadecimal,” a term coined
by IBM in 1963, derives from
the Greek hexi (six) and Latin
decem (ten). A more proper
term would use the Latin sexa
(six), but sexadecimal sounded
too risqué.

1.4 Number Systems 11

Example 1.4 BINARY TO HEXADECIMAL CONVERSION

Convert the binary number 11110102 to hexadecimal.

Solution: Again, conversion is easy. Start reading from the right. The four least
significant bits are10102=A16. The next bits are1112= 716.Hence 11110102= 7A16.

Table 1.2 Hexadecimal number system

Hexadecimal Digit Decimal Equivalent Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

2ED16 = 2 × 162 + E × 161 + D × 160 = 74910
two

two hundred
fifty six's

1's colum
n

fourteen
sixteens

thirteen
ones

16's colum
n

256's colum
nFigure 1.6 Conversion of a

hexadecimal number to decimal

12 CHAPTER ONE From Zero to One

Example 1.5 DECIMAL TO HEXADECIMAL AND BINARY CONVERSION

Convert the decimal number 33310 to hexadecimal and binary.

Solution: Like decimal to binary conversion, decimal to hexadecimal conversion
can be done from the left or the right.

Working from the left, start with the largest power of 16 less than or equal to the
number (in this case, 256). 256 goes into 333 once, so there is a 1 in the 256’s col-
umn, leaving 333− 256= 77. 16 goes into 77 four times, so there is a 4 in the 16’s
column, leaving 77− 16 × 4= 13. 1310=D16, so there is a D in the 1’s column. In
summary, 33310= 14D16. Now it is easy to convert from hexadecimal to binary,
as in Example 1.3. 14D16= 1010011012.

Working from the right, repeatedly divide the number by 16. The remainder
goes in each column. 333/16 = 20 with a remainder of 1310 =D16 going in the
1’s column. 20/16 = 1 with a remainder of 4 going in the 16’s column. 1/16 =
0 with a remainder of 1 going in the 256’s column. Again, the result is 14D16.

1 . 4 . 4 Bytes, Nibbles, and All That Jazz

A group of eight bits is called a byte. It represents one of 28= 256 possi-
bilities. The size of objects stored in computer memories is customarily
measured in bytes rather than bits.

A group of four bits, or half a byte, is called a nibble. It represents
one of 24= 16 possibilities. One hexadecimal digit stores one nibble and
two hexadecimal digits store one full byte. Nibbles are no longer a com-
monly used unit, but the term is cute.

Microprocessors handle data in chunks called words. The size of a
word depends on the architecture of the microprocessor. When this chap-
ter was written in 2015, most computers had 64-bit processors, indicat-
ing that they operate on 64-bit words. At the time, older computers
handling 32-bit words were also widely available. Simpler microproces-
sors, especially those used in gadgets such as toasters, use 8- or 16-bit
words.

Within a group of bits, the bit in the 1’s column is called the least
significant bit (lsb), and the bit at the other end is called the most
significant bit (msb), as shown in Figure 1.7(a) for a 6-bit binary
number. Similarly, within a word, the bytes are identified as least
significant byte (LSB) through most significant byte (MSB), as shown in
Figure 1.7(b) for a four-byte number written with eight hexadecimal
digits.

A microprocessor is a processor
built on a single chip. Until the
1970’s, processors were too
complicated to fit on one chip,
so mainframe processors were
built from boards containing
many chips. Intel introduced the
first 4-bit microprocessor, called
the 4004, in 1971. Now, even
the most sophisticated
supercomputers are built using
microprocessors. We will use the
terms microprocessor and
processor interchangeably
throughout this book.

1.4 Number Systems 13

By handy coincidence, 210= 1024 ≈ 103. Hence, the term kilo (Greek
for thousand) indicates 210. For example, 210 bytes is one kilobyte (1 KB).
Similarly, mega (million) indicates 220≈ 106, and giga (billion) indicates
230≈ 109. If you know 210≈ 1 thousand, 220≈ 1 million, 230≈ 1 billion,
and remember the powers of two up to 29, it is easy to estimate any
power of two in your head.

Example 1.6 ESTIMATING POWERS OF TWO

Find the approximate value of 224 without using a calculator.

Solution: Split the exponent into a multiple of ten and the remainder.

224= 220 × 24. 220≈ 1 million. 24= 16. So 224≈ 16 million. Technically, 224=
16,777,216, but 16 million is close enough for marketing purposes.

1024 bytes is called a kilobyte (KB). 1024 bits is called a kilobit (Kb
or Kbit). Similarly, MB, Mb, GB, and Gb are used for millions and bil-
lions of bytes and bits. Memory capacity is usually measured in bytes.
Communication speed is usually measured in bits/sec. For example, the
maximum speed of a dial-up modem is usually 56 kbits/sec.

1 . 4 . 5 Binary Addition

Binary addition is much like decimal addition, but easier, as shown in
Figure 1.8. As in decimal addition, if the sum of two numbers is greater
than what fits in a single digit, we carry a 1 into the next column.
Figure 1.8 compares addition of decimal and binary numbers. In the
right-most column of Figure 1.8(a), 7+ 9= 16, which cannot fit in a sin-
gle digit because it is greater than 9. So we record the 1’s digit, 6, and
carry the 10’s digit, 1, over to the next column. Likewise, in binary, if
the sum of two numbers is greater than 1, we carry the 2’s digit over to
the next column. For example, in the right-most column of Figure 1.8(b),

101100
least

significant
bit

most
significant

bit
(a) (b)

DEAFDAD8
least

significant
byte

most
significant

byte

Figure 1.7 Least and most
significant bits and bytes

1011
0011+
1110

11carries
4277
5499+
9776

11

(a) (b)

Figure 1.8 Addition examples
showing carries: (a) decimal
(b) binary

14 CHAPTER ONE From Zero to One

the sum 1 + 1= 210= 102 cannot fit in a single binary digit. So we record
the 1’s digit (0) and carry the 2’s digit (1) of the result to the next
column. In the second column, the sum is 1+ 1+ 1= 310= 112. Again,
we record the 1’s digit (1) and carry the 2’s digit (1) to the next column.
For obvious reasons, the bit that is carried over to the neighboring
column is called the carry bit.

Example 1.7 BINARY ADDITION

Compute 01112+ 01012.

Solution: Figure 1.9 shows that the sum is 11002. The carries are indicated in blue.
We can check our work by repeating the computation in decimal. 01112= 710.
01012= 510. The sum is 1210= 11002.

Digital systems usually operate on a fixed number of digits. Addition
is said to overflow if the result is too big to fit in the available digits.
A 4-bit number, for example, has the range [0, 15]. 4-bit binary addition
overflows if the result exceeds 15. The fifth bit is discarded, producing an
incorrect result in the remaining four bits. Overflow can be detected by
checking for a carry out of the most significant column.

Example 1.8 ADDITION WITH OVERFLOW

Compute 11012+ 01012. Does overflow occur?

Solution: Figure 1.10 shows the sum is 100102. This result overflows the range of
a 4-bit binary number. If it must be stored as four bits, the most significant bit is
discarded, leaving the incorrect result of 00102. If the computation had been
done using numbers with five or more bits, the result 100102 would have been
correct.

1 . 4 . 6 Signed Binary Numbers

So far, we have considered only unsigned binary numbers that represent
positive quantities. We will often want to represent both positive and
negative numbers, requiring a different binary number system. Several
schemes exist to represent signed binary numbers; the two most widely
employed are called sign/magnitude and two’s complement.

Sign/Magnitude Numbers
Sign/magnitude numbers are intuitively appealing because they match our
custom of writing negative numbers with a minus sign followed by the
magnitude. An N-bit sign/magnitude number uses the most significant

0111
0101+
1100

111

Figure 1.9 Binary addition
example

1101
0101+

10010

11 1

Figure 1.10 Binary addition
example with overflow

1.4 Number Systems 15

bit as the sign and the remaining N−1 bits as the magnitude (absolute
value). A sign bit of 0 indicates positive and a sign bit of 1 indicates
negative.

Example 1.9 SIGN/MAGNITUDE NUMBERS

Write 5 and −5 as 4-bit sign/magnitude numbers

Solution: Both numbers have a magnitude of 510= 1012. Thus, 510= 01012 and
−510= 11012.

Unfortunately, ordinary binary addition does not work for sign/
magnitude numbers. For example, using ordinary addition on −510+ 510
gives 11012+ 01012= 100102, which is nonsense.

AnN-bit sign/magnitude number spans the range [−2N−1+ 1, 2N−1− 1].
Sign/magnitude numbers are slightly odd in that both +0 and −0 exist.
Both indicate zero. As you may expect, it can be troublesome to have
two different representations for the same number.

Two’s Complement Numbers
Two’s complement numbers are identical to unsigned binary numbers
except that the most significant bit position has a weight of−2N−1 instead
of 2N−1. They overcome the shortcomings of sign/magnitude numbers:
zero has a single representation, and ordinary addition works.

In two’s complement representation, zero is written as all zeros:
00…0002. The most positive number has a 0 in the most significant posi-
tion and 1’s elsewhere: 01…1112= 2N−1− 1. The most negative number
has a 1 in the most significant position and 0’s elsewhere: 10…0002=
−2N−1. And −1 is written as all ones: 11…1112.

Notice that positive numbers have a 0 in the most significant position
and negative numbers have a 1 in this position, so the most significant
bit can be viewed as the sign bit. However, the overall number is inter-
preted differently for two’s complement numbers and sign/magnitude
numbers.

The sign of a two’s complement number is reversed in a process called
taking the two’s complement. The process consists of inverting all of the
bits in the number, then adding 1 to the least significant bit position. This
is useful to find the representation of a negative number or to determine
the magnitude of a negative number.

Example 1.10 TWO’S COMPLEMENT REPRESENTATION
OF A NEGATIVE NUMBER

Find the representation of−210 as a 4-bit two’s complement number.

The $7 billion Ariane 5 rocket,
launched on June 4, 1996,
veered off course 40 seconds
after launch, broke up, and
exploded. The failure was
caused when the computer
controlling the rocket
overflowed its 16-bit range
and crashed.

The code had been extensively
tested on the Ariane 4 rocket.
However, the Ariane 5 had a
faster engine that produced larger
values for the control computer,
leading to the overflow.

(Photograph courtesy of
ESA/CNES/ARIANESPACE-
Service Optique CS6.)

16 CHAPTER ONE From Zero to One

Solution: Start with+ 210= 00102. To get −210, invert the bits and add 1. Inverting
00102 produces 11012. 11012+ 1= 11102. So −210 is 11102.

Example 1.11 VALUE OF NEGATIVE TWO’S COMPLEMENT NUMBERS

Find the decimal value of the two’s complement number 10012.

Solution: 10012 has a leading 1, so it must be negative. To find its magnitude,
invert the bits and add 1. Inverting 10012= 01102. 01102+ 1= 01112= 710.
Hence, 10012=−710.

Two’s complement numbers have the compelling advantage that
addition works properly for both positive and negative numbers. Recall
that when adding N-bit numbers, the carry out of the Nth bit (i.e., the
N+ 1th result bit) is discarded.

Example 1.12 ADDING TWO’S COMPLEMENT NUMBERS

Compute (a) −210+ 110 and (b) −710+ 710 using two’s complement numbers.

Solution: (a) −210+ 110= 11102+ 00012= 11112=−110. (b) −710+ 710= 10012+
01112= 100002. The fifth bit is discarded, leaving the correct 4-bit result 00002.

Subtraction is performed by taking the two’s complement of the sec-
ond number, then adding.

Example 1.13 SUBTRACTING TWO’S COMPLEMENT NUMBERS

Compute (a) 510− 310 and (b) 310− 510 using 4-bit two’s complement numbers.

Solution: (a) 310= 00112. Take its two’s complement to obtain −310= 11012. Now
add 510+ (−310)= 01012+ 11012= 00102= 210. Note that the carry out of the
most significant position is discarded because the result is stored in four bits.
(b) Take the two’s complement of 510 to obtain −510= 1011. Now add 310+
(−510)= 00112+ 10112= 11102=−210.

The two’s complement of 0 is found by inverting all the bits (produ-
cing 11…1112) and adding 1, which produces all 0’s, disregarding the
carry out of the most significant bit position. Hence, zero is always repre-
sented with all 0’s. Unlike the sign/magnitude system, the two’s comple-
ment system has no separate −0. Zero is considered positive because its
sign bit is 0.

1.4 Number Systems 17

Like unsigned numbers, N-bit two’s complement numbers represent
one of 2N possible values. However the values are split between positive
and negative numbers. For example, a 4-bit unsigned number represents
16 values: 0 to 15. A 4-bit two’s complement number also represents 16
values: −8 to 7. In general, the range of an N-bit two’s complement num-
ber spans [−2N−1, 2N−1− 1]. It should make sense that there is one more
negative number than positive number because there is no −0. The most
negative number 10…0002=−2N−1 is sometimes called the weird num-
ber. Its two’s complement is found by inverting the bits (producing
01…1112) and adding 1, which produces 10…0002, the weird number,
again. Hence, this negative number has no positive counterpart.

Adding two N-bit positive numbers or negative numbers may cause
overflow if the result is greater than 2N−1 − 1 or less than −2N−1. Add-
ing a positive number to a negative number never causes overflow.
Unlike unsigned numbers, a carry out of the most significant column
does not indicate overflow. Instead, overflow occurs if the two numbers
being added have the same sign bit and the result has the opposite
sign bit.

Example 1.14 ADDING TWO’S COMPLEMENT NUMBERS WITH
OVERFLOW

Compute 410+ 510 using 4-bit two’s complement numbers. Does the result
overflow?

Solution: 410+ 510= 01002+ 01012= 10012=−710. The result overflows the range
of 4-bit positive two’s complement numbers, producing an incorrect negative result.
If the computation had been done using five or more bits, the result 010012= 910
would have been correct.

When a two’s complement number is extended to more bits, the sign
bit must be copied into the most significant bit positions. This process is
called sign extension. For example, the numbers 3 and −3 are written
as 4-bit two’s complement numbers 0011 and 1101, respectively. They
are sign-extended to seven bits by copying the sign bit into the three
new upper bits to form 0000011 and 1111101, respectively.

Comparison of Number Systems
The three most commonly used binary number systems are unsigned,
two’s complement, and sign/magnitude. Table 1.3 compares the range
of N-bit numbers in each of these three systems. Two’s complement num-
bers are convenient because they represent both positive and negative
integers and because ordinary addition works for all numbers. Subtrac-
tion is performed by negating the second number (i.e., taking the two’s

18 CHAPTER ONE From Zero to One

complement), and then adding. Unless stated otherwise, assume that all
signed binary numbers use two’s complement representation.

Figure 1.11 shows a number line indicating the values of 4-bit num-
bers in each system. Unsigned numbers span the range [0, 15] in regular
binary order. Two’s complement numbers span the range [−8, 7]. The
nonnegative numbers [0, 7] share the same encodings as unsigned num-
bers. The negative numbers [−8, −1] are encoded such that a larger
unsigned binary value represents a number closer to 0. Notice that the
weird number, 1000, represents −8 and has no positive counterpart.
Sign/magnitude numbers span the range [−7, 7]. The most significant
bit is the sign bit. The positive numbers [1, 7] share the same encodings
as unsigned numbers. The negative numbers are symmetric but have the
sign bit set. 0 is represented by both 0000 and 1000. Thus, N-bit sign/
magnitude numbers represent only 2N− 1 integers because of the two repre-
sentations for 0.

1.5 LOGIC GATES

Now that we know how to use binary variables to represent information,
we explore digital systems that perform operations on these binary vari-
ables. Logic gates are simple digital circuits that take one or more binary
inputs and produce a binary output. Logic gates are drawn with a symbol
showing the input (or inputs) and the output. Inputs are usually drawn on

Table 1.3 Range of N-bit numbers

System Range

Unsigned [0, 2N – 1]

Sign/Magnitude [–2N–1 + 1, 2N–1 – 1]

Two’s Complement [–2N–1, 2N–1 – 1]

–8

1000 1001

–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 Two's Complement

1000
1001101010111100110111101111

0000
0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 11110000 0001 0010 0011 0100 0101 0110 0111

Sign / Magnitude

Unsigned

Figure 1.11 Number line and 4-bit binary encodings

1.5 Logic Gates 19

the left (or top) and outputs on the right (or bottom). Digital designers
typically use letters near the beginning of the alphabet for gate inputs
and the letter Y for the gate output. The relationship between the inputs
and the output can be described with a truth table or a Boolean equation.
A truth table lists inputs on the left and the corresponding output on the
right. It has one row for each possible combination of inputs. A Boolean
equation is a mathematical expression using binary variables.

1 . 5 . 1 NOT Gate

A NOT gate has one input, A, and one output, Y, as shown in Figure 1.12.
The NOT gate’s output is the inverse of its input. If A is FALSE, then Y is
TRUE. If A is TRUE, then Y is FALSE. This relationship is summarized by
the truth table and Boolean equation in the figure. The line over A in the
Boolean equation is pronounced NOT, so Y=A is read “Y equals NOT A.”
The NOT gate is also called an inverter.

Other texts use a variety of notations for NOT, includingY=A′,Y=¬A,
Y = !A or Y= ~A. We will use Y=A exclusively, but don’t be puzzled if you
encounter another notation elsewhere.

1 . 5 . 2 Buffer

The other one-input logic gate is called a buffer and is shown in Figure 1.13.
It simply copies the input to the output.

From the logical point of view, a buffer is no different from a wire, so
it might seem useless. However, from the analog point of view, the buffer
might have desirable characteristics such as the ability to deliver large
amounts of current to a motor or the ability to quickly send its output
to many gates. This is an example of why we need to consider multiple
levels of abstraction to fully understand a system; the digital abstraction
hides the real purpose of a buffer.

The triangle symbol indicates a buffer. A circle on the output is called
a bubble and indicates inversion, as was seen in the NOT gate symbol of
Figure 1.12.

1 . 5 . 3 AND Gate

Two-input logic gates are more interesting. The AND gate shown in
Figure 1.14 produces a TRUE output, Y, if and only if both A and B
are TRUE. Otherwise, the output is FALSE. By convention, the inputs
are listed in the order 00, 01, 10, 11, as if you were counting in binary.
The Boolean equation for an AND gate can be written in several ways:
Y=A • B, Y=AB, or Y=A ∩ B. The ∩ symbol is pronounced “intersec-
tion” and is preferred by logicians. We prefer Y=AB, read “Y equals A
and B,” because we are lazy.

NOT

Y = A

A Y
0 1
1 0

A Y

Figure 1.12 NOT gate

BUF

Y = A

A Y
0 0
1 1

A Y

Figure 1.13 Buffer

AND

Y = AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A
B Y

Figure 1.14 AND gate

According to Larry Wall,
inventor of the Perl
programming language, “the
three principal virtues of a
programmer are Laziness,
Impatience, and Hubris.”

20 CHAPTER ONE From Zero to One

1 . 5 . 4 OR Gate

The OR gate shown in Figure 1.15 produces a TRUE output, Y, if either
A or B (or both) are TRUE. The Boolean equation for an OR gate is writ-
ten as Y =A+B or Y=A ∪ B. The ∪ symbol is pronounced union and
is preferred by logicians. Digital designers normally use the + notation,
Y= A+B is pronounced “Y equals A or B.”

1 . 5 . 5 Other Two-Input Gates

Figure 1.16 shows other common two-input logic gates. XOR (exclusive
OR, pronounced “ex-OR”) is TRUE if A or B, but not both, are TRUE.
The XOR operation is indicated by ⊕, a plus sign with a circle around
it. Any gate can be followed by a bubble to invert its operation. The
NAND gate performs NOT AND. Its output is TRUE unless both inputs
are TRUE. The NOR gate performs NOT OR. Its output is TRUE if
neither A nor B is TRUE. An N-input XOR gate is sometimes called a
parity gate and produces a TRUE output if an odd number of inputs
are TRUE. As with two-input gates, the input combinations in the truth
table are listed in counting order.

Example 1.15 XNOR GATE

Figure 1.17 shows the symbol and Boolean equation for a two-input XNOR gate
that performs the inverse of an XOR. Complete the truth table.

Solution: Figure 1.18 shows the truth table. The XNOR output is TRUE if both
inputs are FALSE or both inputs are TRUE. The two-input XNOR gate is sometimes
called an equality gate because its output is TRUE when the inputs are equal.

1 . 5 . 6 Multiple-Input Gates

Many Boolean functions of three or more inputs exist. The most common
are AND, OR, XOR, NAND, NOR, and XNOR. An N-input AND gate

OR

Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A
B Y

Figure 1.15 OR gate

A silly way to remember the
OR symbol is that its input
side is curved like Pacman’s
mouth, so the gate is hungry
and willing to eat any TRUE
inputs it can find!

Y = A + BY = A + B

XOR
A
B Y

Y = AB

NAND
A
B Y

NOR
A
B Y

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Figure 1.16 More two-input logic gates

XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B Y

Figure 1.17 XNOR gate

1.5 Logic Gates 21

produces a TRUE output when all N inputs are TRUE. An N-input OR
gate produces a TRUE output when at least one input is TRUE.

Example 1.16 THREE-INPUT NOR GATE

Figure 1.19 shows the symbol and Boolean equation for a three-input NOR gate.
Complete the truth table.

Solution: Figure 1.20 shows the truth table. The output is TRUE only if none of
the inputs are TRUE.

Example 1.17 FOUR-INPUT AND GATE

Figure 1.21 shows the symbol and Boolean equation for a four-input AND gate.
Create a truth table.

Solution: Figure 1.22 shows the truth table. The output is TRUE only if all of the
inputs are TRUE.

1.6 BENEATH THE DIGITAL ABSTRACTION

A digital system uses discrete-valued variables. However, the variables are
represented by continuous physical quantities such as the voltage on a
wire, the position of a gear, or the level of fluid in a cylinder. Hence,
the designer must choose a way to relate the continuous value to the dis-
crete value.

For example, consider representing a binary signal Awith a voltage on
a wire. Let 0 volts (V) indicate A= 0 and 5 V indicate A= 1. Any real sys-
tem must tolerate some noise, so 4.97 V probably ought to be interpreted
as A= 1 as well. But what about 4.3 V? Or 2.8 V? Or 2.500000 V?

1 . 6 . 1 Supply Voltage

Suppose the lowest voltage in the system is 0 V, also called ground or GND.
The highest voltage in the system comes from the power supply and is usually
called VDD. In 1970’s and 1980’s technology, VDD was generally 5 V. As
chips have progressed to smaller transistors, VDD has dropped to 3.3 V,
2.5 V, 1.8 V, 1.5 V, 1.2 V, or even lower to save power and avoid overload-
ing the transistors.

1 . 6 . 2 Logic Levels

Themapping of a continuous variable onto a discrete binary variable is done
by defining logic levels, as shown in Figure 1.23. The first gate is called the
driver and the second gate is called the receiver. The output of the driver is

A B Y
0 0
0 1
1 0
1 1

1
0
0
1

Figure 1.18 XNOR truth table

NOR3

Y = A + B + C

B C Y
0 0
0 1
1 0
1 1

A
B Y
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

Figure 1.19 Three-input NOR gate

B C Y
0 0 1
0 1 0
1 0 0
1 1 0

A
0
0
0
0

0 0 0
0 1 0
1 0 0
1 1 0

1
1
1
1

Figure 1.20 Three-input NOR truth
table

AND4

Y = ABCD

A
B YC
D

Figure 1.21 Four-input AND gate

22 CHAPTER ONE From Zero to One

connected to the input of the receiver. The driver produces a LOW (0) out-
put in the range of 0 to VOL or a HIGH (1) output in the range of VOH to
VDD· If the receiver gets an input in the range of 0 to VIL, it will consider
the input to be LOW. If the receiver gets an input in the range of VIH to
VDD, it will consider the input to be HIGH. If, for some reason such as noise
or faulty components, the receiver’s input should fall in the forbidden zone
between VIL and VIH, the behavior of the gate is unpredictable. VOH,VOL,
VIH, and VIL are called the output and input high and low logic levels.

1 . 6 . 3 Noise Margins

If the output of the driver is to be correctly interpreted at the input of the
receiver, we must choose VOL<VIL and VOH>VIH. Thus, even if the
output of the driver is contaminated by some noise, the input of the recei-
ver will still detect the correct logic level. The noise margin is the amount
of noise that could be added to a worst-case output such that the signal
can still be interpreted as a valid input. As can be seen in Figure 1.23,
the low and high noise margins are, respectively

NML = VIL −VOL (1.2)

NMH = VOH −VIH (1.3)

Example 1.18 CALCULATING NOISE MARGINS

Consider the inverter circuit of Figure 1.24. VO1 is the output voltage of inverter I1,
and VI2 is the input voltage of inverter I2. Both inverters have the following charac-
teristics: VDD= 5 V,VIL = 1.35 V,VIH = 3.15 V,VOL= 0.33 V, andVOH= 3.84 V.
What are the inverter low and high noise margins? Can the circuit tolerate 1 V of
noise between VO1 and VI2?

C D Y
0 0 0
0 1 0
1 0 0
1 1 0

B
0
0
0
0

0 0 0
0 1 0
1 0 0
1 1 0

1
1
1
1

A

0 0 0
0 1 0
1 0 0
1 1 0

0
0
0
0

0 0 0
0 1 0
1 0 0
1 1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

Figure 1.22 Four-input AND truth
table

Forbidden
Zone

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logic High
Input Range

Logic Low
Input Range

Logic High
Output Range

Logic Low
Output Range

Driver Receiver

Figure 1.23 Logic levels and noise margins

VDD stands for the voltage on
the drain of a metal-oxide-
semiconductor transistor, used
to build most modern chips.
The power supply voltage is
also sometimes called VCC,
standing for the voltage on the
collector of a bipolar junction
transistor used to build chips
in an older technology.
Ground is sometimes called
VSS because it is the voltage on
the source of a metal-oxide-
semiconductor transistor.
See Section 1.7 for more
information on transistors.

1.6 Beneath the Digital Abstraction 23

Solution: The inverter noise margins are: NML=VIL −VOL= (1.35 V− 0.33 V)=
1.02 V, NMH=VOH−VIH = (3.84 V− 3.15 V)= 0.69 V. The circuit can tolerate
1 V of noise when the output is LOW (NML = 1.02 V) but not when the output is
HIGH (NMH= 0.69 V). For example, suppose the driver, I1, outputs its worst-
case HIGH value, VO1=VOH= 3.84 V. If noise causes the voltage to droop by
1 V before reaching the input of the receiver, VI2= (3.84 V− 1 V)= 2.84 V. This
is less than the acceptable input HIGH value, VIH= 3.15 V, so the receiver may
not sense a proper HIGH input.

1 . 6 . 4 DC Transfer Characteristics

To understand the limits of the digital abstraction, we must delve into the
analog behavior of a gate. The DC transfer characteristics of a gate
describe the output voltage as a function of the input voltage when the
input is changed slowly enough that the output can keep up. They are
called transfer characteristics because they describe the relationship
between input and output voltages.

An ideal inverter would have an abrupt switching threshold atVDD/2, as
shown in Figure 1.25(a). ForV(A)<VDD/2,V(Y)=VDD. ForV(A)>VDD/2,
V(Y)= 0. In such a case, VIH=VIL=VDD/2. VOH=VDD and VOL= 0.

A real inverter changes more gradually between the extremes, as
shown in Figure 1.25(b). When the input voltage V(A) is 0, the output
voltage V(Y)=VDD. When V(A)=VDD, V(Y)= 0. However, the transi-
tion between these endpoints is smooth and may not be centered at
exactly VDD/2. This raises the question of how to define the logic levels.

A reasonable place to choose the logic levels is where the slope of the
transfer characteristic dV(Y) / dV(A) is −1. These two points are called the
unity gain points.Choosing logic levels at the unity gain points usually max-
imizes the noise margins. IfVILwere reduced,VOHwould only increase by a
small amount. But if VIL were increased, VOH would drop precipitously.

1 . 6 . 5 The Static Discipline

To avoid inputs falling into the forbidden zone, digital logic gates are
designed to conform to the static discipline. The static discipline requires
that, given logically valid inputs, every circuit element will produce logi-
cally valid outputs.

By conforming to the static discipline, digital designers sacrifice the
freedom of using arbitrary analog circuit elements in return for the simpli-
city and robustness of digital circuits. They raise the level of abstraction

I1 I2

Noise

VO1 VI2
Figure 1.24 Inverter circuit

DC indicates behavior when
an input voltage is held
constant or changes slowly
enough for the rest of the
system to keep up. The term’s
historical root comes from
direct current, a method of
transmitting power across a
line with a constant voltage.
In contrast, the transient
response of a circuit is the
behavior when an input
voltage changes rapidly.
Section 2.9 explores transient
response further.

24 CHAPTER ONE From Zero to One

from analog to digital, increasing design productivity by hiding needless
detail.

The choice of VDD and logic levels is arbitrary, but all gates that com-
municate must have compatible logic levels. Therefore, gates are grouped
into logic families such that all gates in a logic family obey the static dis-
cipline when used with other gates in the family. Logic gates in the same
logic family snap together like Legos in that they use consistent power
supply voltages and logic levels.

Four major logic families that predominated from the 1970’s through
the 1990’s are Transistor-Transistor Logic (TTL), Complementary Metal-
Oxide-Semiconductor Logic (CMOS, pronounced sea-moss), Low Vol-
tage TTL Logic (LVTTL), and Low Voltage CMOS Logic (LVCMOS).
Their logic levels are compared in Table 1.4. Since then, logic families
have balkanized with a proliferation of even lower power supply voltages.
Appendix A.6 revisits popular logic families in more detail.

VDD

V(A)

V(Y)

VOH VDD

VOL

VIL, VIH

0

A Y

VDD

V(A)

V(Y)

VOH

VDD

VOL

VIL VIH

Unity Gain Points
Slope = –1

0

(a) (b)

VDD/ 2

Figure 1.25 DC transfer characteristics and logic levels

Table 1.4 Logic levels of 5 V and 3.3 V logic families

Logic Family VDD VIL VIH VOL VOH

TTL 5 (4.75−5.25) 0.8 2.0 0.4 2.4

CMOS 5 (4.5−6) 1.35 3.15 0.33 3.84

LVTTL 3.3 (3−3.6) 0.8 2.0 0.4 2.4

LVCMOS 3.3 (3−3.6) 0.9 1.8 0.36 2.7

1.6 Beneath the Digital Abstraction 25

Example 1.19 LOGIC FAMILY COMPATIBILITY

Which of the logic families in Table 1.4 can communicate with each other reliably?

Solution: Table 1.5 lists which logic families have compatible logic levels. Note that
a 5 V logic family such as TTL or CMOS may produce an output voltage as HIGH
as 5 V. If this 5 V signal drives the input of a 3.3 V logic family such as LVTTL or
LVCMOS, it can damage the receiver, unless the receiver is specially designed to be
“5-volt compatible.”

1.7 CMOS TRANSISTORS*

This section and other sections marked with a * are optional and are not
necessary to understand the main flow of the book.

Babbage’s Analytical Engine was built from gears, and early electrical
computers used relays or vacuum tubes. Modern computers use transis-
tors because they are cheap, small, and reliable. Transistors are electri-
cally controlled switches that turn ON or OFF when a voltage or
current is applied to a control terminal. The two main types of transistors
are bipolar junction transistors and metal-oxide-semiconductor field effect
transistors (MOSFETs or MOS transistors, pronounced “moss-fets” or
“M-O-S”, respectively).

In 1958, Jack Kilby at Texas Instruments built the first integrated cir-
cuit containing two transistors. In 1959, Robert Noyce at Fairchild Semi-
conductor patented a method of interconnecting multiple transistors on a
single silicon chip. At the time, transistors cost about $10 each.

Thanks to more than four decades of unprecedented manufacturing
advances, engineers can now pack roughly three billion MOSFETs onto a
1 cm2 chip of silicon, and these transistors cost less than 1 microcent apiece.
The capacity and cost continue to improve by an order of magnitude every 8
years or so. MOSFETs are now the building blocks of almost all digital

Table 1.5 Compatibility of logic families

Receiver
TTL CMOS LVTTL LVCMOS

Driver TTL OK NO: VOH < VIH MAYBEa MAYBEa

CMOS OK OK MAYBEa MAYBEa

LVTTL OK NO: VOH < VIH OK OK

LVCMOS OK NO: VOH < VIH OK OK

a As long as a 5 V HIGH level does not damage the receiver input.

Robert Noyce, 1927–1990. Born
in Burlington, Iowa. Received
a B. A. in physics from
Grinnell College and a Ph.D.
in physics from MIT.
Nicknamed “Mayor of Silicon
Valley” for his profound
influence on the industry.

Cofounded Fairchild
Semiconductor in 1957 and
Intel in 1968. Coinvented the
integrated circuit. Many
engineers from his teams went
on to found other seminal
semiconductor companies
(photograph © 2006, Intel
Corporation. Reproduced by
permission).

26 CHAPTER ONE From Zero to One

systems. In this section, we will peer beneath the digital abstraction to see
how logic gates are built from MOSFETs.

1 . 7 . 1 Semiconductors

MOS transistors are built from silicon, the predominant atom in rock and
sand. Silicon (Si) is a group IV atom, so it has four electrons in its valence
shell and forms bonds with four adjacent atoms, resulting in a crystalline
lattice. Figure 1.26(a) shows the lattice in two dimensions for ease of
drawing, but remember that the lattice actually forms a cubic crystal. In
the figure, a line represents a covalent bond. By itself, silicon is a poor
conductor because all the electrons are tied up in covalent bonds. How-
ever, it becomes a better conductor when small amounts of impurities,
called dopant atoms, are carefully added. If a group V dopant such as
arsenic (As) is added, the dopant atoms have an extra electron that is
not involved in the bonds. The electron can easily move about the lattice,
leaving an ionized dopant atom (As+) behind, as shown in Figure 1.26(b).
The electron carries a negative charge, so we call arsenic an n-type dopant.
On the other hand, if a group III dopant such as boron (B) is added, the
dopant atoms are missing an electron, as shown in Figure 1.26(c). This
missing electron is called a hole. An electron from a neighboring silicon
atom may move over to fill the missing bond, forming an ionized dopant
atom (B−) and leaving a hole at the neighboring silicon atom. In a similar
fashion, the hole can migrate around the lattice. The hole is a lack of nega-
tive charge, so it acts like a positively charged particle. Hence, we call
boron a p-type dopant. Because the conductivity of silicon changes over
many orders of magnitude depending on the concentration of dopants, sili-
con is called a semiconductor.

1 . 7 . 2 Diodes

The junction between p-type and n-type silicon is called a diode. The
p-type region is called the anode and the n-type region is called the cath-
ode, as illustrated in Figure 1.27. When the voltage on the anode rises
above the voltage on the cathode, the diode is forward biased, and current

Si SiSi

Si SiSi

Si SiSi

(a)

As SiSi

Si SiSi

Si SiSi

(b)

-

+

Free electron

B SiSi

Si SiSi

Si SiSi

(c)

+

-

Free hole

Figure 1.26 Silicon lattice and
dopant atoms

1.7 CMOS Transistors 27

flows through the diode from the anode to the cathode. But when the
anode voltage is lower than the voltage on the cathode, the diode is
reverse biased, and no current flows. The diode symbol intuitively shows
that current only flows in one direction.

1 . 7 . 3 Capacitors

A capacitor consists of two conductors separated by an insulator. When a
voltage V is applied to one of the conductors, the conductor accumulates
electric charge Q and the other conductor accumulates the opposite
charge −Q. The capacitance C of the capacitor is the ratio of charge to
voltage: C =Q/V. The capacitance is proportional to the size of the con-
ductors and inversely proportional to the distance between them. The
symbol for a capacitor is shown in Figure 1.28.

Capacitance is important because charging or discharging a conduc-
tor takes time and energy. More capacitance means that a circuit will be
slower and require more energy to operate. Speed and energy will be dis-
cussed throughout this book.

1 . 7 . 4 nMOS and pMOS Transistors

A MOSFET is a sandwich of several layers of conducting and insulating
materials. MOSFETs are built on thin flat wafers of silicon of about 15 to
30 cm in diameter. The manufacturing process begins with a bare wafer.
The process involves a sequence of steps in which dopants are implanted into
the silicon, thin films of silicon dioxide and silicon are grown, and metal is
deposited. Between each step, the wafer is patterned so that the materials
appear only where they are desired. Because transistors are a fraction of a
micron1 in length and the entire wafer is processed at once, it is inexpensive
to manufacture billions of transistors at a time. Once processing is complete,
the wafer is cut into rectangles called chips or dice that contain thousands,
millions, or even billions of transistors. The chip is tested, then placed in a
plastic or ceramic package with metal pins to connect it to a circuit board.

The MOSFET sandwich consists of a conducting layer called the gate
on top of an insulating layer of silicon dioxide (SiO2) on top of the silicon
wafer, called the substrate. Historically, the gate was constructed from
metal, hence the name metal-oxide-semiconductor. Modern manufactur-
ing processes use polycrystalline silicon for the gate because it does not
melt during subsequent high-temperature processing steps. Silicon dioxide
is better known as glass and is often simply called oxide in the semicon-
ductor industry. The metal-oxide-semiconductor sandwich forms a capa-
citor, in which a thin layer of insulating oxide called a dielectric separates
the metal and semiconductor plates.

Technicians in an Intel clean
room wear Gore-Tex bunny
suits to prevent particulates
from their hair, skin, and
clothing from contaminating
the microscopic transistors on
silicon wafers (photograph
© 2006, Intel Corporation.
Reproduced by permission).

A 40-pin dual-inline package
(DIP) contains a small chip
(scarcely visible) in the center
that is connected to 40 metal
pins, 20 on a side, by gold
wires thinner than a strand of
hair (photograph by Kevin
Mapp. © 2006 Harvey Mudd
College).

1 1 μm= 1 micron= 10–6 m.

C

Figure 1.28 Capacitor symbol

p-type n-type

anode cathode

Figure 1.27 The p-n junction diode
structure and symbol

28 CHAPTER ONE From Zero to One

There are two flavors of MOSFETs: nMOS and pMOS (pronounced
“n-moss” and “p-moss”). Figure 1.29 shows cross-sections of each type,
made by sawing through a wafer and looking at it from the side. The
n-type transistors, called nMOS, have regions of n-type dopants adjacent
to the gate called the source and the drain and are built on a p-type semi-
conductor substrate. The pMOS transistors are just the opposite, consist-
ing of p-type source and drain regions in an n-type substrate.

A MOSFET behaves as a voltage-controlled switch in which the gate
voltage creates an electric field that turns ON or OFF a connection
between the source and drain. The term field effect transistor comes from
this principle of operation. Let us start by exploring the operation of an
nMOS transistor.

The substrate of an nMOS transistor is normally tied to GND, the low-
est voltage in the system. First, consider the situation when the gate is also
at 0 V, as shown in Figure 1.30(a). The diodes between the source or drain
and the substrate are reverse biased because the source or drain voltage is
nonnegative. Hence, there is no path for current to flow between the source
and drain, so the transistor is OFF. Now, consider when the gate is raised
to VDD, as shown in Figure 1.30(b). When a positive voltage is applied to
the top plate of a capacitor, it establishes an electric field that attracts posi-
tive charge on the top plate and negative charge to the bottom plate. If the
voltage is sufficiently large, so much negative charge is attracted to the
underside of the gate that the region inverts from p-type to effectively
become n-type. This inverted region is called the channel.Now the transis-
tor has a continuous path from the n-type source through the n-type chan-
nel to the n-type drain, so electrons can flow from source to drain. The
transistor is ON. The gate voltage required to turn on a transistor is called
the threshold voltage,Vt , and is typically 0.3 to 0.7 V.

The source and drain terminals
are physically symmetric.
However, we say that charge
flows from the source to the
drain. In an nMOS transistor,
the charge is carried by
electrons, which flow from
negative voltage to positive
voltage. In a pMOS transistor,
the charge is carried by holes,
which flow from positive
voltage to negative voltage.
If we draw schematics with the
most positive voltage at the top
and the most negative at the
bottom, the source of
(negative) charges in an nMOS
transistor is the bottom
terminal and the source of
(positive) charges in a pMOS
transistor is the top terminal.

n

p

gatesource drain

substrate

SiO2

n

gatesource drain
Polysilicon

n p p

gate

source drain

gate

source drain

substrate

(a) nMOS (b) pMOS

Figure 1.29 nMOS and pMOS transistors

A technician holds a 12-inch
wafer containing hundreds
of microprocessor chips
(photograph © 2006, Intel
Corporation. Reproduced by
permission).

1.7 CMOS Transistors 29

pMOS transistors work in just the opposite fashion, as might be guessed
from the bubble on their symbol shown in Figure 1.31. The substrate is tied
toVDD. When the gate is also atVDD, the pMOS transistor is OFF.When the
gate is at GND, the channel inverts to p-type and the pMOS transistor is ON.

Unfortunately, MOSFETs are not perfect switches. In particular,
nMOS transistors pass 0’s well but pass 1’s poorly. Specifically, when
the gate of an nMOS transistor is at VDD, the drain will only swing
between 0 and VDD−Vt. Similarly, pMOS transistors pass 1’s well but
0’s poorly. However, we will see that it is possible to build logic gates that
use transistors only in their good mode.

nMOS transistors need a p-type substrate, and pMOS transistors
need an n-type substrate. To build both flavors of transistors on the same
chip, manufacturing processes typically start with a p-type wafer, then
implant n-type regions called wells where the pMOS transistors should
go. These processes that provide both flavors of transistors are called
Complementary MOS or CMOS. CMOS processes are used to build the
vast majority of all transistors fabricated today.

In summary, CMOS processes give us two types of electrically
controlled switches, as shown in Figure 1.31. The voltage at the gate (g)
regulates the flow of current between the source (s) and drain (d). nMOS

n

p

gate
source drain

substrate

n

(a)
GND

GND

n

p

gatesource drain

substrate

n

(b)

VDD

GND

- - - - - - -

channel

+++++++

Figure 1.30 nMOS transistor operation

g

s

d

g

d

s

nMOS

pMOS

g = 0

s

d

d

s

OFF

ON

g = 1

s

d

d

s

ON

OFF

Figure 1.31 Switch models of MOSFETs

Gordon Moore, 1929–. Born in San
Francisco. Received a B.S. in
chemistry from UC Berkeley and
a Ph.D. in chemistry and physics
from Caltech. Cofounded Intel
in 1968 with Robert Noyce.
Observed in 1965 that the
number of transistors on a
computer chip doubles every
year. This trend has become
known as Moore’s Law. Since
1975, transistor counts have
doubled every two years.

A corollary of Moore’s
Law is that microprocessor
performance doubles every 18
to 24 months. Semiconductor
sales have also increased
exponentially.

Moore’s Law has driven
the incredible advances of the
semiconductor industry for
50 years as the feature size of
transistors has dropped from
more then 10 μm to only
28 nm. However, this progress
is showing signs of slowing
below the 28 nm node because
building transistors much
smaller than the wavelength of
light is expensive. (Photograph
© 2006, Intel Corporation.
Reproduced by permission.)

30 CHAPTER ONE From Zero to One

transistors are OFF when the gate is 0 and ON when the gate is 1. pMOS
transistors are just the opposite: ON when the gate is 0 and OFF when
the gate is 1.

1 . 7 . 5 CMOS NOT Gate

Figure 1.32 shows a schematic of a NOT gate built with CMOS transis-
tors. The triangle indicates GND, and the flat bar indicates VDD ; these
labels will be omitted from future schematics. The nMOS transistor,
N1, is connected between GND and the Y output. The pMOS transistor,
P1, is connected between VDD and the Y output. Both transistor gates are
controlled by the input, A.

If A = 0, N1 is OFF and P1 is ON. Hence, Y is connected to VDD but
not to GND, and is pulled up to a logic 1. P1 passes a good 1. If A= 1,
N1 is ON and P1 is OFF, and Y is pulled down to a logic 0. N1 passes
a good 0. Checking against the truth table in Figure 1.12, we see that
the circuit is indeed a NOT gate.

1 . 7 . 6 Other CMOS Logic Gates

Figure 1.33 shows a schematic of a two-input NAND gate. In schematic
diagrams, wires are always joined at three-way junctions. They are joined
at four-way junctions only if a dot is shown. The nMOS transistors N1 and
N2 are connected in series; both nMOS transistors must be ON to pull the
output down to GND. The pMOS transistors P1 and P2 are in parallel;
only one pMOS transistor must be ON to pull the output up to VDD.
Table 1.6 lists the operation of the pull-down and pull-up networks and
the state of the output, demonstrating that the gate does function as a
NAND. For example, when A = 1 and B = 0, N1 is ON, but N2 is OFF,
blocking the path from Y to GND. P1 is OFF, but P2 is ON, creating a path
from VDD to Y. Therefore, Y is pulled up to 1.

Figure 1.34 shows the general form used to construct any inverting
logic gate, such as NOT, NAND, or NOR. nMOS transistors are good at
passing 0’s, so a pull-down network of nMOS transistors is placed between
the output and GND to pull the output down to 0. pMOS transistors are

VDD

A Y

GND

N1

P1

Figure 1.32 NOT gate schematic

A

B

Y

N2

N1

P2 P1

Figure 1.33 Two-input NAND gate
schematic

Table 1.6 NAND gate operation

A B Pull-Down Network Pull-Up Network Y

0 0 OFF ON 1

0 1 OFF ON 1

1 0 OFF ON 1

1 1 ON OFF 0

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

Figure 1.34 General form of an
inverting logic gate

1.7 CMOS Transistors 31

good at passing 1’s, so a pull-up network of pMOS transistors is placed
between the output and VDD to pull the output up to 1. The networks
may consist of transistors in series or in parallel. When transistors are in
parallel, the network is ON if either transistor is ON. When transistors
are in series, the network is ON only if both transistors are ON. The slash
across the input wire indicates that the gate may receive multiple inputs.

If both the pull-up and pull-down networks were ON simultaneously,
a short circuit would exist between VDD and GND. The output of the gate
might be in the forbidden zone and the transistors would consume large
amounts of power, possibly enough to burn out. On the other hand, if
both the pull-up and pull-down networks were OFF simultaneously, the
output would be connected to neither VDD nor GND. We say that the
output floats. Its value is again undefined. Floating outputs are usually
undesirable, but in Section 2.6 we will see how they can occasionally be
used to the designer’s advantage.

In a properly functioning logic gate, one of the networks should be
ON and the other OFF at any given time, so that the output is pulled
HIGH or LOW but not shorted or floating. We can guarantee this by
using the rule of conduction complements. When nMOS transistors are
in series, the pMOS transistors must be in parallel. When nMOS transis-
tors are in parallel, the pMOS transistors must be in series.

Example 1.20 THREE-INPUT NAND SCHEMATIC

Draw a schematic for a three-input NAND gate using CMOS transistors.

Solution: The NAND gate should produce a 0 output only when all three inputs
are 1. Hence, the pull-down network should have three nMOS transistors in ser-
ies. By the conduction complements rule, the pMOS transistors must be in paral-
lel. Such a gate is shown in Figure 1.35; you can verify the function by checking
that it has the correct truth table.

Example 1.21 TWO-INPUT NOR SCHEMATIC

Draw a schematic for a two-input NOR gate using CMOS transistors.

Solution: The NOR gate should produce a 0 output if either input is 1. Hence, the
pull-down network should have two nMOS transistors in parallel. By the conduc-
tion complements rule, the pMOS transistors must be in series. Such a gate is
shown in Figure 1.36.

Example 1.22 TWO-INPUT AND SCHEMATIC

Draw a schematic for a two-input AND gate.

Experienced designers claim
that electronic devices operate
because they contain magic
smoke. They confirm this
theory with the observation
that if the magic smoke is ever
let out of the device, it ceases
to work.

A

B

Y

C

Figure 1.35 Three-input NAND
gate schematic

A

B
Y

Figure 1.36 Two-input NOR gate
schematic

32 CHAPTER ONE From Zero to One

Solution: It is impossible to build an AND gate with a single CMOS gate. However,
building NAND and NOT gates is easy. Thus, the best way to build an AND
gate using CMOS transistors is to use a NAND followed by a NOT, as shown in
Figure 1.37.

1 . 7 . 7 Transmission Gates

At times, designers find it convenient to use an ideal switch that can pass
both 0 and 1 well. Recall that nMOS transistors are good at passing 0
and pMOS transistors are good at passing 1, so the parallel combination
of the two passes both values well. Figure 1.38 shows such a circuit,
called a transmission gate or pass gate. The two sides of the switch are
called A and B because a switch is bidirectional and has no preferred
input or output side. The control signals are called enables, EN and
EN . When EN= 0 and EN = 1, both transistors are OFF. Hence, the
transmission gate is OFF or disabled, so A and B are not connected.
When EN= 1 and EN = 0, the transmission gate is ON or enabled, and
any logic value can flow between A and B.

1 . 7 . 8 Pseudo-nMOS Logic

An N-input CMOS NOR gate uses N nMOS transistors in parallel and N
pMOS transistors in series. Transistors in series are slower than transis-
tors in parallel, just as resistors in series have more resistance than resis-
tors in parallel. Moreover, pMOS transistors are slower than nMOS
transistors because holes cannot move around the silicon lattice as fast
as electrons. Therefore the parallel nMOS transistors are fast and the ser-
ies pMOS transistors are slow, especially when many are in series.

Pseudo-nMOS logic replaces the slow stack of pMOS transistors with
a single weak pMOS transistor that is always ON, as shown in Figure 1.39.
This pMOS transistor is often called a weak pull-up. The physical dimen-
sions of the pMOS transistor are selected so that the pMOS transistor
will pull the output Y HIGH weakly—that is, only if none of the nMOS
transistors are ON. But if any nMOS transistor is ON, it overpowers
the weak pull-up and pulls Y down close enough to GND to produce a
logic 0.

The advantage of pseudo-nMOS logic is that it can be used to build
fast NOR gates with many inputs. For example, Figure 1.40 shows a
pseudo-nMOS four-input NOR. Pseudo-nMOS gates are useful for cer-
tain memory and logic arrays discussed in Chapter 5. The disadvantage
is that a short circuit exists between VDD and GND when the output is
LOW; the weak pMOS and nMOS transistors are both ON. The short
circuit draws continuous power, so pseudo-nMOS logic must be used
sparingly.

A
B Y

Figure 1.37 Two-input AND gate
schematic

A B

EN

EN

Figure 1.38 Transmission gate

Y

inputs nMOS
pull-down
network

weak

Figure 1.39 Generic pseudo-nMOS
gate

A B
Y

weak

C D

Figure 1.40 Pseudo-nMOS four-
input NOR gate

1.7 CMOS Transistors 33

Pseudo-nMOS gates got their name from the 1970’s, when manufactur-
ing processes only had nMOS transistors. A weak nMOS transistor was
used to pull the output HIGH because pMOS transistors were not available.

1.8 POWER CONSUMPTION*

Power consumption is the amount of energy used per unit time. Power
consumption is of great importance in digital systems. The battery life
of portable systems such as cell phones and laptop computers is limited
by power consumption. Power is also significant for systems that are
plugged in, because electricity costs money and because the system will
overheat if it draws too much power.

Digital systems draw both dynamic and static power. Dynamic power
is the power used to charge capacitance as signals change between 0 and 1.
Static power is the power used even when signals do not change and the
system is idle.

Logic gates and the wires that connect them have capacitance. The
energy drawn from the power supply to charge a capacitance C to voltage
VDD is CVDD

2. If the voltage on the capacitor switches at frequency f (i.e.,
f times per second), it charges the capacitor f/2 times and discharges it
f/2 times per second. Discharging does not draw energy from the power
supply, so the dynamic power consumption is

Pdynamic =
1
2
CV 2

DD f (1.4)

Electrical systems draw some current even when they are idle. When
transistors are OFF, they leak a small amount of current. Some circuits,
such as the pseudo-nMOS gate discussed in Section 1.7.8, have a path
from VDD to GND through which current flows continuously. The total
static current, IDD, is also called the leakage current or the quiescent
supply current flowing between VDD and GND. The static power con-
sumption is proportional to this static current:

Pstatic = IDDVDD (1.5)

Example 1.23 POWER CONSUMPTION

A particular cell phone has a 6 watt-hour (W-hr) battery and operates at 1.2 V. Sup-
pose that, when it is in use, the cell phone operates at 300 MHz and the average
amount of capacitance in the chip switching at any given time is 10 nF (10−8 Farads).
When in use, it also broadcasts 3 W of power out of its antenna. When the phone is
not in use, the dynamic power drops to almost zero because the signal processing is
turned off. But the phone also draws 40 mA of quiescent current whether it is in
use or not. Determine the battery life of the phone (a) if it is not being used, and
(b) if it is being used continuously.

34 CHAPTER ONE From Zero to One

Solution: The static power is Pstatic= (0.040 A)(1.2 V)= 48 mW. (a) If the phone is
not being used, this is the only power consumption, so the battery life is (6 Whr)/
(0.048 W)= 125 hours (about 5 days). (b) If the phone is being used, the dynamic
power is Pdynamic= (0.5)(10−8 F)(1.2 V)2(3 × 108 Hz) = 2.16 W. Together with
the static and broadcast power, the total active power is 2.16 W+ 0.048 W+
3 W= 5.2 W, so the battery life is 6 W-hr/5.2 W= 1.15 hours. This example
somewhat oversimplifies the actual operation of a cell phone, but it illustrates
the key ideas of power consumption.

1.9 SUMMARY AND A LOOK AHEAD

There are 10 kinds of people in this world: those who can count in binary
and those who can’t.

This chapter has introduced principles for understanding and designing
complex systems. Although the real world is analog, digital designers dis-
cipline themselves to use a discrete subset of possible signals. In particu-
lar, binary variables have just two states: 0 and 1, also called FALSE
and TRUE or LOW and HIGH. Logic gates compute a binary output
from one or more binary inputs. Some of the common logic gates are:

▶ NOT: TRUE when input is FALSE

▶ AND: TRUE when all inputs are TRUE

▶ OR: TRUE when any inputs are TRUE

▶ XOR: TRUE when an odd number of inputs are TRUE

Logic gates are commonly built from CMOS transistors, which
behave as electrically controlled switches. nMOS transistors turn ON
when the gate is 1. pMOS transistors turn ON when the gate is 0.

In Chapters 2 through 5, we continue the study of digital logic. Chapter 2
addresses combinational logic, in which the outputs depend only on the
current inputs. The logic gates introduced already are examples of combina-
tional logic. You will learn to design circuits involving multiple gates to
implement a relationship between inputs and outputs specified by a truth
table or Boolean equation. Chapter 3 addresses sequential logic, in which
the outputs depend on both current and past inputs. Registers are com-
mon sequential elements that remember their previous input. Finite state
machines, built from registers and combinational logic, are a powerful
way to build complicated systems in a systematic fashion. We also study
timing of digital systems to analyze how fast a system can operate. Chap-
ter 4 describes hardware description languages (HDLs). HDLs are related
to conventional programming languages but are used to simulate and

1.9 Summary and a Look Ahead 35

build hardware rather than software. Most digital systems today are
designed with HDLs. SystemVerilog and VHDL are the two prevalent lan-
guages, and they are covered side-by-side in this book. Chapter 5 studies
other combinational and sequential building blocks such as adders, multi-
pliers, and memories.

Chapter 6 shifts to computer architecture. It describes the ARM
processor, an industry-standard microprocessor used in almost all smart
phones and tablets and many other devices, from pinball machines to cars
and servers. The ARM architecture is defined by its registers and assem-
bly language instruction set. You will learn to write programs in assembly
language for the ARM processor so that you can communicate with the
processor in its native language.

Chapters 7 and 8 bridge the gap between digital logic and computer
architecture. Chapter 7 investigates microarchitecture, the arrangement of
digital building blocks, such as adders and registers, needed to construct a
processor. In that chapter, you learn to build your own ARM processor.
Indeed, you learn three microarchitectures illustrating different trade-offs
of performance and cost. Processor performance has increased expo-
nentially, requiring ever more sophisticated memory systems to feed the
insatiable demand for data. Chapter 8 delves into memory system archi-
tecture. Chapter 9 (available as a web supplement, see Preface) describes
how computers communicate with peripheral devices such as monitors,
Bluetooth radios, and motors.

36 CHAPTER ONE From Zero to One

Exercises

Exercise 1.1 Explain in one paragraph at least three levels of abstraction that are
used by

(a) biologists studying the operation of cells.

(b) chemists studying the composition of matter.

Exercise 1.2 Explain in one paragraph how the techniques of hierarchy,
modularity, and regularity may be used by

(a) automobile designers.

(b) businesses to manage their operations.

Exercise 1.3 Ben Bitdiddle is building a house. Explain how he can use the
principles of hierarchy, modularity, and regularity to save time and money during
construction.

Exercise 1.4 An analog voltage is in the range of 0–5 V. If it can be measured with
an accuracy of ±50 mV, at most how many bits of information does it convey?

Exercise 1.5 A classroom has an old clock on the wall whose minute hand broke
off.

(a) If you can read the hour hand to the nearest 15 minutes, how many bits of
information does the clock convey about the time?

(b) If you know whether it is before or after noon, how many additional bits of
information do you know about the time?

Exercise 1.6 The Babylonians developed the sexagesimal (base 60) number system
about 4000 years ago. How many bits of information is conveyed with one
sexagesimal digit? How do you write the number 400010 in sexagesimal?

Exercise 1.7 How many different numbers can be represented with 16 bits?

Exercise 1.8 What is the largest unsigned 32-bit binary number?

Exercise 1.9 What is the largest 16-bit binary number that can be represented
with

(a) unsigned numbers?

(b) two’s complement numbers?

(c) sign/magnitude numbers?

Exercises 37

Exercise 1.10 What is the largest 32-bit binary number that can be represented
with

(a) unsigned numbers?

(b) two’s complement numbers?

(c) sign/magnitude numbers?

Exercise 1.11 What is the smallest (most negative) 16-bit binary number that
can be represented with

(a) unsigned numbers?

(b) two’s complement numbers?

(c) sign/magnitude numbers?

Exercise 1.12 What is the smallest (most negative) 32-bit binary number that can
be represented with

(a) unsigned numbers?

(b) two’s complement numbers?

(c) sign/magnitude numbers?

Exercise 1.13 Convert the following unsigned binary numbers to decimal. Show
your work.

(a) 10102

(b) 1101102

(c) 111100002

(d) 0001000101001112

Exercise 1.14 Convert the following unsigned binary numbers to decimal. Show
your work.

(a) 11102

(b) 1001002

(c) 110101112

(d) 0111010101001002

Exercise 1.15 Repeat Exercise 1.13, but convert to hexadecimal.

Exercise 1.16 Repeat Exercise 1.14, but convert to hexadecimal.

38 CHAPTER ONE From Zero to One

Exercise 1.17 Convert the following hexadecimal numbers to decimal. Show your
work.

(a) A516

(b) 3B16

(c) FFFF16

(d) D000000016

Exercise 1.18 Convert the following hexadecimal numbers to decimal. Show your
work.

(a) 4E16

(b) 7C16

(c) ED3A16

(d) 403FB00116

Exercise 1.19 Repeat Exercise 1.17, but convert to unsigned binary.

Exercise 1.20 Repeat Exercise 1.18, but convert to unsigned binary.

Exercise 1.21 Convert the following two’s complement binary numbers to decimal.

(a) 10102

(b) 1101102

(c) 011100002

(d) 100111112

Exercise 1.22 Convert the following two’s complement binary numbers to decimal.

(a) 11102

(b) 1000112

(c) 010011102

(d) 101101012

Exercise 1.23 Repeat Exercise 1.21, assuming the binary numbers are in
sign/magnitude form rather than two’s complement representation.

Exercise 1.24 Repeat Exercise 1.22, assuming the binary numbers are in
sign/magnitude form rather than two’s complement representation.

Exercises 39

Exercise 1.25 Convert the following decimal numbers to unsigned binary
numbers.

(a) 4210

(b) 6310

(c) 22910

(d) 84510

Exercise 1.26 Convert the following decimal numbers to unsigned binary
numbers.

(a) 1410

(b) 5210

(c) 33910

(d) 71110

Exercise 1.27 Repeat Exercise 1.25, but convert to hexadecimal.

Exercise 1.28 Repeat Exercise 1.26, but convert to hexadecimal.

Exercise 1.29 Convert the following decimal numbers to 8-bit two’s complement
numbers or indicate that the decimal number would overflow the range.

(a) 4210

(b) −6310

(c) 12410

(d) −12810

(e) 13310

Exercise 1.30 Convert the following decimal numbers to 8-bit two’s complement
numbers or indicate that the decimal number would overflow the range.

(a) 2410

(b) −5910

(c) 12810

(d) −15010

(e) 12710

40 CHAPTER ONE From Zero to One

Exercise 1.31 Repeat Exercise 1.29, but convert to 8-bit sign/magnitude numbers.

Exercise 1.32 Repeat Exercise 1.30, but convert to 8-bit sign/magnitude numbers.

Exercise 1.33 Convert the following 4-bit two’s complement numbers to 8-bit
two’s complement numbers.

(a) 01012

(b) 10102

Exercise 1.34 Convert the following 4-bit two’s complement numbers to 8-bit
two’s complement numbers.

(a) 01112

(b) 10012

Exercise 1.35 Repeat Exercise 1.33 if the numbers are unsigned rather than two’s
complement.

Exercise 1.36 Repeat Exercise 1.34 if the numbers are unsigned rather than two’s
complement.

Exercise 1.37 Base 8 is referred to as octal. Convert each of the numbers from
Exercise 1.25 to octal.

Exercise 1.38 Base 8 is referred to as octal. Convert each of the numbers from
Exercise 1.26 to octal.

Exercise 1.39 Convert each of the following octal numbers to binary,
hexadecimal, and decimal.

(a) 428

(b) 638

(c) 2558

(d) 30478

Exercise 1.40 Convert each of the following octal numbers to binary,
hexadecimal, and decimal.

(a) 238

(b) 458

(c) 3718

(d) 25608

Exercises 41

Exercise 1.41 How many 5-bit two’s complement numbers are greater than 0?
How many are less than 0? How would your answers differ for sign/magnitude
numbers?

Exercise 1.42 How many 7-bit two’s complement numbers are greater than 0?
How many are less than 0? How would your answers differ for sign/magnitude
numbers?

Exercise 1.43 How many bytes are in a 32-bit word? How many nibbles are in
the word?

Exercise 1.44 How many bytes are in a 64-bit word?

Exercise 1.45 A particular DSL modem operates at 768 kbits/sec. How many
bytes can it receive in 1 minute?

Exercise 1.46 USB 3.0 can send data at 5 Gbits/sec. How many bytes can it send
in 1 minute?

Exercise 1.47 Hard disk manufacturers use the term “megabyte” to mean 106

bytes and “gigabyte” to mean 109 bytes. How many real GBs of music can you
store on a 50 GB hard disk?

Exercise 1.48 Estimate the value of 231 without using a calculator.

Exercise 1.49 A memory on the Pentium II microprocessor is organized as a
rectangular array of bits with 28 rows and 29 columns. Estimate how many bits
it has without using a calculator.

Exercise 1.50 Draw a number line analogous to Figure 1.11 for 3-bit unsigned,
two’s complement, and sign/magnitude numbers.

Exercise 1.51 Draw a number line analogous to Figure 1.11 for 2-bit unsigned,
two’s complement, and sign/magnitude numbers.

Exercise 1.52 Perform the following additions of unsigned binary numbers.
Indicate whether or not the sum overflows a 4-bit result.

(a) 10012+ 01002

(b) 11012+ 10112

42 CHAPTER ONE From Zero to One

Exercise 1.53 Perform the following additions of unsigned binary numbers.
Indicate whether or not the sum overflows an 8-bit result.

(a) 100110012+ 010001002

(b) 110100102+ 101101102

Exercise 1.54 Repeat Exercise 1.52, assuming that the binary numbers are in
two’s complement form.

Exercise 1.55 Repeat Exercise 1.53, assuming that the binary numbers are in
two’s complement form.

Exercise 1.56 Convert the following decimal numbers to 6-bit two’s complement
binary numbers and add them. Indicatewhether or not the sumoverflows a 6-bit result.

(a) 1610+ 910

(b) 2710+ 3110

(c) −410+ 1910

(d) 310+−3210

(e) −1610+−910

(f) −2710+−3110

Exercise 1.57 Repeat Exercise 1.56 for the following numbers.

(a) 710+ 1310

(b) 1710+ 2510

(c) −2610+ 810

(d) 3110+−1410

(e) −1910+−2210

(f) −210+−2910

Exercise 1.58 Perform the following additions of unsigned hexadecimal numbers.
Indicate whether or not the sum overflows an 8-bit (two hex digit) result.

(a) 716+ 916

(b) 1316+ 2816

(c) AB16+ 3E16

(d) 8F16+AD16

Exercises 43

Exercise 1.59 Perform the following additions of unsigned hexadecimal numbers.
Indicate whether or not the sum overflows an 8-bit (two hex digit) result.

(a) 2216+ 816

(b) 7316+ 2C16

(c) 7F16+ 7F16

(d) C216+A416

Exercise 1.60 Convert the following decimal numbers to 5-bit two’s complement
binary numbers and subtract them. Indicate whether or not the difference
overflows a 5-bit result.

(a) 910− 710

(b) 1210− 1510

(c) −610− 1110

(d) 410−−810

Exercise 1.61 Convert the following decimal numbers to 6-bit two’s complement
binary numbers and subtract them. Indicate whether or not the difference
overflows a 6-bit result.

(a) 1810− 1210

(b) 3010− 910

(c) −2810− 310

(d) −1610−2110

Exercise 1.62 In a biased N-bit binary number system with bias B, positive and
negative numbers are represented as their value plus the bias B. For example, for
5-bit numbers with a bias of 15, the number 0 is represented as 01111, 1 as
10000, and so forth. Biased number systems are sometimes used in floating point
mathematics, which will be discussed in Chapter 5. Consider a biased 8-bit binary
number system with a bias of 12710·

(a) What decimal value does the binary number 100000102 represent?

(b) What binary number represents the value 0?

(c) What is the representation and value of the most negative number?

(d) What is the representation and value of the most positive number?

Exercise 1.63 Draw a number line analogous to Figure 1.11 for 3-bit biased
numbers with a bias of 3 (see Exercise 1.62 for a definition of biased numbers).

44 CHAPTER ONE From Zero to One

Exercise 1.64 In a binary coded decimal (BCD) system, 4 bits are used to
represent a decimal digit from 0 to 9. For example, 3710 is written as
00110111BCD.

(a) Write 28910 in BCD

(b) Convert 100101010001BCD to decimal

(c) Convert 01101001BCD to binary

(d) Explain why BCD might be a useful way to represent numbers

Exercise 1.65 Answer the following questions related to BCD systems (see
Exercise 1.64 for the definition of BCD).

(a) Write 37110 in BCD

(b) Convert 000110000111BCD to decimal

(c) Convert 10010101BCD to binary

(d) Explain the disadvantages of BCD when compared to binary representations
of numbers

Exercise 1.66 A flying saucer crashes in a Nebraska cornfield. The FBI investigates
the wreckage and finds an engineering manual containing an equation in the
Martian number system: 325 + 42= 411. If this equation is correct, how many
fingers would you expect Martians to have?

Exercise 1.67 Ben Bitdiddle and Alyssa P. Hacker are having an argument. Ben
says, “All integers greater than zero and exactly divisible by six have exactly two
1’s in their binary representation.” Alyssa disagrees. She says, “No, but all such
numbers have an even number of 1’s in their representation.” Do you agree with
Ben or Alyssa or both or neither? Explain.

Exercise 1.68 Ben Bitdiddle and Alyssa P. Hacker are having another argument.
Ben says, “I can get the two’s complement of a number by subtracting 1, then
inverting all the bits of the result.” Alyssa says, “No, I can do it by examining each
bit of the number, starting with the least significant bit. When the first 1 is found,
invert each subsequent bit.” Do you agree with Ben or Alyssa or both or neither?
Explain.

Exercise 1.69 Write a program in your favorite language (e.g., C, Java, Perl) to
convert numbers from binary to decimal. The user should type in an unsigned
binary number. The program should print the decimal equivalent.

Exercises 45

Exercise 1.70 Repeat Exercise 1.69 but convert from an arbitrary base b1 to
another base b2, as specified by the user. Support bases up to 16, using the letters
of the alphabet for digits greater than 9. The user should enter b1, b2, and then the
number to convert in base b1. The program should print the equivalent number in
base b2.

Exercise 1.71 Draw the symbol, Boolean equation, and truth table for

(a) a three-input OR gate

(b) a three-input exclusive OR (XOR) gate

(c) a four-input XNOR gate

Exercise 1.72 Draw the symbol, Boolean equation, and truth table for

(a) a four-input OR gate

(b) a three-input XNOR gate

(c) a five-input NAND gate

Exercise 1.73 A majority gate produces a TRUE output if and only if more than
half of its inputs are TRUE. Complete a truth table for the three-input majority
gate shown in Figure 1.41.

Exercise 1.74 A three-input AND-OR (AO) gate shown in Figure 1.42 produces a
TRUE output if both A and B are TRUE, or if C is TRUE. Complete a truth table
for the gate.

Exercise 1.75 A three-input OR-AND-INVERT (OAI) gate shown in Figure 1.43
produces a FALSE output if C is TRUE and A or B is TRUE. Otherwise it
produces a TRUE output. Complete a truth table for the gate.

A

B Y
C

MAJ

Figure 1.41 Three-input majority gate

A
B Y
C

Figure 1.42 Three-input AND-OR gate

46 CHAPTER ONE From Zero to One

Exercise 1.76 There are 16 different truth tables for Boolean functions of two
variables. List each truth table. Give each one a short descriptive name (such as
OR, NAND, and so on).

Exercise 1.77 How many different truth tables exist for Boolean functions of N
variables?

Exercise 1.78 Is it possible to assign logic levels so that a device with the transfer
characteristics shown in Figure 1.44 would serve as an inverter? If so, what are the
input and output low and high levels (VIL, VOL, VIH, and VOH) and noise margins
(NML and NMH)? If not, explain why not.

Exercise 1.79 Repeat Exercise 1.78 for the transfer characteristics shown in
Figure 1.45.

A
B Y
C

Figure 1.43 Three-input OR-AND-
INVERT gate

Vin

Vout

0 1 2 3 4 5
0

1

2

3

4

5

Figure 1.44 DC transfer
characteristics

Vin

Vout

0 1 2 3 4 5
0

1

2

3

4

5

Figure 1.45 DC transfer
characteristics

Exercises 47

Exercise 1.80 Is it possible to assign logic levels so that a device with the transfer
characteristics shown in Figure 1.46 would serve as a buffer? If so, what are the
input and output low and high levels (VIL,VOL,VIH, and VOH) and noise margins
(NML and NMH)? If not, explain why not.

Exercise 1.81 Ben Bitdiddle has invented a circuit with the transfer characteristics
shown in Figure 1.47 that he would like to use as a buffer. Will it work? Why or
why not? He would like to advertise that it is compatible with LVCMOS and
LVTTL logic. Can Ben’s buffer correctly receive inputs from those logic families?
Can its output properly drive those logic families? Explain.

Exercise 1.82 While walking down a dark alley, Ben Bitdiddle encounters a two-
input gate with the transfer function shown in Figure 1.48. The inputs are A and B
and the output is Y.

Vin

Vout

0 1 2 3 4 5
0

1

2

3

4

5

Figure 1.46 DC transfer characteristics

Vin

Vout

0
0

0.6

1.2

1.8

2.4

3.0
3.3

3.30.6 1.2 1.8 2.4 3.0

Figure 1.47 Ben’s buffer DC transfer characteristics

48 CHAPTER ONE From Zero to One

(a) What kind of logic gate did he find?

(b) What are the approximate high and low logic levels?

Exercise 1.83 Repeat Exercise 1.82 for Figure 1.49.

Exercise 1.84 Sketch a transistor-level circuit for the following CMOS gates.
Use a minimum number of transistors.

(a) four-input NAND gate

(b) three-input OR-AND-INVERT gate (see Exercise 1.75)

(c) three-input AND-OR gate (see Exercise 1.74)

0
1

2
3

0
1

2

3
0

1

2

3

A
B

Y

Figure 1.48 Two-input DC transfer characteristics

0
1

2
3

0
1

2
3
0

1

2

3

AB

Y

Figure 1.49 Two-input DC transfer characteristics

Exercises 49

Exercise 1.85 Sketch a transistor-level circuit for the following CMOS gates.
Use a minimum number of transistors.

(a) three-input NOR gate

(b) three-input AND gate

(c) two-input OR gate

Exercise 1.86 A minority gate produces a TRUE output if and only if fewer than
half of its inputs are TRUE. Otherwise it produces a FALSE output. Sketch a
transistor-level circuit for a three-input CMOS minority gate. Use a minimum
number of transistors.

Exercise 1.87 Write a truth table for the function performed by the gate in
Figure 1.50. The truth table should have two inputs, A and B. What is the name of
this function?

Exercise 1.88 Write a truth table for the function performed by the gate in
Figure 1.51. The truth table should have three inputs, A, B, and C.

Exercise 1.89 Implement the following three-input gates using only pseudo-nMOS
logic gates. Your gates receive three inputs, A, B, and C. Use a minimum number
of transistors.

(a) three-input NOR gate

(b) three-input NAND gate

(c) three-input AND gate

A

B

C

C

A B

Y

Figure 1.51 Mystery schematic

A

B

A

B

A

A

B

B

Y

Figure 1.50 Mystery schematic

50 CHAPTER ONE From Zero to One

Exercise 1.90 Resistor-Transistor Logic (RTL) uses nMOS transistors to pull the
gate output LOW and a weak resistor to pull the output HIGH when none of the
paths to ground are active. A NOT gate built using RTL is shown in Figure 1.52.
Sketch a three-input RTL NOR gate. Use a minimum number of transistors.

A
Y

weak

Figure 1.52 RTL NOT gate

Exercises 51

Interview Questions

These questions have been asked at interviews for digital design jobs.

Question 1.1 Sketch a transistor-level circuit for a CMOS four-input NOR gate.

Question 1.2 The king receives 64 gold coins in taxes but has reason to believe
that one is counterfeit. He summons you to identify the fake coin. You have a
balance that can hold coins on each side. How many times do you need to use the
balance to find the lighter, fake coin?

Question 1.3 The professor, the teaching assistant, the digital design student, and
the freshman track star need to cross a rickety bridge on a dark night. The bridge is
so shaky that only two people can cross at a time. They have only one flashlight
among them and the span is too long to throw the flashlight, so somebody must
carry it back to the other people. The freshman track star can cross the bridge in
1 minute. The digital design student can cross the bridge in 2 minutes. The teaching
assistant can cross the bridge in 5 minutes. The professor always gets distracted
and takes 10 minutes to cross the bridge. What is the fastest time to get everyone
across the bridge?

52 CHAPTER ONE From Zero to One

	Outline placeholder
	1.1 The Game Plan
	1.2 The Art of Managing Complexity
	1.2.1 Abstraction
	1.2.2 Discipline
	1.2.3 The Three-Y's

	1.3 The Digital Abstraction
	1.4 Number Systems
	1.4.1 Decimal Numbers
	1.4.2 Binary Numbers
	1.4.3 Hexadecimal Numbers
	1.4.4 Bytes, Nibbles, and All That Jazz
	1.4.5 Binary Addition
	1.4.6 Signed Binary Numbers
	Sign/Magnitude Numbers
	Two's Complement Numbers
	Comparison of Number Systems

	1.5 Logic Gates
	1.5.1 NOT Gate
	1.5.2 Buffer
	1.5.3 AND Gate
	1.5.4 OR Gate
	1.5.5 Other Two-Input Gates
	1.5.6 Multiple-Input Gates

	1.6 Beneath the Digital Abstraction
	1.6.1 Supply Voltage
	1.6.2 Logic Levels
	1.6.3 Noise Margins
	1.6.4 DC Transfer Characteristics
	1.6.5 The Static Discipline

	1.7 CMOS Transistors*
	1.7.1 Semiconductors
	1.7.2 Diodes
	1.7.3 Capacitors
	1.7.4 nMOS and pMOS Transistors
	1.7.5 CMOS NOT Gate
	1.7.6 Other CMOS Logic Gates
	1.7.7 Transmission Gates
	1.7.8 Pseudo-nMOS Logic

	1.8 Power Consumption*
	1.9 Summary and a Look Ahead
	Exercises
	Interview Questions

